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ABSTRACT
Leber’s Hereditary Optic Neuropathy (LHON) was a common maternally inherited
disease causing severe and permanent visual loss which mostly affects males. Three
primary mitochondrial DNA (mtDNA) mutations, ND1 3460G>A, ND4 11778G>A
andND6 14484T>C, which affect genes encoding respiratory chain complex I subunit,
are responsible for >90% of LHON cases worldwide. Families with maternally trans-
mitted LHON show incomplete penetrance with a male preponderance for visual loss,
suggesting the involvement of secondary mtDNA variants and other modifying factors.
In particular, variants in mitochondrial tRNA (mt-tRNA) are important risk factors
for LHON. These variants decreased the tRNA stability, prevent tRNA aminoacylation,
influence the post-transcriptionalmodification and affect tRNA maturation. Failure of
mt-tRNA metabolism subsequently impairs protein synthesis and expression, folding,
and function of oxidative phosphorylation (OXPHOS) enzymes, which aggravates
mitochondrial dysfunction that is involved in the progression and pathogenesis of
LHON. This review summarizes the recent advances in our understanding of mt-tRNA
biology and function, as well as the reported LHON-related mt-tRNA second variants;
it also discusses the molecular mechanism behind the involvement of these variants in
LHON.
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INTRODUCTION
Leber’s Hereditary Optic Neuropathy (LHON) is named after Theodore Leber, a German
ophthalmologist who first described the defining clinical features of this disorder in 1871.
LHON is the commonest maternally inherited eye diseases, which typically affects young
adults, with most of patients being males (Sandbach & Newman, 2001; Man, Turnbull
& Chinnery, 2002). Vision loss from LHON results from selective degeneration of retinal
ganglion cells (RGCs) (Carelli et al., 2009). Loss of RGCs occurs in around 50% ofmale and
but only in approximately 10%∼15% of female patients. It causes adult-onset progressive
and painless visual loss which begins in only one eye, but usually manifestes in the other
eye within a few weeks. Eventually, visual acuity in both eyes deteriorated to 20/200 or
worse. Moreover, LHON patients may exhibit abnormal symptoms, including movement
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disorders, dystonia or multiple sclerosis like symptoms, which pose a significant challenge
for clinicians (Yu-Wai-Man, Griffiths & Chinnery, 2011; Jia et al., 2006).

The prevalence of LHON has been well established in Northern European populations,
with figures ranging from one in 30,000 to one in 50,000 (Man, Turnbull & Chinnery,
2002; Rosenberg et al., 2016; Yu-Wai-Man et al., 2003), and one in 1,000,000 in Japanese
population according to a recent survey (Ueda et al., 2017). Clinically, over 90% of LHON
cases are caused by one of three mtDNA missense mutations in genes encoding subunits
of NADH dehydrogenase (ND): ND1 3460G>A, ND4 11778G>A and ND6 14484T>C
(Wallace et al., 1988; Catarino et al., 2017; Huoponen et al., 1991). Although the genetic
basis of LHONwas remains unclear, it has become apparent thatmitochondrial dysfunction
caused by mtDNA mutations is the molecular basis of this disease. mt-tRNA genes are
also highly susceptible to point mutations, which are primary causes of mitochondrial
dysfunction (Scaglia & Wong, 2008). It is thus possible that mt-tRNA variants also play
important roles in the phenotypic manifestation of LHON-associated primary mutations.
In this review, we cover the basic aspects of mitochondrial biology and genetics, as well as
mt-tRNA maturation, and summarize the mt-tRNA variants that have been reported to be
associated with LHON.

REVIEW METHODOLOGY
We carried out a search in PubMed Central (http://www.ncbi.nlm.nih.gov) and other
public domains with the following keywords: ‘‘mitochondrial biology’’, ‘‘mtDNA genetics’’,
‘‘mt-tRNA function’’, ‘‘mt-tRNA maturation’’, ‘‘mt-tRNA end processing’’, ‘‘mt-tRNA
modification’’, ‘‘mt-tRNA variants and LHON’’ (last search update on October 8, 2020).
The ‘‘OR’’ and ‘‘AND’’ terms were used for the various searches. We excluded studies if the
crucial data were not reported in the original papers, or if there was a very high likehood
of inaccurate reporting.

