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Abstract

Despite the rapid creation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2) vaccines, the precise correlates of immunity against severe Coronavirus Disease

2019 (COVID-19) are still unknown. Neutralizing antibodies represent a robust surrogate of

protection in early Phase III studies, but vaccines provide protection prior to the evolution of

neutralization, vaccines provide protection against variants that evade neutralization, and

vaccines continue to provide protection against disease severity in the setting of waning

neutralizing titers. Thus, in this study, using an Ad26.CoV2.S dose-down approach in non-

human primates (NHPs), the role of neutralization, Fc effector function, and T-cell immunity

were collectively probed against infection as well as against viral control. While dosing-down

minimally impacted neutralizing and binding antibody titers, Fc receptor binding and func-

tional antibody levels were induced in a highly dose-dependent manner. Neutralizing anti-

body and Fc receptor binding titers, but minimally T cells, were linked to the prevention of

transmission. Conversely, Fc receptor binding/function and T cells were linked to antiviral

control, with a minimal role for neutralization. These data point to dichotomous roles of neu-

tralization and T-cell function in protection against transmission and disease severity and a

continuous role for Fc effector function as a correlate of immunity key to halting and control-

ling SARS-CoV-2 and emerging variants.
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Introduction

Since December 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has

spread globally, linked to greater than 200 million confirmed cases and over 4 million deaths

[1]. Several vaccines have been granted emergency use authorization globally [2–7], affording

variable levels of efficacy, particularly against emerging viral variants of concern (VOCs) [8–

13]. While neutralizing antibodies represented an early robust surrogate of immunity prior to

the evolution of VOCs, vaccine breakthroughs are rapidly emerging globally in the absence of

concurrent levels of disease [10–12]. Moreover, vaccines afford protection against severe dis-

ease and death prior to the evolution of neutralization [14–16] as well as in the setting of wan-

ing immunity [17], suggesting that alternate immunological mechanisms may exist, which

provide protection against disease, including antibody-mediated Fc effector functions [18–21]

and T cells [22–26], which appear to be less affected by VOCs [9,27]. However, how neutraliza-

tion, Fc effector function, and T cells collectively contribute to durable and effective protection

against SARS-CoV-2 and emerging variants remains incompletely understood.

To begin to dissect the protective role of each immune mechanism, we exploited a vaccine

dose-down strategy, aimed at inducing progressively lower SARS-CoV-2 immunity, to capture

the immunological breaking point of immune protection upon challenge. Neutralizing anti-

bodies, T-cell responses, and Fc effector functions [28] were captured at peak immunogenicity

across all dosing groups prior to challenge. While antibody titers and neutralization were mini-

mally affected by dosing, Fc profiles were highly dose dependent. Similarly, recognition of

VOCs was also highly dose dependent. Protection against infection was robustly linked to neu-

tralizing antibody titers and Fc effector mechanisms. Conversely, viral control following infec-

tion was associated with Fc effector functions and T cells. Thus, Fc effector function clearly

synergizes with both neutralization and T cells, to block transmission or control viremia,

respectively. These data point to disparate functions of neutralizing antibodies and T cells in

antiviral immunity, but a consistent role of Fc effector functions across both transmission and

protection against disease.

Results

Dose-dependent upper respiratory SARS-CoV-2 replication following

challenge

To more deeply understand the correlates of protection, 5 independent groups of rhesus

macaques (n = 5) were immunized with different doses of the Ad26.CoV2.S vaccine (1 × 1011,

5 × 1010, 1.125 × 1010, and 2 × 109 viral particles [VPs]) or a sham control (Fig 1A). On day 42,

all macaques were challenged with 1.0 × 105 TCID50 (1.2 × 108 RNA copies) of SARS-CoV-2,

and viral replication was assessed by analyzing subgenomic RNA (sgRNA) levels in the upper

and lower respiratory tracts by way of nasopharyngeal swabs (NSs) and bronchoalveolar lavage

(BAL), respectively, on days 1, 2, 4, 7, and 10 postchallenge. As previously published in [29],

vaccine doses as low as 2 × 109 VPs provided robust protection in the lower respiratory tract,

whereas protection in the upper respiratory tract showed a negative dose dependency (Fig

1B), in which a higher dose (1.125 × 1010 VPs) was required for protection. Additionally, as

previously reported [30], higher doses generated consistently higher binding antibody titers

and neutralizing titers, in addition to stimulating increased T-cell cytokine production above

an observed threshold (Fig 1B) in response to both SARS-CoV-2 spike and receptor-binding

domain (RBD). This illustrates the complete protection provided by high doses of the vaccine

that wanes as a function of dose and highlights the need to deeply mine for correlates of pro-

tection in the upper respiratory tract.
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Dosing effects on cellular and humoral immune responses

