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ABSTRACT: The binding free energy between a ligand and its target protein is ~ — tong simuiations
an essential quantity to know at all stages of the drug discovery pipeline. Assessing =~ — ™™=
umber of replicas

this value computationally can offer insight into where efforts should be focused ,, 8 n®v 2

in the pursuit of effective therapeutics to treat a myriad of diseases. In this work, ,,. T I E S

we examine the computation of alchemical relative binding free energies with an
eye for assessing reproducibility across popular molecular dynamics packages and
free energy estimators. The focus of this work is on 54 ligand transformations §,, \
from a diverse set of protein targets: MCL1, PTP1B, TYK2, CDK2, and ¢,

AAG Error

thrombin. These targets are studied with three popular molecular dynamics 5, \

packages: OpenMM, NAMD2, and NAMD3 alpha. Trajectories collected with ., \

these packages are used to compare relative binding free energies calculated with s, \
thermodynamic integration and free energy perturbation methods. The resulting 5o w wo o T

binding free energies show good agreement between molecular dynamics
packages with an average mean unsigned error between them of 0.50 kcal/mol.
The correlation between packages is very good, with the lowest Spearman’s, Pearson’s and Kendall’s tau correlation coefficients
being 0.92, 0.91, and 0.76, respectively. Agreement between thermodynamic integration and free energy perturbation is shown to be
very good when using ensemble averaging.

1. INTRODUCTION erative Al methods,"*7!° or even other free energy
calculations."”

Another aspect of MD-based free energy calculations is the
extreme sensitivity of such calculations to their initial

When applied rigorously, computational free energy methods
offer the ability to make accurate and precise predictions for
protein—ligand binding affinities.’ Physics-based free energy

methods, while historically being prohibitively expensive, have conditions.® It has been shown that free energies derived
now become routine, with the development of GPU hardware from two independent MD simulations, only varying in their
and GPU-accelerated molecular dynamics (MD) codes.> ™ starting velocities, can vary by a substantial amount; the exact
The way in which these calculations are structured provides figure depends on the type of method used and the system
many opportunities for concurrent execution across high studied.'”~*° MD-based free energy methods require ensemble
performance computers, allowing predictions for binding averaging across the conformations generated. However, the
affinities including reliable error estimates to be made in the practice has been to perform time averaging over a single
order of hours, a critical time frame in the domains of drug trajectory relying on the ergodic theorem, which equates time
design and personalized medicine. averaging to ensemble averaging. It is worth mentioning that

The accuracy of these calculations has been improved over the ergodic theorem holds true only in the limit of infinite
time as the force fields used to parameterize the system have time, which is far from the typical length of simulations
seen continued development.”™ Ongoing work in the field performed. This explains the observed differences in free
aims to further these improvements with large colglaborative energies between repeat simulations. Indeed, a recent study
endeavors such as the Open Force Field Initiative” and the showed that ensembles are required to handle both aleatoric

development of systematic methods for force field optimization
such as Force Balance.'” Being able to calculate these binding
free energies accurately can be of significant benefit to drug
design campaigns, helping reduce the large cost involved with
drug development."' Moreover, these calculations can allow
much larger areas of chemical space to be explored than would
be possible experimentally. Compounds drawn from this
chemical space can be selected from numerous sources such as
chemical libraries,"” repurposing of approved drugs,"> gen-

and parametric uncertainty in MD simulation.”” It has also
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been shown that running an ensemble of independent
simulations varying only in their starting conditions or, in
other words, an ensemble simulation yields precise and
reproducible results.”*° In particular, methods such as
ESMACS®"** and TIES*>*° have been developed based on
such ensemble simulations so as to ensure reproducibility and
hence reliability of the predicted free energies. Recently, we
have also shown computationally and experimentally that the
distributions of free energies obtained from such ensemble
simulations are in general not Gaussian as is the common
assumption; rather, they exhibit non-normality, which has
interesting and important consequences.zg_31

Alchemical binding free energy calculations are a class of free
energy methods that involve the transformation of one or more
chemical moieties in the system to another.’” Alchemical
protein—ligand binding calculations can be performed in an
absolute or relative fashion.>>** In an absolute calculation, the
binding free energy of a ligand is calculated by completely
removing the ligand from the protein—ligand complex.
Alternatively, one can perform relative calculations that
compare the binding free energy between two ligands. During
a relative calculation, one ligand is transformed, via unphysical
“alchemical” intermediate states, into another. The two ligands
studied generally have a highly conserved chemical structure;
this is both a strength and a weakness of the method since the
practitioner is restricted to studying cogeneric ligands but
benefits from potential gains in accuracy and precision
resulting from studying smaller changes when compared to
absolute methods. Cogeneric ligands also come with some
other tangential benefits, such as avoiding complicating factors
involving standard state corrections.”*° In this study, we have
employed the ensemble simulation-based TIES™ to correctly
handle the uncertainties associated with such calculations and
extended this to apply to free-energy perturbation methods.

In this work, we consider only relative binding free energy
(RBFE) calculations. Several existing software applications can
facilitate these calculations such as PMX based on
GROMACS,”” FEP+ proprietary software produced by
Schrédinger,® or FESetup.” Our group has recently publicly
released the comprehensive TIES toolkit*’ to automatically
setup, execute, and analyze such calculations; this software was
used to prepare and perform all calculations for this study. The
specifics of RBFE methodologies vary between implementa-
tions, being based on user choices about how to carry out
calculations. Some key areas where this variation could
significantly influence the results include the topology of the
transformed moieties, the thermodynamic path followed
between end states, and how much sampling is performed in
each state. These factors introduce some uncertainty in the
results, but this is generally controlled by probing them on a
case by case basis.

For the application of RBFE calculations to the protein-
ligand binding problem, one aspect of uncertainty quantifica-
tion which has received less attention is the variation in results
across MD packages. In previous work by Rizzi et al., a wide
array of alchemical methods were compared, including the
potential of mean force and weighted ensemble methods."’
This study reported that the variability in the absolute binding
free energy across the methods tested is in the range of 0.3 to
1.0 kcal/mol. However, due to differences between the
methods tested, comparisons are difficult to draw across
alchemical methods or estimators. Moreover, unlike our
current study, that study does not directly compare the
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performance of different MD packages using the same
alchemical methods, which adds too many variables for
systematic and direct comparisons to be made. The input
systems used by Rizzi et al. were closely matched but with
some differences arising from factors such as different
Coulomb constants used by AMBER and CHARMM, differing
implementations of particle—mesh Ewald methods or
Lennard—Jones (LJ) cutoff schemes. Technical differences
between MD codes are a recurring issue, which complicates
the comparison of calculations and plays an important role in
the present study.