To investigate the candidate pathogenic mt-tRNA variants, the Mamit-tRNA database
(http://mamit-tRNA.u-strasbg.fr) was used to locate the positions of themt-tRNA variants,
as well as the cloverleaf structure of tRNAs (Pütz et al., 2007). Additionally, the conversion
of nucleotide numbering in human mt-tRNA genes was based on the criteria proposed by
Andrews et al. (1999). The conservation index (CI) of each reported mt-tRNA variant was
analyzed by the ClustalW program (http://www.ebi.ac.uk/Tools/msa/clustalw2/) (Hall,
2013).

Mitochondrial biology and genetics
Mitochondria originated from within the bacterial phylum α-Proteobacteria and became
established via an endosymbiotic event (Lane & Martin, 2010). Mitochondria are critical
organelles that perform a remarkably diverse set of cellular functions. The most important
of these is the generation of ATP via OXPHOS, but mitochondria also play critical roles
in the regulation of apoptosis, maintenance of cellular redox homeostasis and intracellular
calcium signaling (Duchen, 2004; Tait & Green, 2010; Sena & Chandel, 2012; Rizzuto et al.,
2012).
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Figure 1 The genetic map of humanmitogenome, which is a circular, double strand DNA.
Full-size DOI: 10.7717/peerj.10651/fig-1

The human mitochondrial genomes (mitogenomes) are circular, 16,569-bp in length,
and contain 37 genes encoding 13 proteins required forOXPHOS and the electron transport
chain (ETC) (Fig. 1) (Andrews et al., 1999). mtDNA also encodes RNAs, which are involved
in the translation of ETC proteins (Luo et al., 2018). Owing to its location within the
mitochondrial matrix, lack of protective histone wrapping, as well as a comparatively
limited repair mechanism, mtDNA is more vulnerable to oxidative modifications which
accumulate over time (Yakes & Van Houten, 1997). Indeed, it has been shown that mtDNA
has a significantly higher mutation rate than nuclear DNA (Neckelmann et al., 1987).

Unlike nuclear DNA, in which there are only two copies of each gene per cell, thousands
of copies of mtDNA are presented in every cell. Typically, individuals harbor only one
mtDNA genotype, and all mitogenomes are genetically identical, a condition called
homoplasmy. This contrasts with heteroplasmy, which involves the presence of a mixture
of mutant and wild-type mtDNA genomes within a cell. Through somatic mutagenesis
and ongoing replication of mtDNA, mutations can clonally expand through either random
drift or selective processes, and become present at varying proportions or degrees of
heteroplasmy with cells (Elson et al., 2001). Among families affected by LHON, 85%–90%
of carriers are homoplasmic for mtDNA mutation. However, some studies have indicated
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that mtDNA heteroplasmy may be a factor determining the penetrance of LHON (Li et
al., 2019; Finsterer & Zarrouk-Mahjoub, 2018)). In certain families, rapid segregation of the
mitochondrial genotype toward mutant-type homoplasmy of either 11778G>A (Bolhuis
et al., 1990) or 3460G>A mutation in blood (Black et al., 1996) has been shown to be
associated with the development of LHON in later generations. It has been suggested that
the risk of disease conversion is low if the mutational load is below the threshold of 60%
(Chinnery et al., 2001). Although it is not possible to accurately predict whether an LHON
carrier will eventually lose vision, individuals can be counseled based on the two major
identifiable risk factors in this disorder: age and sex.