To further dissect the qualitative effects of vaccine dosing on the functional humoral immune

response, systems serology was applied to the aforementioned BAL and NS samples, collected

on day 43 prior to SARS-CoV-2 challenge. Similar to the neutralizing antibody titers, the 2

highest doses (I and II) induced similar levels of anti–SARS-CoV-2 IgG1, IgG2, IgG3, IgG4,

and IgA antibody titers, with slightly lower levels at dose III and significantly lower levels at

dose IV (Fig 2A–2F). Conversely, while the 2 highest doses also generated equivalent levels of

Fcγ receptor (FcR) binding titers (Fig 2G and 2H), more significant loss of FcR binding was

observed in dose group IV, with a broad spread of binding to the FcRs. These data point to a

more significant impact of dosing on shaping the overall magnitude of the FcR binding com-

pared to driving titers, neutralizing antibody responses or T cells.

To further explore the impact of dosing on Fc effector function, we finally profiled the vac-

cine-induced Spike-specific response. Similar to FcR binding profiles, similar antibody effector

functions were observed in the top 2 dose groups (Fig 2I–2L), with a significant decline in

antibody-dependent cellular phagocytosis (ADCP) and antibody-dependent neutrophil

phagocytosis (ADNP) in group III and significant decline in ADCP, ADNP, antibody-depen-

dent complement deposition (ADCD), and antibody-mediated NK cell activating (ADNKA)

activity in group IV. Together, these findings suggest that antibody FcR binding and Fc effec-

tor function are more sensitive to changes in vaccine dosing, compared to traditional metrics

A

B

Fig 1. AD.COV2.S dose-down immunization scheme and graphical depiction of the immune response. (A) Rhesus macaques were immunized with 5

different doses of Ad26.COV2.S, profiled for their immune response, and challenged with SARS-CoV-2. The timeline shows the timing of immunization (week

0), serum collection (week 2, 4, and 6), SARS-CoV-2 challenge (day 43), and viral titer sampling of the cohort (day 0, 1, 2, 4, 7, and 10 postinfection). The

legend states the dose of Ad26.COV2.S given to each group of NHP. (B) From left to right, summary of the observed trends of viral sgRNA in the upper

respiratory tract, sgRNA in the lower lower respiratory tract, binding antibody titer, neutralizing antibody titer, and T-cell IFNγ secretion as they relate to dose.

Fig 1B was created with BioRender.com. BAL, bronchoalveolar lavage; IFNγ, interferon gamma; NHP, nonhuman primate; SARS-CoV-2, Severe Acute

Respiratory Syndrome Coronavirus 2; sgRNA, subgenomic RNA; VP, viral particle.

https://doi.org/10.1371/journal.pbio.3001609.g001
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of immunogenicity (neutralizing antibodies, T cells, and titers) and may provide additional

insights into correlates of immunity.

Distinct humoral profiles across vaccine dose regimens revealed by

multivariate analysis

Given the different univariate variation across multiple SARS-CoV-2–specific immune

responses, we next aimed to define the impact of dose on overall vaccine-induced immune
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Fig 2. System serology profiling of anti-Spike antibodies from Ad26.COV2.S vaccinated NHPs. (A) The humoral response against SARS-CoV-2 Spike was

profiled using system serology. (B–G) The titer of IgG1 (B), IgG2 (C), IgG3 (D), IgG4 (E), IgM (F), and IgA (G) antibodies against SARS-CoV-2 were profiled

using Luminex. (H, I) The titer of anti–SARS-COV-2 antibody binding to FcγRIIA-1 (H) and FcγRIII (I) were profiled using Luminex. (J–M) The graphs

represent the ability of the humoral response to stimulate ADCP (J), neutrophil phagocytosis (ADNP) (K), complement deposition (ADCD) (L), or NK cell

activation (NKdegran) (M) when stimulated with antigen-coated beads or plates. Bars represent the mean, and error bars represent the standard of deviation.

This figure can be generated from the data found in data/figure2_data.csv of https://github.com/dzhu8/Ad26-Dose-Down. ADCD, antibody-dependent

complement deposition; ADCP, antibody-dependent cellular phagocytosis; ADNP, antibody-dependent neutrophil phagocytosis; MFI, median fluorescent

intensity; NHP, nonhuman primate; NK, natural killer; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2; VP, viral particle.

https://doi.org/10.1371/journal.pbio.3001609.g002
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profiles. To focus on the effect of vaccine-induced immunity, we removed all Sham samples.