Another study that proposes a comparison between
estimators using some simple benchmark systems has been
carried out previously by Paliwal et al.,*” who studied in detail
the properties of numerous perturbative estimators as well as
thermodynamic integration. All estimators are examined using
GROMACS, allowing meaningful comparisons to be made.
However, the systems used by Paliwal et al. are small toy
models and, hence, are not relevant for larger protein—ligand
systems as used in this work. One of the ways in which
uncertainty is quantified in their work was to run an ensemble
of 100 simulations and calculate the mean and standard
deviation of the binding free energies from each simulation.
Using large ensembles allowed Paliwal et al. to quantify the
type of distribution for calculated hydration free energies.
From the calculated binding free energy distributions, it is
concluded that the assumptions of Gaussian distributed errors
in free energies are usually valid for most methods studied.
This is contrary to the observations made in our work where,
when using the same free energy estimators for an investigation
of more complex protein-ligand systems, it is found that
Gaussian distributions cannot be assumed as also reported in
some of our previous studies.”®*’

In the present paper, we investigate the reproducibility of
relative binding free energy calculations using three MD
packages and two free energy estimators. The use of ensemble-
based simulations will be made to control uncertainties as is
essential for any calculation reliant on chaotic MD trajectories.
Using ensembles to provide robust error control, we aim to
identify statistically significant differences in the results from
the different MD packages and estimators.

2. THEORY

In this section, we outline the essential theory underpinning
the alchemical methods we study.

2.1. Alchemical Methods. Applied to protein—ligand
binding problems, alchemical methods involve changing
chemical moieties in the studied system and calculating the
free energy differences associated with these changes. Since in
atomistic simulations, systems are parameterized by force
fields, the transformation of chemical moieties can be achieved
by modifying the atomistic parameters of the system. The
variable / is designated to control the modified parameters of
the system, turning on and off relevant inter- and intra-
molecular potentials. The reduced potential u(x, 1) of such a
system can therefore be written as a function of the controlling
parameter

u(, 2) = ——[U(x, 2) + pV(x)-].

kg T (1)

Here, & is the configuration of the system, U is the potential
energy, p is the pressure, and V is the volume, plus any other
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terms relevant to the specific ensemble in which the simulation
is performed e.g,, NPT, grand, etc. As an example, consider the
transformation of some ligand A to some ligand B. The value
of A ranges between 0 and 1; with a A of 0, the system is in a
state describing ligand A, and with a 4 of 1, the system is in a
state describing ligand B. Typically, 4 will take multiple
intermediate values between the end states 0 and 1; this range
of A values Ay, 4y 1, Ag---4; defines a set of alchemical states, and
simulations are performed in all these states. The choice of
these states is not arbitrary and can affect both the accuracy
and precision of the results.

2.2. Thermodynamic Integration. To calculate free
energy differences with alchemical methods one of many
available estimators can be used. In this work, an application of
a thermodynamic integration (TI) estimator is made with
enhanced sampling (TIES™); this methodology has been used
in numerous studies to calculate accurate and precise
RBFEs.”**** Centrally, TIES is based on the formally exact

1

I I equation
A

Here, G is the Gibbs free energy and AG is the change in
Gibbs free energy between two states A and B. AG is
ou(4,x)

oA

ou(4, x)
oA

AG =
@)

0

calculated by integrating < > over the range of 4, and this
!

integration is performed numerically. It is worth highlighting
that eq 2 is only strictly valid in the thermodynamic limit when
both left-hand-side and right-hand-side terms are unique
numbers with no fluctuations. However, practically speaking,
we work with finite systems and sample only a fraction of the
full conformational space, which makes these quantities
stochastic variables.'®*® This implies that both the free energy
as well as its derivative will have a distribution of values.
Therefore, it is necessary to get the expectation value of these
quantities using ensemble methods. The brackets (. ), denote
an ensemble average in a thermodynamic state defined by the
value of A. To compute this ensemble average, the
configurations of particles can be sampled using Monte
Carlo or MD methods, and from these sampled configurations,
values of the potential are calculated and averaged. The
traditional approach has been to perform a single “long” MD
simulation to proxy ensemble averaging with time averaging.
However, as discussed already, this is not reliable due to the
extreme sensitivity of the results obtained, arising from the
initial conditions that are controlled by the random seeds used
to initiate simulations. Thus, ensemble simulations are
required to generate the ensemble of conformations in order
to estimate an average and distribution of the calculated AG.
In this work, the same idea of performing ensemble simulation
to get the expectation value of the distribution of AG by
performing stochastic integration of the distributions of

du(d,x) \ . . .
<—M >/1 is applied using the TIES methodology.

2.3. Free Energy Perturbation. Parallel to the set based
on TI are perturbative methods such as free energy
perturbation (FEP) methods. The simplest estimators
belonging to this class of perturbative methods are those
based on the Zwanzig relation. However, it is known in FEP
calculations that free energy estimates from the Zwanzig
relation can be prone to bias stemming from the dominant
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contribution of rare samples when using finite sampling.*’ As
such, there exist several methods that aim to improve the
exponential averaging estimator; these are the Bennet accept-
ance ratio (BAR) and the multistate Bennet acceptance ratio
(MBAR). In this work, the MBAR estimator is used, the
derivation of this method is given in detail in the work of Shirts
and Chodera."* Here, we present the relevant equation from
this previous work for computing dimensionless free energies
in a system with K total 4 states,

f=-

n=1

exp(—u,(x,)) .
Yo Neexp(f, — u(s,)) 3)

In this equation, f,/ is the dimensionless free energy for the
state with 4 = 4,4, N is the total number of samples indexed by
n, Ny is the number of samples collected in state A = 4;, and
u;/(x,) is then the reduced potential energy evaluated in state
A = Ay calculated using the configuration sampled in iteration
n. Note that the summations run over all alchemical windows,
and thus information from all windows is combined to produce
a free energy estimate; if only two windows are considered,
MBAR reduces to BAR.** This equation can be solved self-
consistently with many solvers, and these methods are
implemented in the pymbar package,"* which was used in
this work to compute results with MBAR. The dimensionless
free energies in eq 3 are combined into free energy differences
and converted to the Gibbs free energies as follows

Af(4;, 4+ 1) =Ji+1 _fi (4)
K—1

AG = kT Z Af(/li; Aiv1)
i=1 (%)

If the overlap in phase space between adjacent alchemical
states is low, it can be difficult to sample sufficiently to
calculate trustworthy free energy differences with FEP
methods.* No rigorous criteria exists that relates the expected
variance in the calculated free energy to the amount of
sampling or overlap between states for a given system. As a
result, there are numerous other ways in which the reliability of
FEP calculations are tested,"* such as calculating the
convergence of results with the amount of sampling/number
of alchemical windows or computing overlap distributions and
overlap matrices.*> The main way in which the variance in FEP
calculation will be addressed in this work is through the use of
ensembles of simulations. As described above for the TI
estimator, the concept of ensemble simulations to obtain the
expectation value of AG along with associated uncertainty will
also be applied to FEP.