Three LHON-associated primary mutations
Themajority of patients with LHON harbor one of three primary mtDNA point mutations:
3460G>A (Howell et al., 1991; Huoponen et al., 1991), 11778G>A (Wallace et al., 1988),
and 14484T>C (Johns, Neufeld & Park, 1992; Mackey & Howell, 1992). They are found
exclusively in families affected by LHON and never in control subjects. The G to A
transition at position 11778 converts a conserved arginine to histidine, has been associated
with poor visual outcome and prognosis (Newman, Lott & Wallace, 1991). Meanwhile, the
3460G>A mutation causes the alteration of a highly conserved alanine to threonine, which
is present in around 15% of LHON families (Howell, et al. 1991). Moreover, the T to C
transition at nucleotide 14484 in ND6 (methionine to valine) has been shown to be tightly
linked to the LHON phenotype (Johns, Neufeld & Park, 1992). Interestingly, younger age
at onset (<15 years) and mutation type appear to dictate visual outcome; patients with
the 14484T>C mutation have a better visual prognosis with 60% attaining some visual
improvement compared with only 5% of those carrying the 11778G>A mutation.

The incomplete penetrance, high male to female ratio, and existence of LHON plus cases
strongly suggest the involvement of modifying factors such as genetic or environmental
ones (Tońska, Kodroń & Bartnik, 2010; Caporali et al., 2017). In particular, genetic factors
such as mt-tRNA variants can play active roles in the phenotypic manifestation of LHON-
associated primary mutations.

Nuclear genes
Although the mitochondrial proteome consists of over 1000 proteins, only 14 of them
are encoded by mtDNA. Thus, the nuclear genome encodes >90% of peptides involved
in the OXPHOS system (Leigh-Brown, Enriquez & Odom, 2010). Moreover, incomplete
penetrance and male bias in patients with LHON suggest that an X-linked modified
gene is necessary for the disease expression (Bu & Rotter, 1991). A recent genome-wide
study of 1281 Chinese probands with LHON identified a novel LHON susceptibility
allele (c.157C>T, p. Arg53Trp) in the PRICKLE3 gene, which links to ATPase biogenesis
manifested LHON (Yu et al., 2020). Moreover, a missense mutation in YARS2 (c.572G>T,
p. Gly191Val) was shown to interact with the 11778G>A mutation to cause visual failure
(Jiang et al., 2016).
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mt-tRNA structure and function
mt-tRNA is a short, non-coding RNA that constitutes approximately 4∼10% of all cellular
RNAs (Kirchner & Ignatova, 2015). In fact, most mt-tRNAs from all domains of life have
a highly conserved cloverleaf structure, consisting of an acceptor arm, D-arm, anticodon
stem, variable region, and TψC loop, with an average length of 73 nucleotides (nts).
However, mt-tRNA genes encode transcripts that show considerable deviation of this
standard, having a reduced D-arm or TψC loop or even completely lacking one of these
elements (e.g., tRNASer(AGY)), resulting in tRNAs as small as 66 nts (Hanada et al., 2001).
In addition, mt-tRNASer(UCN) has several distinct structural features, including only one
base (A9) between the acceptor arm and D-arm, a short D-loop, a variable region, and an
extended anticodon stem with 6-bp (Watanabe et al., 1994).

As adapter molecules to convert the information stored in amino acid (AA) sequences,
tRNAs play a central role in protein synthesis (Stowe & Camara, 2009). Although
tRNAs comprise only around 10% of the total coding capacity of the mitogenomes ,
more than half of mtDNA mutations causing diseases are located in mt-tRNA genes
(https://www.mitomap.org/MITOMAP) (Taanman, 1999), emphasizing the importance
of tRNAs for mitochondrial function.

tRNA end processing
The excision of tRNAs from primary polycistronic mitochondrial transcripts is catalyzed
by two specialized enzymes, RNase P and tRNase Z (Fig. 2). RNase P is an endonuclease
that catalyzes the cleavage of the 5′leader sequence from pre-tRNA transcripts (Rossmanith
et al., 1995). Human mitochondrial RNase P (mtRNase P) is a RNase P complex consisted
of three proteins, called MRPP1; MRPP2 and MRPP3 (Holzmann et al., 2008). In fact,
human mtRNase P cleaves a wide range of tRNA precursors in vitro (Rossmanith, 1997;
Rossmanith et al., 1995), and its activity is detectable even in crude mitochondrial extracts
and thereby appears to be relatively abundant (Rossmanith et al., 1995).
At the other end, 3′ trailers are removed by the endonuclease tRNase Z (Phizicky & Hopper,
2010; Hartmann et al., 2009; Maraia & Lamichhane, 2011). Both short and long forms of
tRNase Z are present in eukaryotes, designated tRNase ZS (280 to 360 AAs) and tRNase ZL
(750 to 930 AAs) respectively (Ishii et al., 2005; Li de la Sierra-Gallay, Pellegrini & Condon,
2005). The C-terminal part of tRNase ZL has sequence homology with tRNase ZS. However,
in contrast to the single mechanism of 5′ leader removal, 3′ trailers can also be removed by
one or more 3′ exoribonucleases (Rex1p, and perhaps others) (Copela et al., 2008; Ozanick
et al., 2009). The 5′-before-3′ end processing appears to apply most clearly when tRNase Z
is used for 3′ processing.