Striking differences were noted in the overall Spike-specific humoral immune profiles across the

4 dose groups (Fig 3A), marked by the most robust, fully immunoglobin class-switched (no IgM)

titers in the animals that received the highest vaccine dose, followed by robust titers, FcR binding,

T-cell responses, and Fc effector function in group II immunized animals. Conversely, decreased

antibody titers and Fc effector functions were noted in group III immunized animals, with a very

significant loss of FcR binding and limited T-cell immune responses. Finally, the lowest antibody

titers, Fc effector functions, T-cell responses, and negligible FcR binding were noted in group IV

immunized animals. Moreover, additional analysis of the overall architecture of the humoral

immune response using Pearson correlations between all humoral variables highlighted the rela-

tive conservation of the humoral immune architecture across the vaccine groups (S1 Fig), with

the exception of ADCP, which was least dose dependent.

To further define the impact of vaccine dosing on the epitope-specific response across the

Spike protein, we also examined the vaccine-induced humoral immune response to the RBD,

S1, S2 and N-terminal domain (NTD) (Fig 3B). While heterogenous responses were seen for

animals in the same dose group following vaccination, generally, the highest and broadest

immune responses were noted in group 1 (1 × 1011 VP) group, with a dose-dependent decrease

in titer, FcR binding, and Fc-induced immune function across the other vaccine dose groups

for all regions of the SARS-CoV-2 Spike. IgM titers were the exception, with IgM responses

anticorrelated with other subclasses, as a marker of mature class switching to IgA and IgG

[31]. To finally define whether antibody profiles could distinguish the dose groups, a principal

component analysis (PCA) was generated across the 4 vaccine groups (Fig 3C). The 2 top dose

groups clustered together, whereas the 2 bottom groups clustered to the left of the PCA plot.

The majority of the variance (60%) was explained by the first principal component, and a com-

parison of the loadings (the coefficients of the linear combination of variables used to con-

struct principal components) along this axis (Fig 3D) revealed enrichment of S2 and Spike

FcR binding features as the predominantly enhanced features in animals that received the

highest vaccine doses. These data revealed the significant enrichment of FcR binding antibod-

ies among animals that received the higher vaccine doses.

Neutralizing antibody titers and FcR binding are enriched in protected

animals

To begin to define the specific immunologic markers associated with protection against viral

challenge, animals were divided into 3 groups, consisting of nonhuman primates (NHPs)

exhibiting total protection (no detectable viral replication), partial protection (no detectable

viral replication in BAL), and no protection (viral replication in BAL and nasal swab). Polar

plots revealed differences in the overall vaccine-induced immune profiles across the groups,

with the strongest responses, across immunologic readouts, in animals with total protection

(Fig 4A). Intermediate responses were observed in the partially protected group, and lower

responses, marked by near complete loss of FcR binding in the animals that were not pro-

tected. Unsupervised multivariate analysis (PCA, as above) highlighted a clear separation in

the immune profiles of animals that exhibited complete protection against SARS-CoV-2 and

animals exhibiting viral load in at least one compartment (Fig 4B). To precisely define the fea-

tures that tracked with protection, fold changes were computed for each immunologic marker

and visualized in a volcano plot (Fig 4C), across animal groups. The most significant fold

change, depicted on the y-axis, was neutralizing antibody titers (as assessed using the nonpara-

metric Mann–Whitney U test), with all humoral features save for ACDP, NK-secreted

CD107a, and IgM titer also found to be significant after multiple hypothesis correction using
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the Holm–Bonferroni correction. Data suggest a more mature humoral immune response,

consistent with a loss of IgM observed in the higher vaccine dosed animals (Fig 3A), and a sig-

nificant enrichment of the Fc functional response that is corroborated by combining all titer,

FcR binding, and functional features and comparing between protected and not protected ani-

mals (S2 Fig). Conversely, FcR binding features underwent the largest average fold change,

depicted on the x-axis of the volcano plot, marked by>2-fold change and broad binding

across nearly all, and especially, the phagocytic FCGR2A-3 receptor in protected animals.

Given the highly correlated nature of the vaccine-induced immune response, we next

aimed to identify a minimal combination of features that best discriminated peak immune

profiles in animals that were protected or infected after challenge. Least absolute shrinkage

and selection operator (LASSO) regularization was used to reduce the degree of multicolli-

nearity and identify a minimal set of immune features that tracked with protective immunity.

As few as 7 features were sufficient to split the protected animals to those that became infected

following challenge, as visualized by partial least squares discriminant analysis (PLS-DA) (Fig

4D and 4E). The protective features did not include neutralizing antibody levels, but instead

included class switched IgG levels (IgG2, 4, and 3), ADCD, FcγR2A-3 binding, and ADCP

activity, likely related to the presence of high neutralizing antibody levels across all animals.