2.4. Ligand Protein Binding Free Energy. AG can be
calculated with many different estimators. In order to calculate
the binding free energy difference of ligand to protein, AAG,
calculated values for AG are combined through a thermody-
namic cycle.”” In the case of RBFE for protein ligand binding
the following thermodynamic cycle is routinely used
— A Galch

solvent

(6)
here AG?},‘ﬁ,‘em/complex are the AGs calculated in eqs 2 and 4 in
the solvent/complex simulations (transforming L, into Ly).
Where the solvent simulation is the ligand in solvent and the
complex simulation is the ligand in complex with the solvated
protein. AGlﬁi“/‘?sg is the binding free energy of ligand A/B to

AAG = AGLb;nding _ AGLbinding — AGcalch

omplex
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the protein. The difference of these alchemical free energies is
equal to the difference of binding free energy of the ligands A
and B, which allows the final AAG to be calculated.

3. METHODS

The RBFE calculations performed in this work are calculated
using three molecular dynamics packages; these are OpenMM,
NAMD 2, and NAMD 3 alpha. OpenMM can perform MD
calculations on multiple platforms (CPU, CUDA, and
OpenCL); in this work, all OpenMM calculations are
performed using the CUDA platform with OpenMM 7.4.2.
Likewise, NAMD3 alpha calculations are run on CUDA GPUs.
The NAMD? calculations are performed on CPUs.

To automate the setup and running of these simulations, we
have developed and released an open-source Python package
called TIES MD, which is available online’. This study uses
the existing input files from previous research that works with
TIES MD; novel input ligand transformations can be generated
using an online service or open-source installable package
TIES 20°. The combination of TIES MD and TIES 20 allows
anyone to freely and easily use the TIES protocol to calculate
binding free energies.

3.1. Input Systems. All the methods in this work use the
same dual topology input systems. These systems model §
proteins and 54 ligand transformations. The models are taken
from the previous work of Bhati et al.,”> and details of their
preparation are provided in that paper. In the SI of this paper,
we provide all these parametrized systems, and note here that
the AMBER fl99SB-ILDN" force field was used for protein
parameters and the ligand parameters were produced using the
general AMBER force field (GAFF ).

3.2. Simulation Protocol. The number of input
parameters to MD engines is large (175 in the case of
NAMD?2); matching these between engines is challenging and
conceivably an obstacle to the reproducibility of results. Recent
work by Vassaux et al. examining the parametric uncertainty of
NAMD2”” has shown that only six input parameters dominate
the error in free energy calculations. Moreover, it is clear from
the work of Vassaux et al. that the parametric uncertainty is
damped in the output of free energy calculations. Combined
with the corpus of literature that shows that aleatoric error is
dominating in MD simulations,””*° the parametric differences
are of less concern and should not impede reproducibility.

Our general alchemical protocol involves collecting samples
from 13 intermediate alchemical states. This entails running an
energy minimization followed by 2 ns of equilibration. After
running pre-production on each state, 4 ns of NPT production
sampling is performed. In each state, an ensemble of five
simulations is performed for each simulation leg to calculate
one AG value. From the production sampling the potential and
ou(, x)

04
3.3. OpenMM Alchemical Protocol. The molecular

dynamics sampling in OpenMM was performed using NVT
and NPT ensembles. In the NVT ensemble, Langevin
dynamics was used with a friction coefficient of 300 fs, a
target temperature of 300 K, and an integration time step of 2
fs. In the NPT ensemble, a Monte Carlo barostat was added
with pressure changing moves attempted every 25 steps and a
target pressure of 1 atm. A nonbonded cutoff of 1.2 nm was
used with a switching distance of 1.0 nm. Any long-range
dispersion corrections are turned oft for parity with NAMD
calculations. The particle mesh Ewald (PME) algorithm was

gradient, , are calculated every 4 ps.
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used to calculate the electrostatic contribution to the potential;
this was performed with an error tolerance of 0.00001.
OpenMM computed the number of nodes in the PME mesh
dependent on the nonbonded cutoff, error tolerance, and size
of the simulation cell’ Preproduction of the OpenMM
calculation involved a constrained minimization using
OpenMM’s implementation of the limited memory Broy-
den—Fletcher—Goldfarb—Shanno algorithm. This was fol-
lowed with 20 ps of NVT equilibration and then 2 ns of
NPT equilibration. After this, 4 ns of NPT production was
performed with samples of the potential and gradient, %ﬂ”c),
collected every 4 ps.

OpenMM does not offer any inbuilt alchemical methods,
and as such, there exist a number of programs that extend
OpenMV, allowing systems to be manipulated alchemically
and perform alchemical calculations. One such program used
in this work, is OpenMMTo0ls0.19.0."* OpenMMTools can
take as input a standard OpenMM system, defined with some
potentials, and transform this system into an alchemical one,
where the potentials are controlled by the A parameter. The
scaling of (LJ) interactions was performed with a soft-core
potential using the functional form of eq 13 presented in the
work of Pham et al.*’ with the following parameters: a = 0.5, a
=1, b =1 and ¢ = 6, the default parameters used by
OpenMMTools. Electrostatic interactions are scaled linearly
without a soft-core potential. The A schedule used in the
OpenMM calculations was a two-step procedure, which
completely annihilated all electrostatic interactions of outgoing
alchemical moieties before scaling down the LJ interaction and
completely created all LJ interactions of incoming moieties
before turning on any electrostatic interactions. Annihilation
was used in the OpenMM method as this is the methodology
supported by OpenMMTools when calculating the electro-
statics with the PME method, which was used for all
simulations in this work. In this context, annihilation means
that when a chemical moiety is “turned off,” both inter- and
intramolecular interactions are extinguished.