tRNA post-transcriptional modifications
For mt-tRNA maturation, post-transcriptional modifications, together with the 5′and
3′nucleolytic excision from precursor RNAs are required. Certain modifications are
necessary for maintenance of mt-tRNA structure and steady-state level, as well as ensuring
the efficiency of protein synthesis during mitochondrial translation. Up to date, more
than 30 modified mt-tRNA positions have been reported (Suzuki, Nagao & Suzuki,
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Figure 2 mt-tRNA 5′and 3′end processing pathway.
Full-size DOI: 10.7717/peerj.10651/fig-2

2011) (Fig. 3). Modifications cluster occurs at two main regions of tRNA molecule: the
structural core and the anticodon stem. Chemical modifications in the structural region
are relatively simple, for instance, methylation, pseudouridylation and dihydrouridylation.
Furthermore, modifications in the anticodon stem of mt-tRNAs include methylation
and pseudouridylation, in several cases, with more complex additions, specially the
modifications at positions 34 and 37 (El Yacoubi, Bailly & Crécy-Lagard, 2012). Four types
of modified nucleotides were found at the wobble positions of 10 tRNA species that
correspond to two codon sets. The modifications consisted of 5-formylcytidine at the
wobble position of tRNAMet (Bilbille et al., 2011), queuosine at the wobble positions of
four tRNATyr, tRNAHis, tRNAAsn and tRNAAsp (Iwata-Reuyl, 2008). In addition, five tRNAs
were found to have taurine-containing uridines 5-taurinomethyluridine was identified in
the tRNALeu(UUR) and tRNATrp, and 5-taurinomethyl-2-thiouridine in tRNALys, tRNAGlu

and tRNAGln (Nagao et al., 2009; Suzuki et al., 2002).

tRNA aminoacylation
Aminoacyl-tRNA synthetases (aaRSs), encoded by nuclear genes, play essential roles
in protein synthesis. To start this process, aaRSs must catalyze the attachment of AAs
to the corresponding tRNAs (Yao & Fox, 2013). This biochemical reaction requires
the following steps: 1. AA+ATP→aminoacyl-AMP+PPi; 2. aminoacyl-AMP + tRNA
→aminoacyl-tRNA+AMP. Today, nineteen species of aaRS genes were annotated in
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Figure 3 Distribution of post-transcriptional modifications in mt-tRNAs.
Full-size DOI: 10.7717/peerj.10651/fig-3

the human genome database (Antonellis & Green, 2008). Mammalian mitochondria had
no enzyme corresponding to glutaminyl-tRNA synthetase (GlnRS) (Nagao et al., 2009).
Mitochondrial LysRS and GlyRS were encoded by the same genes as the cytoplasmic LysRS
and GlyRS, respectively, whereas the other aaRSs were encoded by genes different from the
cytoplasmic ones (Ling, Reynolds & Ibba, 2009).

Secondary mt-tRNA variants
Although most LHON cases are caused by one of three pathogenic mtDNA mutations, no
primarymutations are identified in aminority of LHON patients, these other homoplasmic
mtDNA are considered as secondary variants that can be responsible for disease phenotype
variation and different penetrance having synergistic effects with the primary mtDNA
mutations (Bosley & Abu-Amero, 2010; Zhang et al., 2009) (Fig. 4 and Tables 1 and 2).
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Figure 4 Secondary structure of (A) mt-tRNAPhe, (B) tRNALeu(UUR), (C) tRNAMet, (D) tRNAAla,
(E) tRNAHis, (F) tRNAGlu, (G) tRNAThr and (H) tRNAPro.