IgM was the sole feature associated with susceptibility, potentially marking an incompletely

mature humoral immune response.

The Fc effector profile is shaped by both RBD binding and non–RBD

binding antibodies

To further dissect the relationship between neutralizing and Fc receptor binding antibodies,

dose effects were examined across epitope-specific vaccine-induced antibodies. Given that the

majority of neutralizing antibodies target the RBD [32], we probed the overall changes in

RBD, NTD, and S2-specific titers and FcR binding across the dose-down groups (Fig 5A). A

clear titer and FcR binding dose effect was observed across all 3 epitope-specific antibody clas-

ses, across both dominant neutralizing and nonneutralizing antibody targets. Differences were

noted in some epitope specific populations, with a dampened NTD-specific FcγRIIa-3

response compared to NTD-specific binding to other Fc receptors, pointing to additional dif-

ferences in epitope-specific evolution. Multivariate analysis of these epitope specific antibody

responses demonstrated an enrichment of both RBD-targeting and S2-targeting features in

protected animals with lower viral loads, supporting a protective role for both RBD-specific

and non–RBD-specific antibody Fc effector functions (Fig 5B).

Fc effector functions collaborate with neutralizing antibodies and T-cell

immunity differently to achieve protection

Both antibodies and T cells have been linked to resolution of infection [18,22,32]. However,

the precise contribution of neutralization, Fc effector function, and T-cell immunity remains

titers, to multiple SARS-CoV-2 proteins (Spike, S1, S2, and RBD), and NTD, as well as the functional responses to Spike. The squares represents the

z-scored value for each immune feature (x-axis) for each NHP (y-axis). Z-scored was calculated across each individual column. (C) A latent

variable scores plot resulting from PCA shows the degree of separation between the 4 vaccine doses that was achieved by analyzing anti–

SARS-CoV-2 (anti-S1, S2, NTD, RBD, and Spike) features. Each point is an individual NHP, color coded by vaccine dose group (purple: 1011 VPs,

orange: 5 × 1010 VPs, blue: 1.125 × 1010 VPs, and pink: 2 × 109 VPs). Ellipses illustrate the 95% confidence interval for dose groups. (D) Loadings

plot depicting the most variant features along the first principal component (corresponding to the x-axis for the scores plot in C). This figure can be

generated using the data and code deposited in the “src” folder of https://github.com/dzhu8/Ad26-Dose-Down. Instructions to do so can be found

in the README file. FcR, Fcγ receptor; NHP, nonhuman primate; NTD, N-terminal domain; PCA, principal component analysis; RBD, receptor-

binding domain; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2; VP, viral particle.

https://doi.org/10.1371/journal.pbio.3001609.g003

PLOS BIOLOGY Ad26.CoV2.S dose down vaccination and humoral correlates

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001609 May 5, 2022 7 / 25

https://github.com/dzhu8/Ad26-Dose-Down
https://doi.org/10.1371/journal.pbio.3001609.g003
https://doi.org/10.1371/journal.pbio.3001609


A

B C

D E

Fig 4. Multivariate analysis of the immune response for varying degrees of protection against SARS-CoV-2 challenge identifies key

determinants of immunity. (A) Polar plots showing the mean percentile of each of the anti–SARS-CoV-2 antibody titers, FcR binding, and effector

function activation features for NHPs, grouped by the degree of protection against viral challenge in the upper and lower respiratory tract; groups

comprised NHPs protected in neither, one, or both compartments. Each wedge represents an individual feature, with colors representing the type of

feature: orange: effector function; light purple: antibody titer; dark purple: FcR binding; blue: neutralizing antibody titer; and pink: T-cell IFNγ
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unclear. Thus, to explore the contribution of each “arm” of the immune system to protection,

we created composite scores of our systems serology data using the partial least squares path

modeling (PLS-PM) [33] framework to generate latent variable measurements (Fig 6A). Anti-

body features were divided into 3 groups including (1) antibody-mediated effector functional

measurements (ADCP, ADNP, ADCC, NK-MIP1b+%, NK-CD107a+%, and NK-interferon

gamma (IFNγ)+%); (2) binding antibody titers (IgG1, IgG2, IgG3, IgG4, IgA, and IgM); and

(3) FcR binding measurements (FcγRA2-1, FcγRA2-2, FcγRA2-3, FcγRA2-4, and FcγRA3).