3.4. NAMD2 Alchemical Protocol. The molecular
dynamics sampling in NAMD was performed using NVT
and NPT ensembles. For NAMD NVT, sampling is collected
using Langevin dynamics with a friction coefficient of 500 fs, a
target temperature of 300 K, and an integration time step of 2
fs. In NAMD2 calculations, a Berendsen barostat was used
with a compressibility of 4.57 X 10™°bar™’, relaxation time of
100 fs, and target pressure of 1 atm. A nonbonded cutoff of 1.2
nm was used with a switching distance of 1.0 nm. A pair list
distance of 1.35 nm is used with an update frequency of 20
steps. No long-range dispersion corrections are applied. The
PME algorithm was used to calculate the electrostatic
contribution to the potential; this was performed with an
error tolerance of 0.000001 and a PME grid spacing of 0.1 nm.
Preproduction of the NAMD calculation involved a con-
strained minimization using NAMD’s implementation of the
conjugate gradient method. This was followed with 20 ps of
NVT equilibration and then 2 ns of NPT equilibration. After
this, 4 ns of NPT production was performed with samples of
ou(4,x)

= collected every 4 ps.

The NAMD method uses a soft-core potential to decouple
the L] interactions. This soft-core potential can be expressed in
the same form as the OpenMM soft-core using parameters a =
0.5,a=1,b =1 and ¢ = 2, the default parameters used by

the potential and gradient,

https://doi.org/10.1021/acs.jctc.2c00114
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Table 1. Statistical Properties Calculated for all Protein Targets and MD Engines Using TI?

protein property NAMD3 TI
PTP1B MUE 0.63[0.36, 1.09]
MSE 0.71[0.15, 1.66]
RMSD 0.85[0.40, 1.31]
Person’s 0.44[—0.17, 0.88]
slope 0.37[—0.01, 1.03]
intercept 0.31[—0.32, 0.84]
CDK2 MUE 0.94[0.55, 1.45]
MSE 1.23[0.54, 2.73]
RMSD 1.11[0.73, 1.67]
Person’s 0.87[0.53, 0.97]
slope 0.48[0.26, 0.79]
intercept 0.09[—0.42, 0.53]
MCL1 MUE 1.36[1.03, 1.73]
MSE 2.36[1.48, 3.66)
RMSD 1.54[121, 1.92]
Person’s 0.80[0.54, 0.93]
slope 0.52[0.37, 0.65]
intercept —0.09[—0.56, 0.40]
TYK2 MUE 0.68[0.48, 0.88]
MSE 0.58[0.34, 0.92]
RMSD 0.76[0.59, 0.96]
Person’s 0.89[0.72, 0.96]
slope 0.93[0.65, 1.29]
intercept 0.22[—0.39, 0.82]
thrombin MUE 0.98[0.69, 1.31]
MSE 1.25[0.74, 2.30]
RMSD 1.12[0.87, 1.50]
Person’s 0.87[0.65, 0.96]
slope 0.47[0.36, 0.65]
intercept —0.10[—0.50, 0.24]

NAMD2 TI OpenMM TI
0.48[0.26, 0.70] 0.61[0.41, 0.79]
0.35[0.16, 0.60] 0.46[0.26, 0.74]
0.59[0.40, 0.78] 0.68[0.51, 0.86]
0.68[—0.59, 0.87] 0.36[—0.45, 0.73]
0.65[0.17, 1.30] 0.70[-1.15, 2.15]
0.13[-0.59, 0.85] 0.31[—0.89, 0.83]
0.76[0.38, 1.07] 0.98[0.62, 1.66]
0.78[0.34, 1.27] 1.41[0.52, 3.64]
0.89[0.56, 1.13] 1.19[0.73, 1.92]
0.83[—0.07, 0.94] 0.89[0.71, 0.96]
0.57[0.31, 1.14] 0.46[0.26, 0.72]
0.01[—0.75, 0.46] 0.18[—0.24, 0.56]
1.17[0.86, 1.51] 0.98[0.63, 1.66]
1.82[1.07, 2.95] 1.82[0.70, 4.96]
1.35[1.03, 1.70] 1.35[0.85, 2.22]
0.81[0.59, 0.92] 0.74[0.31, 0.92]
0.56[0.38, 0.74] 0.70[0.31, 0.99]

—0.05[—0.51, 0.41] —0.42[—0.82, 0.09]
0.42[0.22, 0.66] 0.62[0.42, 0.94]
0.31[0.12, 0.62] 0.55[0.27, 1.26]
0.56[0.34, 0.79] 0.74[0.53, 1.12]
0.94[0.83, 0.99] 0.89[0.74, 0.95]
1.12[0.84, 1.36] 1.05[0.71, 1.56]
0.15[-0.30, 0.59] 0.11[—-0.47, 0.73]
0.63[0.43, 0.79] 0.85[0.66, 1.12]
0.49[0.29, 0.72] 0.87[0.51, 1.46]
0.70[0.55, 0.85] 0.93[0.72, 1.22]
0.92[0.81, 0.98] 0.89[0.62, 0.96]
0.59[0.49, 0.77] 0.49[0.38, 0.61]

—0.02[—0.34, 0.21] 0.14[—0.15, 0.42]

“Properties are calculated with comparison to experimental data. Properties and 95% confidence intervals, provided in square brackets, are

calculated with bootstrapping. All energies are in kcal/mol.

NAMD. Electrostatic interactions are decoupled linearly
without a soft-core potential. The A schedule used in the
NAMD calculations was a one-step procedure where L] and
electrostatic potentials are scaled simultaneously but at a
different pace. Decoupling was used in the NAMD method as
this is the method invoked in our original NAMD2-based
study of these systems.”” In this context, decoupling means
that when a chemical moiety is “turned off,” only the
intermolecular interactions are removed.

While this procedure describes the simulation protocol
accurately, one caveat must be added in the case of the
NAMD?2 results. The results presented here for NAMD?2 are
from the work of Bhati et al.*° In this previous work, the
gradients used in eq 2 are collected at intervals of 4 ps, but the
trajectories are saved at intervals of 10 ps. Therefore, the post-
processing of FEP results can only be calculated at intervals of
10 ps. This affects the comparison of TI and FEP results, and
we address the matter as it arises in the analysis of the results.

3.5. NAMD3 Alchemical Protocol. At the time of writing,
there was not perfect feature parity between NAMD?2 and
NAMD3 alpha; thus, NAMD3 used a different barostat for
NPT simulations. In NAMD3, a Langevin piston was used
with a piston period of 200 fs and a piston decay of 100 fs.
With the exception of the barostat, all settings are the same
between NAMD2 and NAMD3.