Full-size DOI: 10.7717/peerj.10651/fig-4

mt-tRNA variants enhance the phenotypic expression of the primary
mtDNA mutations
tRNAPhe variant
According a recent experimental study, the 593T>C variant appears a high frequency in
LHON patients (Ji et al., 2008). This variant occurs at the D-arm of tRNAPhe anddecreases
the free energy (Zhang et al., 2011). Moreover, the electrophoretic mobility of the
tRNA Phegene with or without 593T>C transcribes confirm the change of secondary
structure. Thus, the 593T>C variant may have a synergistic effect with the LHON-related
11778G>A mutation. By using lymphoblastoid cell lines derived from a Chinese family,
an approximately ∼46% decrease in the steady-state level of tRNAPhe was identified in
mutant cell lines. Western blotting analysis showed an approximately 35% reduction in the
levels of mitochondrial translation in mutant cell lines carrying the 593T>C variant (Chen
et al., 2017). Interestingly, the 593T>C variant is suggested to increase the penetrance and
expressivity of LHON-associated ND6 14484T>C mutation in one Chinese pedigree (Man
et al., 2020)

tRNAMet variant
The 4435A>G variant affects a highly conserved adenosine at position 37, 3′ adjacent
to the tRNAMet anticodon, which is important for the fidelity of codon recognition
and stabilization (Lu et al., 2011). This variant has been found to modulate the clinical
expression of LHON-associated ND4 11778G>A mutation in a Chinese family (Qu et al.,
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Table 1 Characterization of 22 humanmt-tRNAs.

tRNA Species Starting Ending Length
(bp)

tRNAPhe 577 647 71
tRNAVal 1,602 1,670 69
tRNALeu(UUR) 3,230 3304 75
tRNAGln 4,329 4,400 72
tRNAMet 4,402 4,469 68
tRNATrp 5,512 5,579 68
tRNAAla 5,587 5,655 69
tRNAAsn 5,657 5,729 73
tRNACys 5,761 5,826 66
tRNATyr 5,826 5,891 66
tRNASer(UCN) 7,446 7,514 69
tRNAAsp 75,18 7,585 68
tRNALys 8,295 8,364 70
tRNAGly 9,991 10,058 68
tRNAArg 10,405 10,469 65
tRNAHis 12,138 12,206 69
tRNASer(AGY) 12,207 12,265 59
tRNALeu(CUN) 12,266 12,336 71
tRNAGlu 14,674 14,742 69
tRNAThr 15,888 15,953 66
tRNAPro 15,956 16,023 68

2006). In fact, the 4435A>G variant introduces a tRNA methyltransferase 5 (TRMT5)-
catalyzed m1G37 modification of tRNAMet. Functional analysis of cybrid cells harboring
this variant indicated significantly decreased efficiency in aminoacylation and steady-state
levels of tRNAMet, compared with findings in control cybrids (Zhou et al., 2018). An
approximately 40% reduction in the level of tRNAMet was observed in cells carrying the
4435A>G variant. The failure in tRNA metabolism, caused by the 4435A>G variant, led
to an approximately 30% reduction in the rate of mitochondrial translation (Liu et al.,
2009). These results indicate that the 4435A>G variant may lead to defects in mt-tRNA
modification and enhance the phenotypic expression of LHON-related ND4 11778G>A
mutation.

tRNAAla variant
According to recent report, the tRNAAla5601C>T variant is associatedwith LHON ((Ding et
al., 2020)). The homoplasmic 5601C>T variant has been reported in several LHON-affected
pedigrees and one pedigree affected with hypertension (Zhou et al., 2012; Zheng et al., 2018;
Ding et al., 2020; Zheng et al., 2018). This variant is located at very conserved nucleotide
(position 59) in the TψC loop of tRNAAla, and creates a novel Watson-Crick base-pairing
(55T-59C). Bioinformatic analysis revealed that 5601C>T alters the secondary structure
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Table 2 Summary of LHON-associated secondary mt-tRNA variants.