The enrichment of these composite metrics as well as neutralizing antibody titers and T-cell

immunity were compared across animals that remained uninfected or became infected after

challenge. All 3 composite metrics and neutralizing antibody titers were significantly highly

enriched among protected animals (Fig 6B). Thus, to define the degree of enrichment, a vari-

able importance (VIP) coefficient was generated, comparing each variable to outcome as

assessed by viral load. A clear hierarchy emerged across the 5 variables, with antibody titers

representing the strongest correlate of protection, followed by antibody functions, FcR bind-

ing, neutralization, and T cells (Fig 6C). However, to gain a clearer sense of the precise role of

each of the composite variables in providing protection from infection (blocking infection in

both the upper and lower respiratory tract) or in controlling viral replication (viral levels after

infection), VIP coefficients were generated for each outcome. The same hierarchy of features

(Fig 6C) were associated with protection from infection (Fig 6D), with protection assessed

using a binary variable indicating whether breakthrough was observed or not. Conversely, the

arrangement of the 5 metrics changed with viral breakthrough (Fig 6E), when examining the

association of each parameter with the level of viral replication only in the breakthrough ani-

mals. Specifically, antibody titers remained the top feature, followed by antibody functions, T-

cell activity, FcR binding, and neutralizing antibodies were least critical for predicting viral

control. These data highlight the importance of neutralization in the blockade of infection, T

cells in the control of viremia, and antibody Fc effector functions as a critical collaborator and

contributor to both prevention and control of viral infection.

Antibody response to the SARS-CoV-2 mutant VOCs

As the coronavirus pandemic continues, new VOCs that are more infectious or escape the

immune response are continuing to arise [34,35]. Current vaccines have been shown to be effi-

cacious against the wild-type (WT) SARS-COV-2; however, the robustness of the variants to

neutralization by either monoclonal or vaccine-induced binding antibodies [36–38] has

prompted concerns. To address the impact of dose on emerging VOCs, we profiled the

secretion. (B) A latent variable scores plot resulting from PCA shows the degree of separation between the 4 vaccine doses that was achieved by

analyzing anti–SARS-CoV-2 spike-component (anti-S1, S2, NTD, and RBD) features. Each point is an individual NHP, color coded by protection

from infection (yellow: protected in BAL and nasal swab, purple: protected in BAL only or no protection in BAL or nasal swab). Ellipses illustrate the

95% confidence interval for dose groups. (C) A volcano plot showing the average fold change for each of the anti–SARS-CoV-2 spike features

between completely protected NHPs and NHPs lacking complete protection, with the significance of the difference between these groups on the y-

axis, quantified using the negative log p-value and measured using 2-sided Wilcoxon rank-sum tests. Each point represents an individual feature,

color coded by the degree of statistical significance on a continuous colorbar. The star characters represent statistical significance following Holm–

Bonferroni correction. Note that ADNP is not explicitly labeled due to overlap with IgG2, but its fold change is also significant. (D) A latent variable

scores plot resulting from PLS-DA, with the variable regressed on being the categorical assignment of “protection” or “not protected/only protected

in the lower respiratory tract,” shows the degree of separation between NHPs that were completely protected and NHPs lacking complete protection

that was achieved with anti–SARS-CoV-2 anti-Spike-component features. Each point is an individual NHP color coded by protection from infection

(yellow: protected in BAL and nasal swab, purple: protected in BAL only or no protection in BAL or nasal swab). (E) Loadings plot depicting the

most variant features along the first principal component (corresponding to the x-axis for the scores plot in D). This figure can be generated using

the data and code deposited in the “src” folder of https://github.com/dzhu8/Ad26-Dose-Down. Instructions to do so can be found in the README

file. ADNP, antibody-dependent neutrophil phagocytosis; BAL, bronchoalveolar lavage; FcR, Fcγ receptor; NHP, nonhuman primate; NTD, N-

terminal domain; PCA, principal component analysis; PLS-DA, partial least squares discriminant analysis; RBD, receptor-binding domain;

SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2.

https://doi.org/10.1371/journal.pbio.3001609.g004
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B

A

Group I, 1x1011 VP, n = 5

Group II, 5x1010 VP, n = 5

Group III, 1.125x1010 VP, n = 5

Group IV, 2x109 VP, n = 5

Group V, Sham, n = 10

Fig 5. Comparison of FcγR binding profiles across SARS-CoV-2 spike domains. (A) The titer of anti–SARS-CoV-2

RBD, S2 spike subunit, and NTD spike subunit antibody binding to FcγRIIA-1, FcγRIIA-2, FcγRIIA-3, FcγRIIA-4, and

FcγRIII were profiled using Luminex. (B) Scores plot (upper plot) and loadings along the first latent variable (lower

plot) for a PLS-R model, regressing on the AUC of viral load as measured by BAL over a 10-day time course. Each

point represents an NHP, either completely protected (orange) or lacking complete protection (purple); ellipses
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humoral response to multiple VOC antigens: D614G [39], N501YΔ69–70 (representing key

mutations in Alpha/B.1.1.7 [40], and E484K (representing the key mutation in Beta/B.1.351