3.6. Uncertainty Quantification. For the FEP estimator-
based results presented in this work, each one of the replicas in
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the ensemble of five simulated allowed for the calculation of
one AG by applying eq 3 to the potentials sampled from the
simulation. The five resulting values of AG are then
bootstrapped to calculate a mean and standard error of the
mean (SEM). For the TI results, we apply the TIES protocol
as it has been used in previous work.”® The defining
characteristic of TIES is the use of an ensemble of simulations
in each alchemical state to control the aleatoric errors inherent
to MD simulations. In every one of the total 13 alchemical
states, an ensemble of five simulations is performed, each of
ou(4, x)

which yields a time series of , which can be averaged to

ou(A, x)

o > An ensemble of five such values is then

give <
bootstrapped to calculate the mean, which is used as the final
value in eq 2. Each bootstrapping provides an estimate in the
uncertainty as a SEM of the gradient in each alchemical
window, 6*(1), which is propagated as follows to give a total
estimate of the uncertainty in each AG calculation

o-silvent/complex = z GZ(A)A/‘LZ-
A (7)

Here, 62 ent Jcomplex 18 the variance in one thermodynamic leg
of the simulation and A/ is the difference between the value of
A between adjacent windows. Errors from complex and solvent
legs are combined in quadrature for both TIES and FEP

https://doi.org/10.1021/acs.jctc.2c00114
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Table 2. Statistical Properties Calculated for all Protein Targets

protein property NAMD3 FEP
PTP1B MUE 0.59[0.27, 1.11]
MSE 0.73[0.09, 1.79]
RMSD 0.85[0.29, 1.33]
Person’s 0.44[—0.13, 0.94]
slope 0.38[—0.07, 1.10]
intercept 0.27[—0.22, 0.93]
CDK2 MUE 0.94[0.52, 1.39]
MSE 1.23[0.59, 2.67]
RMSD 1.11[0.76, 1.67]
Person’s 0.87[0.55, 0.97]
slope 0.48[0.27, 0.79]
intercept 0.08[—0.47, 0.51]
MCL1 MUE 1.29[0.98, 1.66]
MSE 2.15[1.30, 3.45]
RMSD 1.47[1.14, 1.88]
Person’s 0.82[0.57, 0.93]
slope 0.54[0.38, 0.67]
intercept —0.11[-0.59, 0.35]
TYK2 MUE 0.66[0.47, 0.85]
MSE 0.54[0.32, 0.90]
RMSD 0.74[0.57, 0.94]
Person’s 0.90[0.75, 0.97]
slope 0.95[0.65, 1.29]
intercept 0.22[-0.37, 0.79]
thrombin MUE 0.87[0.53, 1.24]
MSE 1.12[0.56, 1.93]
RMSD 1.06[0.76, 1.41]
Person’s 0.91[0.71, 0.96]
slope 0.48[0.38, 0.61]
intercept —0.07[—0.36, 0.20]

and MD Engines Using FEP“

NAMD?2 FEP OpenMM FEP
0.36[0.21, 0.50] 0.60[0.43, 0.74]
0.18[0.08, 0.28] 0.42[0.25, 0.60]
0.43[0.29, 0.54] 0.65[0.50, 0.78]
0.83[0.42, 0.95] 0.48[—0.22, 0.82]
0.80[0.32, 1.21] 0.96[—0.48, 2.50]
0.02[—0.39, 0.63] 0.23[—0.88, 0.80]
0.76[0.38, 1.07] 0.98[0.56, 1.70]
0.78[0.34, 1.27] 1.48[0.52, 3.96]
0.89[0.56, 1.13] 1.22[0.72, 1.99]
0.83[—0.07, 0.94] 0.88[0.68, 0.95]
0.57[0.31, 1.14] 0.45[0.25, 0.75]
0.01[—0.75, 0.46] 0.17[-0.29, 0.58]
1.22[0.86, 1.69] 0.97[0.64, 1.64]
2.23[1.21, 4.21] 1.80[0.68, 5.05]
1.49[1.09, 2.07] 1.34[0.82, 2.29]
0.81[0.55, 0.92] 0.72[0.23, 0.91]
0.53[0.36, 0.72] 0.68[0.27, 1.03]

—0.12[—0.58, 0.32] —0.34[—0.75, 0.19]
0.38[0.20, 0.63] 0.63[0.45, 0.91]
0.27[0.11, 0.54] 0.53[0.29, 1.19]
0.52[0.33, 0.73] 0.73[0.53, 1.09]
0.95[0.85, 0.99] 0.89[0.71, 0.95]

1.11[0.84, 1.33] 1.03[0.70, 1.54]
0.11[—0.33, 0.51] 0.12[—0.44, 0.73]
0.68[0.44, 0.88] 0.82[0.63, 1.07]
0.60[0.34, 0.90] 0.81[0.47, 1.29]
0.78[0.59, 0.96] 0.90[0.69, 1.13]
0.92[0.74, 0.97] 0.89[0.58, 0.96]
0.55[0.45, 0.68] 0.50[0.40, 0.62]

0.04[—0.24, 0.27] 0.10[—0.18, 0.39]

“Properties are calculated with comparison to experimental data. Properties and 95% confidence intervals, provided in square brackets, are

calculated with bootstrapping. All energies are in kcal/mol.

methods to calculate the final uncertainty on the binding free
energy.

3.7. Performance. Our simulations were run across several
high performance computers including Summit at the Oak
Ridge National Laboratory, ThetaGPU at the Argonne
Leadership Computing Facility, SuperMUC-NG at the Leibniz
Supercomputing Centre, and ARCHER2, the UK’s national
high-performance computer service. The performance of
OpenMM is calculated while running on one Nvidia V100
GPU with a ligand—protein complex of 35k atoms, which
achieves simulation speeds of 115 ns/day. The performance of
NAMD3 is calculated while running on one Nvidia A100 GPU
with a ligand—protein complex of 35k atoms, which achieves
simulation speeds of 145 ns/day. Therefore, a TIES calculation
on GPU using 13 alchemical windows and S replica
simulations per window takes around 60 min of wall time
using 65 V100/A100s. NAMD?2 is performed on a CPU
platform and using 96 Xenon Skylake cores; the simulation
speed is 26 ns/day. Thus, using NAMD?2 and 6240 cores for
one TIES calculation, again with 13 windows and S replicas,
takes around 5—6 h of wall time on the CPU. In OpenMM, the
calculation of potentials and gradients required for FEP and TI
analysis can be performed concurrently with the simulation;
this creates an overhead of around 10% in TIES MD. The
speed of OpenMM without this overhead is therefore 127 ns/
day. For our NAMD calculations, either the potential or
gradient can be saved with the simulation but not both.
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Therefore, the TI and FEP results cannot be collected
concurrently, and a post-processing step is needed to extract
the FEP result from the NAMD trajectories. This post-
processing generally takes 10—20 min for one TIES
calculation. More detail of the performance of NAMD and
OpenMM codes is provided in the Supplementary Informa-
tion.