tRNA
species

Allele Position Structural
location

Homoplasmy
or Heteroplasmy

Aberrant tRNA biology References

tRNAPhe 593T>C 17 D-arm Homoplasmy Reduced expression of functional tRNA Ji et al. (2008), Zhang et al. (2011)
tRNALeu(UUR) 3275C>T 44 Variable region Homoplasmy Disrupt conserved base pairing Garcia-Lozano et al. (2000), Ding et al. (2018)
tRNAMet 4435A>G 37 Anticodon stem Homoplasmy Introduce the m1G37 modification Qu et al. (2006), Zhou et al. (2018)
tRNAAla 5587T>C 73 Acceptor arm Heteroplasmy Affect the 3′end processing Ji et al. (2017), Tang et al. (2010)

5601C>T 59 T ψC loop Homoplasmy Create conserved base pairing Ding et al. (2020)
tRNAHis 12192G>A 59 T ψC loop Homoplasmy Disrupt conserved base pairing Mimaki et al. (2003), Ding et al. (2019)
tRNAGlu 14693A>G 54 T ψC loop Homoplasmy Defect in taurine modification Tong et al. (2007), Zhang et al. (2010)
tRNAThr 15927G>A 42 Anticodon stem Homoplasmy Disrupt conserved base pairing Zhang et al. (2018), Jia et al. (2013)

15951A>G 71 Acceptor arm Homoplasmy Disrupt conserved base pairing Li et al. (2006), Lyu et al. (2019)
tRNAPro 15986insG 39 Anticodon stem Homoplasmy Disrupt conserved base pairing Jancic et al. (2020)
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of tRNAAla, thus, this variant contributes to the structural formation and stabilization of
functional tRNAAla and leads tomitochondrial dysfunction caused by 11778G>Amutation.

tRNAHis variant
The 12192G>A variant, combined with the ND4 11778G>A mutation, has been reported
in patients with both LHON and cardiomyopathy (Mimaki et al., 2003). Interestingly, the
12192G>A variant occurs 2-bp from the 3′ end of the TψC loop of tRNAHis, which is highly
conserved from various species (Pütz et al., 2007), and is believed to be involved in tertiary
interaction between the TψC loop and the truncatedD-arm (Ueda et al., 1992). Biochemical
analysis of polymononuclear leukocytes (PMNs) which containing the 12192G>A variant
showed a significant decrease in ATP production and an increased in ROS generation (Ding
et al., 2019), suggesting that this polymorphism increases the penetrance and expressivity
of LHON.

tRNAGlu variant
The homoplasmic 14693A>G variant in the TψC loop of tRNAGlu issuggested to modulate
the phenotypic manifestation of LHON-associated ND1 3460G>A mutation in a Chinese
pedigree (Tong et al., 2007). This variant has also been found in three LHON-affected
families (Zhang et al., 2010). In fact, the 14693A>G variant is considered to be associated
with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS)
(Tzen et al., 2003), PCOS (Ding et al., 2017), diabetes mellitus (Tang et al., 2006), and
hearing loss (Ding et al., 2009). At the molecular level, the 14693A>G variant is located at
very conserved nucleotide of tRNAGlu(conventional position 54), the nucleotide at that
position in the TψC loop is often modified and contributes to the structural formation
and stabilization of functional tRNAs (Paris & Alfonzo, 2018). Therefore, the change of
structure of tRNAs due to this variant may lead to a failure in tRNA metabolism, which
would in turn impair of mitochondrial translation.

tRNAPro variant
Recently, a novel mutation (15986insG) in mt-tRNAPro was identified in a Serbian family
with LHON-associated 3460G>Amutation (Jancic et al., 2020). This insertion occurs at the
anticodon stem of tRNAPro, which disrupts a very conserved Watson-Crick base-pairing
(31G-39C). In fact, tRNAIle 4298G>A occurring at the same position has been regarded
as a pathogenic mutation associated with chronic progressive external ophthalmoplegia
(CPEO) (Taylor et al., 1998). Thus, it can be speculated that 15986insG, which is similar
to the 4298G>A mutation, may also lead to mitochondrial dysfunction that modulates the
phenotypic expression of LHON-related 3460G>A mutation.