[41] and Gamma/P.1 [42], as well as being found in other variants of interest, such as Iota/

B.1.526 [43]). We observed relatively stable antibody binding across the variants in the highest

doses with greater reductions to N501Yd69-70 or E484K in the lowest dose group, while FcR

binding to the variants had a more profound loss across all doses (Fig 7A). This loss was linked

to more profound loss of ADCP against the N501Yd69-70 and E484K variants, pointing to a

potential weakness in the protection against VOCs in individuals with low vaccine-induced

immunity. Composite analysis of the response to the VOCs highlighted robust titers and func-

tionality in the top 2 dosed groups, but some loss of FcR binding and function in the lower

dosed animals (Fig 7B). Comparisons of composite scores composed of the variant features

showed significant differences between animals that were protected or infected after WT chal-

lenge, as well as high correlations between variant features and analogous WT features (S3A–

S3D Fig). These data point to reduced Fc effector function against particular VOCs, linked to

declining antibody titers, which may account for evidence of global breakthroughs, but in

addition detectable levels of nearly all antibody effector functions across key mutations per-

sisted that may contribute to global protection against severe disease in collaboration with T-

cell immunity.

Discussion

Despite the development of several efficacious vaccines against Coronavirus Disease 2019

(COVID-19) that provide protection against severe disease and death [5,7,15,44–46], under-

standing of the correlates of immunity have raised concerns about durability of protection

against the multitude of emerging highly contagious VOCs. While neutralizing antibodies

have emerged as a logical correlate of immunity to SARS-CoV-2, emerging signals of protec-

tion against VOCs-that evade neutralizing antibodies as well as in the setting of waning immu-

nity point to the importance of alternate correlates of protection against SARS-CoV-2. The

identification of the key immunologic mechanisms of protection could provide the critical

insights to guide vaccine design and boosting regimens to provide durable protection to end

this global pandemic.

While neutralizing antibody levels were identified as a strong correlate of protection in

large scale vaccine efficacy trials, antibody binding titers were more robustly correlated with

protection against severe disease across vaccine platforms [47,48]. Whether binding antibod-

ies, with alternate nonneutralizing functions, represent direct mechanistic correlates of immu-

nity or represent markers of a robust T-cell response remains unclear. However, both

antibody-mediated Fc effector function and T-cell immunity have been proposed as markers

of protective immunity [49–52]. Thus, to begin to define the role of neutralization, T-cell

immunity, and alternate antibody mechanisms of action, we exploited a vaccine dose-down

study in NHP to begin to tease apart the role of individuals arms of the immune response in

protection against infection or disease. We found that in the context of an Ad26 vaccine, while

antibody titers and neutralizing antibodies were robustly induced across most vaccine doses,

T-cell responses were more sensitive to vaccine dose and were only detectable in animals

correspond to the 95% confidence intervals for each group. Fig 5A data can be found in the file “data/figure5_data.

csv.” Fig 5B can be generated using the data and code deposited in the “src” folder of https://github.com/dzhu8/

Ad26-Dose-Down. Instructions to do so can be found in the README file. AUC, area under the curve; BAL,

bronchoalveolar lavage; NHP, nonhuman primate; NTD, N-terminal domain; PLS-R, partial least square regression;

RBD, receptor-binding domain; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2.

https://doi.org/10.1371/journal.pbio.3001609.g005
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AA

B

C

D E

Fig 6. Combined variable analysis identifies key combinatorial correlates of protection. (A) Diagram depicting the

process for computing latent variable coefficient scores with PLS-PM. Five PLS-PM models were computed, and the

coefficients compared. Figure created with BioRender.com. (B) Violin plots showing the distribution of latent scores

for the functional, antibody titer, and FcR binding features, as determined by PLS-PM, as well as for neutralizing

antibody titer and T-cell IFNγ secretion. The white dot represents the median, the thicker bar the IQR, and the thinner

bar 1.5 times the IQR in either direction. Thickness of the violin represents the density of a particular region. (C)

Barplots showing coefficients for the PLS-PM analyses (D, E) Barplots showing coefficients for 2 PLS-PM analyses:

with a binary protection variable (“fully protected” or “partially protected or not protected at all”) (D) and with the

protection variable being a combination of the AUC of cumulative viral titers measured at day 10 by both nasal swab

and BAL (E). This figure can be generated using the data and code deposited in the “src” folder of https://github.com/

dzhu8/Ad26-Dose-Down. Instructions to do so can be found in the README file. AUC, area under the curve; BAL,

bronchoalveolar lavage; IFNγ, interferon gamma; IQR, interquartile range; PLS-PM, partial least squares path

modeling.

https://doi.org/10.1371/journal.pbio.3001609.g006
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immunized with doses equal to or greater than current clinically tested doses (1 × 1011 or

5 × 1010 VPs). Conversely, antibody FcR binding and effector function were highly sensitive to

vaccine dose, demonstrating a strong dose dependence, highlighting an unexpected disconnect

in antibody titers/neutralization and T-cell and antibody functional induction. Whether these

findings are generalizable to other vaccine formulations remains to be determined.