4. RESULTS

In this section, we present the wide range of results obtained in
this study, covering comparisons between MD packages and
free energy protocols, ensembles versus one-off simulations,
and the free energy distributions found.

4.1. Comparing Molecular Dynamics Engines. In the
present work, we study 54 ligand transformations in the
protein targets MCL1, PTP1B, TYK2, CDK2, and thrombin.
Here, we present the results of these calculations, comparing
accuracy and precision across the MD packages and free
energy estimators. Tables 1 and 2 present a comparison of the
accuracy and precision of all methods compared to those of the
experiment.

In Tables 1 and 2, it can be seen that the results across all
MD packages and estimators agree well with one another. With
95% confidence intervals, the only cases for which a statistically
significant difference can be observed are for the PTP1B and
thrombin target. For PTP1B, the methods NAMD2 FEP and
OpenMM FEP have MUE, MSE, and RMSD that differ by

https://doi.org/10.1021/acs.jctc.2c00114
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Figure 1. Computed vs experimental AAG values. (a) and (b) show the PTP1B results, and (c) and (d) show the thrombin results. (a) and (c) use
TI panels; (b) and (d) use FEP. Computed AAG and errors are SEM from an ensemble of replicas. The dark shaded region spans +1 kcal/mol;

the lighter region spans +2 kcal/mol.

0.24(0.23), 0.23(0.20), and 0.22(0.19) kcal/mol, respectively.
For thrombin, the MUE, MSE, and RMSD of NAMD?2 TI and
NAMD3 TI differ by 0.36(0.34), 0.76(0.56), and 0.42(0.30)
kcal/mol, respectively. To investigate the PTP1B and
thrombin cases, further plots are presented in Figure 1 for
the PTP1B and thrombin results compared to the experiment.

From Figure 1, it can be seen that when comparing
individual AAGs and using the SEM error, there are some
statistically significant differences between methods. Note that
in Figure 1, there are no error bars on the x axis; this is because
no errors are reported with the experimental results.”> The
limited number of differences should not detract from the
overall excellent agreement between all other cases and

3978

methods; in fact, some difference in the results from different
MD packages should be expected due to the unavoidable
differences in implementation detailed in the Methods section
and the reasonable probability that some values disagree within
1 standard deviation of error. The difference in individual
AAG calculated with different MD packages and free energy
estimators is shown in Table 3, where the averaged MUE
between methods is 0.50 kcal/mol. Due to the number of
differences between methods highlighted in previous sections,
it is not possible to comment on what precisely causes any
particular difference here. Despite some differences for
individual AAG calculations in MD packages, overall, the
results are well reproduced. This can also be seen from the

https://doi.org/10.1021/acs.jctc.2c00114
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Table 3. Statistical Properties Measuring the Agreement between AAGs Calculated from Different MD Packages in the TI and

FEP Cases”
estimator property OpenMM/NAMD?2
TI MUE 0.51 [0.38, 0.64]
MSE 0.49 [0.26, 0.69]
RMSD 0.70 [0.55, 0.86]
Spearman’s 0.92 [0.89, 1.00]
Pearson’s 0.91 [0.87, 0.95]
Kendall’s 0.77 [0.69, 0.85]
slope 0.86 [0.72, 0.98]
intercept 0.04 [—0.16, 0.24]
FEP MUE 0.49 [0.38, 0.60]
MSE 0.41 [0.21, 0.58]
RMSD 0.64 [0.51, 0.78]
Spearman’s 0.95 [0.93, 1.00]
Pearson’s 0.93 [0.90, 0.95]
Kendall’s 0.79 [0.73, 0.86]
slope 0.86 [0.72, 0.97]
intercept 0.00 [—0.18, 0.19]

OpenMM/NAMD3 NAMD2/NAMD3
0.58 [0.44, 0.71] 0.49 [0.38, 0.59]
0.61 [0.30, 0.87] 0.38 [0.21, 0.53]
0.78 [0.61, 0.97] 0.62 [0.49, 0.75]
0.92 [0.89, 0.99] 0.96 [0.93, 1.01]
0.92 [0.88, 0.97] 0.95 [0.93, 0.98]
0.76 [0.69, 0.84] 0.84 [0.78, 0.91]

1.10 [0.96, 1.23]

0.51 [0.37, 0.64]

1.08 [0.96, 1.19]

0.42 [0.33, 0.50]

0.53 [0.23, 0.77] 0.29 [0.17, 0.38]
0.73 [0.55, 0.92] 0.54 [0.44, 0.64]
0.94 [0.92, 0.99] 0.96 [0.94, 1.00]
0.93 [0.9, 0.96] 0.96 [0.94, 0.99]

0.79 [0.73, 0.86]
1.11 [0.97, 1.23]
0.06 [—0.12, 0.27]

[
[
[
[
[
(
0.04 [—0.16, 0.26]
[
[
[
[
[
[
[

0.84 [0.78, 0.91]
1.07 [0.98, 1.16]
0.02 [—0.12, 0.15]

[
[
[
[
[
[
0.04 [—0.13, 0.20]
[
[
[
[
[
[
[

“Properties and 95% confidence intervals, provided in square brackets, are calculated with bootstrapping. All energies are in kcal/mol.

properties calculated in Table 3, where the rank order
coeflicients indicate a strong correlation between all methods
with the lowest Spearman’s, Pearson’s, and Kendall’s
correlation coefficients between two packages being
0.92[0.89, 1.00] , 0.91 [0.87, 0.95], and 0.76 [0.69, 0.84],
respectively.