Other reported mt-tRNA variants
tRNALeu(UUR) variant
According to a report byGarcia-Lozano et al. (2000), the 3275C>T variant in tRNALeu(UUR)

contributes to the clinical expression of LHON and is associated with metabolic syndrome
(MetS) and polycystic ovary syndrome (PCOS) (Ding et al., 2018). In fact, the homoplasmic
3275C>T variant disrupts a highly evolutionary conserved base-pairing (28A-46C) in the
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variable region of tRNALeu(UUR) (Salinas-Giegé, Giegé & Giegé, 2015), and bioinformatic
analysis has revealed that the 3275C>T variant causes the thermodynamic change of
tRNALeu(UUR). Moreover, patients with this variant have a lower level of mitochondrial
membrane potential (MMP), ATP and mtDNA copy number, and higher ROS than
the controls (Ding et al., 2018). Thus, the 3275C>T variant may lead to mitochondrial
dysfunction, which is involved in the pathogenesis of LHON.

tRNAAla variant
The tRNAAla5587T>C variant is reported to be associated with LHON according to a
recent study (Ji et al., 2017). The heteroplasmic 5587T>C variant occurs at the end of the
tRNAAla and may alter the tertiary structure of this tRNA (position 73), this nucleotide
position is extremely conserved from bacteria to human mitochondria. Thus, it can be
speculated that this variant influences the 3′end sequences of the acceptor arm of tRNAAla,
subsequently affecting the efficiency of protein translation. Furthermore, the 5587T>C
variant has been shown to be associated with progressive unstable gait, dysarthria, hearing
loss, muscle cramps and myalgia (Tang et al., 2010; Crimi et al., 2002).

tRNAThr variants
The tRNAThr gene is a ‘‘hot’’ spot for genetic variants associated with LHON, these variants
included 15951A>G and 15927G>A (Lyu et al., 2019). Notably, the 15951A>G variant is
localized at adjacent to 3′end (position 71) of tRNA Thr, the adenine at this position is
highly conserved from bacteria to humanmitochondria (Helm et al., 2000).This nucleotide
at position 71 of tRNAs has been shown to play an important role in the recognition by
their cognate aaRS (Florentz et al., 2003). Furthermore, compared with controls, cybrid
cells containing the 15951A>G variant showed an approximately ∼35% reduction in the
level of tRNAThr, the failure in tRNA metabolism resulting from this variant may lead to
the impairment of mitochondrial translation (Li et al., 2006).

Moreover, the well-known 15927G>A variant disrupts a conservative base-pairing
(28C-42G) in the anticodon stem of tRNAThr. This variant was shown to be associated with
an approximately ∼60% reduction in the level of tRNAThr in cybrid cells (Zhang et al.,
2018; Jia et al., 2013). Additionally, western blot analysis showed the variable reductions
of four mtDNA-encoded proteins in association with the variant, with especially marked
decreases of ND1 and CYTB (Wang et al., 2008). Furthermore, the 15927G>A variant was
found to result in significantly reduced activities of Complexes I and III, as observed in
cybrid cells (Zhang et al., 2018). Notably, the 15927G>A variant has also been reported
to be associated with hearing loss (Ding et al., 2019; Wang et al., 2008) and coronary heart
disease (Jia et al., 2019).

CONCLUSIONS
Mitochondrial dysfunction and mtDNA genetic variants are linked to LHON. In previous
studies, we noted that mainly LHON-associated pathogenic mtDNA mutations are
located in genes encoding respiratory chain Complex I subunits. Moreover, secondary
mt-tRNA variants may have synergistic effects on the clinical expression of LHON. In
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fact, mt-tRNA variants have structural and functional effects, including altering the tRNA
secondary structure and the processing of tRNA precursors, reducing tRNA steady state
level, and causing the defects in tRNA modifications. These events would exacerbate the
mitochondrial dysfunction caused by the three primary mutations. Therefore, our findings
are valuable for the further deepening our understanding of the pathophysiology and
management of LHON.
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