Breakthrough infections in the upper respiratory tract of animals immunized with the

lower vaccine doses provided an opportunity to define immune correlates of protection.

Because of the large number of variables captured using systems serology, the probability of an

association with an Fc signal was larger. Thus, systems serology data were collapsed into 3

latent variables that captured antibody subclass/isotype diversification, FcR binding breadth,

and Fc effector polyfunctionality. While this simplification of the data may obscure the precise

correlate of immunity, this approach provides a more conservative means to compare addi-

tional antibody metrics to neutralization and T-cell immunity in the context of protective

immunity. While T cells, neutralization, and Fc effector responses were all enriched in pro-

tected animals, the hierarchy of correlates of protection differed across outcomes. Specifically,

antibody titers, FcR binding, antibody effector functions collaborated with neutralization in
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Fig 7. Humoral response to VOCs. (A) The humoral response of vaccinated NHPs was profiled against several SARS-CoV-2 spike proteins (Spike: D614G,

N501YΔ69–70, and E484K). The antibody titers and FcR binding titers were assayed by Luminex and the functional responses were analyzed using their

respective assays. The bars represent the median response and error bars represent standard deviation. (B) The dot plots show the correlation of the IgG1 titer,

FcRgIIA-I binding titer, ADCP, or complement deposition between D614G SARS-CoV-2 and the variants N501YΔ69–70 and E484K. D614G is plotted as an

example of perfect correlation. A 2-way ANOVA with Tukey correction for multiple comparisons was used to compare antibody levels between groups. Only

significant comparisons are shown. ns, not significant, �p� 0.05, ��p� 0.01, ���p� 0.001, ����p� 0.0001. This figure can be generated from the data found in

data/figure7_data.csv of https://github.com/dzhu8/Ad26-Dose-Down. ADCP, antibody-dependent cellular phagocytosis; FcR, Fcγ receptor; MFI, median

fluorescent intensity; NHP, nonhuman primate; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2; VOC, variant of concern.

https://doi.org/10.1371/journal.pbio.3001609.g007

PLOS BIOLOGY Ad26.CoV2.S dose down vaccination and humoral correlates

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001609 May 5, 2022 13 / 25

https://github.com/dzhu8/Ad26-Dose-Down
https://doi.org/10.1371/journal.pbio.3001609.g007
https://doi.org/10.1371/journal.pbio.3001609


the context of complete protection from infection (blockade of infection in the upper and

lower respiratory tract). Conversely, antibody titers, FcR binding and antibody effector func-

tions collaborated with T-cell immunity in the context of viral control in animals that experi-

enced a breakthrough infection. These data support the notion that neutralization and Fc

functions are key to blocking transmission, but that T cells collaborate with antibody functions

to drive viral control and clearance.

The significant enrichment of several Fc effector functions in protected animals raises addi-

tional questions as to the particular Fc mechanism that may be most critical for protection

from infection and/or disease. Among the Fc functions, NK cell activation was enriched in

protected animals. However, early studies examining humoral correlates of immunity in natu-

ral COVID-19 infection pointed to a significant role for opsonophagocytic, but not NK cell

activating antibodies, as correlates of resolution of severe disease [24]. Given the low abun-

dance of NK cells in the upper respiratory tract prior to infection, it is unlikely that these cells

contribute dominantly to the control/clearance of infection compared to the more highly

abundant resident phagocytes and circulating granulocytes [53,54]. Moreover, because viral

entry and release from target cells occurs via endocytosis and assembly on the Golgi (not the

cell membrane), respectively, little to no Spike is likely expressed on the surface of infected

cells [55]. Thus, in the absence of antibody-mediated recognition of Spike on infected cells, the

role for NK cells in eliminating infected cells remains unclear. Conversely, Fc effector medi-

ated capture and clearance of VPs may create a critical bottleneck, rapidly eliminating incom-

ing or newly released viruses, providing a window for T cells to activate, proliferate, recognize,

and eliminate infected cells, leading to the ultimate resolution of the infection. Thus, antibod-

ies and T cells likely collaborate intimately to resolve SARS-CoV-2 infection, warranting fur-

ther dissection to fully define the mechanistic correlates of immunity against SARS-CoV-2.