4.2. Comparing Free Energy Estimators. A key result
from Tables 1 and 2 is that there is no statistically significant
difference between the calculated properties for TI and FEP
results in all cases. In order to make the comparison between
FEP and TI more rigorous, the calculated AAGs for each
ligand transformations are compared individually by taking the
difference of the TI and FEP result and calculating the error on
this difference by adding the TI and FEP SEM in quadrature.
From this comparison, six transformations are identified as
having significantly different TI and FEP results. All differences
are found for the thrombin and MCL1 targets when using the
NAMD methods. The OpenMM implementation had no
significant differences for any protein targets. In the NAMD2
case, the significantly different transformations are for
thrombin 11-18 and 12-15S and for NAMD3 thrombin 12-15, 11-
14, 14111, and MCL1 13-116. These transformations are named
in the work of Bhati et al,,>* and Figure 2 shows the selected
NAMD? ligand transformations explicitly.

4.2.1. Soft-Core Potentials in Tl Calculations. All the
transformations in Figure 2 feature the transformation of one
phenyl group containing a halogen atom. From this similarity,
it might be concluded that something specific about the ligands
causes the difference in TI and FEP results. However, we note
that many results for the thrombin target feature similar
transformations yet exhibit no significant differences.

Without a definitive relation to the specifics of the
transformation, the cause of this difference is instead attributed

to the behavior of <M

o > at the end states for these
)

transformations in the NAMD cases. This can be seen by
plotting this gradient for the complex leg of the simulation
across all states for the NAMD?2 12-15 case in Figure 3a. In
Figure 3a, we observed a rapid change for the gradient of the
potential with respect to the A parameter, which controls the L]
interactions of the disappearing alchemical region. Rapid
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cl

Figure 2. Labeled ligand transformations for which TI and FEP yield
a different result in NAMD2 TI and FEP methods. Moieties labeled
R, are substituted onto the common substructure at the position
denoted by R; e.g., swapping R; and Ry is the ligand transformation 11-
18.

changes or excess curvature such as this may result in poor
accuracy for numerical integration, and without due care, this
is known to be a weakness of the TI method.*”* This rapid
change of the gradient is characteristic of all the trans-
formations where we observe differences in the TI and FEP
results. Moreover, these rapid changes are lessened or do not
exist in the OpenMM case, explaining why no differences are
observed.

In this work, the key difference between OpenMM and
NAMD methodologies, which pertained to the L] interactions,
lies in the parameters employed in the soft-core potential. The
OpenMM method used ¢ = 6, while NAMD used ¢ = 2, so as
such, the OpenMM potential is softer. To test if a softer
potential in NAMD can alleviate the difference in the TI and
FEP calculations, the selected transformations are repeated
using NAMD?2 with a soft-core potential with parameters a =
0.7, a=1,b=1, and ¢ = 2. Notice that a is modified here
because ¢ cannot be set by the user in NAMD. Table 4 shows
the resulting AAG values for the repeated calculation and the
new differences with the equivalent FEP calculation. The
results in Table 4 show that there are no remaining significant
differences in the TI and FEP results for these transformations.

https://doi.org/10.1021/acs.jctc.2c00114
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Table 4. Difference between FEP and T1I Results (kcal/mol) sampling rate. When TI results from previous work™ were
for the Two Transformations in Thrombin Target Rerun reanalyzed with FEP, a sampling rate for the potentials of one-
with NAMD?2 with Different Values of the Soft-Core a fifth of the rate used to sample the gradient in the TI analysis
Parameter” had to be used. Based on the largely similar absence of

differences between FEP and TI in the NAMD2 and NAMD?3

transformation *=05 @=07 cases (where NAMD3 used full sampling) and the ability to

1118 0.40(0.34) =0.01(0.33) treat the small number of differences in NAMD2 case by

1215 046(0.30) —0.03(0.30) adjusting the soft-core potential, we conclude that the different

“The error provided in parenthesis is calculated by adding the TT and sampling rates did not have a significant impact on the
FEP calculation SEM in quadrature. difference in TI and FEP results (Figure 4).

4.2.2. Overlap between Alchemical States in FEP

Additionally, it can be seen in Figure 3b that the gradient no Calculations. Another difference in the TI and FEP results

longer features a rapid change in the final state. This is may stem from the perturbative nature of FEP. If the phase

consistent with results previously obtained in the literature.***’ space overlap of alchemical states is small, then the FEP result

It should be noted that the choice of @ = 0.7 may not be best may be unreliable. A quantitative measure of this overlap of

in all cases and other choices of soft-core parameters should be states can be made with an overlap matrix that was computed

considered in general.*” for all transformations and thermodynamic legs. The overlap

In the Methods section, it was noted that there was a caveat matrix is described in detail elsewhere,* but briefly, it is a

in the NAMD2 methodology regarding the lower FEP matrix of rank K X K, where K was previously defined in that
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work as the number of alchemical states. Each entry in the
matrix is the probability that a sample from a given alchemical
window A; could have been sampled from some other
alchemical window /. For reliable free energy calculations, it
has been proposed in previous work that the overlap matrices
should be tridiagonal with off-diagonal values greater than
0.03."> When the overlap matrices are averaged across replicas,
all but one of the FEP calculations performed in this work
satisfied these conditions, and this result is shown in Figure S.
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Figure S. Overlap matrix calculated for the OpenMM MCL1 112-135
complex simulation averaged from five replicas.

The simulation with the abnormal matrix is the complex leg of
an OpenMM simulation for the MCL1 target. The abnormal
transformation is named 112-135; Figure 6 shows this
transformation explicitly. If the overlap matrices are not
averaged over replicas, there are more instances of results that
do not reach the threshold of 0.03, and these all occur for the
complex leg of the MCL1 target simulations. Over half of these

;©\OMR

0 o ° o
R12 R3s
Z =
NH NH
cl
cl

Figure 6. Substituted groups and common substructure for MCL1
transformations 112-135. Moieties labeled R, are substituted onto the
common substructure at the position denoted by R; e.g., swapping R;,
and Ry; is the ligand transformation 112-135.
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low overlap cases are for the OpenMM protocol, and six out of
eight of the cases are for transformations substantially similar
to 112-135 (see Figure 7 for representative examples of such

‘ 0, o, o,
o o o
R1 Rs R1g
= = =
o o NH
0 "R
cl
cl

Figure 7. Substituted groups and common substructure for MCL1
transformations 11-18 and 18-118. Moieties labeled R, are substituted
onto the common substructure at the position denoted by R; e.g,
swapping R, and Ry is the ligand transformation 11-18.

transformations). Without averaging over replicas, the value of
the overlap averaged over all instances failing to reach the 0.03
threshold is 0.02. If the same entries of the overlap matrices are
averaged over all replicas, this value increases to 0.05. This
further underlines the importance of ensemble simulations in
such calculations for ensuring reproducibility of predicted free
energies. Despite lower overlap in some cases, this does not
manifest itself as a significant difference between the TI and
FEP results for these transformations. To show this
conclusively, Table 5 exhibits the difference in AG results in
the low-overlap MCL1 case for the complex leg.

Table S. Difference in TI and FEP Complex AG Result for
which Overlap Matrix Exhibits Indication of Low Overlap
between Adjacent States”

method transformation TI-FEP (kcal/mol)
NAMD?2 18-118 0.09(0.98)
1118 —0.27(1.15)
116134 0.47(1.08)
NAMD3 1118 0.61(0.77)
OpenMM 18118 0.19(1.22)
11-18 —0.05(1.06)
112135 ~0.10(1.19)
132-138 ~0.50(0.57)

“The error provided in parenthesis is computed by adding error on TI
and FEP result in quadrature.

From the overall good agreement we find between the
results calculated using the TT and FEP estimators, we remark
on the conclusion of previous studies,”’ which compared
Schrodinger’s FEP+ to other TIES-based alchemical methods,
revealing significant underestimation of the free energies when
using FEP+. In this case, there are several sources of difference
in the methodologies, including different force fields and the
use of replica exchange with solute tempering 2 (REST2) by
FEP+. Since the present study finds good agreement between
TI and FEP estimators, it is clear that further work is required
to unravel these significant differences. The proprietary nature
of FEP+ does not make any such study straightforward, but
recent work has shown that REST2 typically degrades
results.”**

4.2.3. MBAR Uncertainty Calculated with One-off
Simulations. The comparisons between different MD engines
and free energy estimators performed in this work could only
be made meaningfully when the uncertainty in the binding free

https://doi.org/10.1021/acs.jctc.2c00114
J. Chem. Theory Comput. 2022, 18, 3972—-3987
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Figure 8. Distribution of the relative binding free energies from for 48 simulations. (a) and (b) show the distribution for thrombin ligand 12-15 with
results estimated by TI and FEP, respectively. (c) and (d) show the distribution for the thrombin ligand 11-14 with results estimated by TI and
FEP, respectively. Parentheses provide 90% bootstrapped confidence intervals on calculation of skewness and excess kurtosis (kurt). The black line
shows a Gaussian distribution with the same mean and o as the plotted data.
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Figure 9. (a) and (b) show the skewness and excess kurtosis for all 11 thrombin ligand transformations examined using both TI and FEP
estimators. Error bars are plotted as 90% bootstrapped confidence intervals.

energy is accounted for correctly. The results from one-off
simulations are not reproducible, and so .only with the proper
application of ensemble simulation could such good agreement
between the MD engines and free energy estimations
compared in this work be found. The application of multiple
independent simulations was critical for our error control;
similar ideas are found elsewhere in the literature.”>*>>>>* If
only one-off simulations are performed, errors are consistently
underestimated in these calculations. Figure 4 shows this
explicitly by comparing the SEM of the analytic MBAR error
from five replicas to the “TIES-like” SEM calculated by
bootstrapping the results from five replicas. It can be seen that
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for the ligand simulations in Figure 4b, some systems (TYK2,
CDK2, and thrombin) have errors correctly estimated by
MBAR, but for PTP1B and MCIl, MBAR consistently
underestimates the error. This underestimation is only
exacerbated in the complex simulations (Figure 4a), where
all systems have their error underestimated by MBAR. This is
most likely due to the greater relevance of “rare events” in the
complex simulation. Similar findings by Rizzi et al. have
concluded “Nevertheless, when sampling is governed by rare
events and systematically misses relevant areas of conforma-
tional space, data from a single trajectory simply cannot
contain sufficient information to estimate the uncertainty

https://doi.org/10.1021/acs.jctc.2c00114
J. Chem. Theory Comput. 2022, 18, 3972—3987
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Figure 10. Calculated relative binding free energies for ligand transformation 115-116 from the target TYK2 (experimental result for this ligand is
0.75 kcal/mol). This figure compares long and large ensemble simulation protocols. (a), (b), and (c) show the results acquired using NAMD3,
NAMD?2 (N2), and OpenMM, respectively. (d) plots the average statistical uncertainty for all transformations, again comparing long and large
ensemble simulation protocols. Shaded regions show the mean + SEM calculated from five replicas.

accurately.”*' It has often been argued that the time series of
potentials fed to MBAR should be de-correlated to ensure
reliable error estimation.*' De-correlation of the time series of
potentials, in this case, does not change any of the conclusions.
For completeness, we provide an equivalent version of Figure 4
using de-correlated data in the SI (see Figure S1), which
demonstrates this conclusively.

4.3. Statistical Properties of Relative Free Energy
Calculations. 4.3.1. Relative Free Energy Distributions. To
examine the distribution of calculated binding free energies, we
selected the thrombin system and the OpenMM protocol to
run larger ensembles of simulations. Forty-eight simulations
are run in all 13 4 windows for 4 ns, with all 11 ligands
examined for the thrombin target. An analysis for these results
is made one replica at a time, and Figure 8 shows examples of
the distribution of the relative binding free energies that are
found in the results. We plot these results with a calculation of
the skewness and excess kurtosis. The skewness characterizes
the symmetry of the distribution, and kurtosis is related to the
tails of the distribution, where higher values of the kurtosis
indicates the presence of a significant number of outliers in the
distribution. Here, we report the “excess kurtosis” as kurtosis-3.
The excess kurtosis measures the deviation of the kurtosis with
respect to the kurtosis one would expect for a Gaussian
distribution. Figure 8 shows distributions of the binding free
energy for two randomly selected ligand transformations; these
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distributions are symmetric within error in terms of both
skewness and excess kurtosis. If we examine all values of
skewness and excess kurtosis as plotted in Figure 9 as a
function of the relative binding free energy, it can be seen that
although many results look approximately Gaussian, there are
distributions at 90% confidence with significant skew and
kurtosis. Overall, these results imply the presence of non-
normal distributions. This is consistent with previous
computational work and recent experimental work, which
have reg(grStled non-Gaussian distributions for binding free
energies.””’

4.3.2. Comparing Long and Large Ensemble Simulations.
Previous work using this data set of input transformations and
target proteins has demonstrated that an ensemble of five
replica simulations using 13 alchemical windows with 4 ns of
sampling per window provides a good trade-off of computation
cost against accuracy and precision. For completeness, we re-
examine this rule of thumb in the context of our work’s larger
set of free energy estimators and MD engines. To perform this
comparison, 6 ligand transformations are selec