These data provide critical insights in the context of the current pandemic, where emerging

VOCs have the capability of breaking through vaccine-mediated protection, but vaccine-

induced immunity still elicits a response against several variants and provides some level of

protection against severe disease and death [17,56–58]. Whether T cells or antibody effector

function are more critical remains to be determined, but the analysis here points to a collabo-

ration between vaccine-induced antibody Fc mechanisms and T cells, potentially via rapid

antibody-mediated opsonophagocytic clearance and anamnestic boosting of T-cell immune

responses that collectively lead to robust control and clearance of infection. While postimmu-

nization samples could be linked to outcomes in this study, postchallenge humoral profiles

will be important to compare prechallenge and postchallenge correlates of protection, and

additionally to provide potential mechanistic links between the identified correlates of protec-

tion and containment of SARS-CoV-2.

The continued emergence of several SARS-CoV-2 variants with enhanced infectivity and

immune evasive capacity have further complicated the worldwide vaccination effort [39,59–

62]. The duration of the pandemic has been marked by decreased vaccine efficacy against

these variants. Early trials for Novavax NVX-CoV2373 and Pfizer-BioNTech BNT162b2 saw a

decrease from >90% efficacy against the WT to 50% to 60% against the Beta variant [15,63–

65]. An exception was seen with the Delta variant, for which vaccines continue to confer

>80% protection against severe disease and death [66]. Understanding vaccine-mediated cor-

relates of protection and the contribution of Fc effector functions and T cells is critical in the

context of estimating vaccine efficacy to new and emerging VOCs. Along these lines, despite

the extraordinary global surge of the highly infectious Omicron variant, which significantly

evades neutralizing antibodies [67–70], striking increases in infections were observed in the

absence of a significant rise in severe disease and death. These data argue that while transmis-

sion occurred due to evasion of neutralizing antibody responses, additional vaccine-induced
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mechanisms likely continue to contribute to the rapid control and clearance of the virus.

Moreover, given the persistence of robust SARS-CoV-2 specific T cell [71–76] and Fc effector

functions [77] across VOCs including Omicron, these arms of the immune response likely

contribute to remains intact against the omicron strain of SARS-CoV-2. Thus, in line with the

data explored here, which show a little drop in VOC binding, our results point to the potential

mechanistic complementary importance of a collaboration between T cells and Fc-mediated

effector functions, each playing a role in SARS-CoV-2 transmission and reduced disease. How-

ever, because our experiments used WA1/2020 antigens, it remains to be determined whether

these observations will generalizable to other SARS-CoV-2 strains and vaccine inserts. Further

experiments will need to be conducted to determine which Fc effector mechanism persists

during Omicron infection.

The identification of correlates, and even surrogates of immunity, against the emerging

VOCs is of the greatest urgency. While early studies against the original SARS-CoV-2 variant

pointed to antibody titers and neutralization as key mechanisms of protection across vaccine

platforms across the original SARS-CoV-2 variant, emerging data point to a central role of Fc

effector functions and T-cell immunity as critical mechanistic players in antiviral control

required for the prevention of severe disease and death. This study further demonstrates the

key role of antibody effector functions and neutralization as mechanistic players in limiting

transmission, but an alternate cooperation between Fc effector functions and T cells in limiting

viral replication, a proxy of disease severity [78]. Thus, given the simplicity of measuring FcR

binding antibodies, or simple opsonophagocytic functions, the latter utilized broadly for the

licensure of bacterial vaccines, it is plausible that next generation assays aimed at measuring Fc

biology across both existing and emerging VOCs could provide instrumental insights to guide

next generation vaccine development or boosting.

Materials and methods

Cell line, viruses, and receptor

THP-1 cells (ATCC TIB-202) were maintained in Roswell Park Memorial Institute (RPMI)

medium, supplemented with 10% FBS, 1% glutamine, 1% P/S, 1% HEPES, and 50 μM β-ME.

Animal study design

The study design has been described [29]. In brief, 30 outbred Indian-origin adult male (10) and

female (20) rhesus macaques (Macaca mulatta) were randomly allocated to groups. Animals

received a single immunization of 1 × 1011, 5 × 1010, 1.125 × 1010, or 2 × 109 vps Ad26.COV2.S

(Janssen; n = 5/group) or sham (n = 10) by the intramuscular route without adjuvant at week 0.

All animals were challenged with 1.0 × 105 TCID SARS-CoV-2, which was derived from

USA-WA1/2020 (NR-52281; BEI Resources - Atlanta, Georgia, USA), by the intratracheal (IT)

route at week 6. All serum samples were collected at week 6 postimmunization, before the chal-

lenge. All animals were housed at Bioqual (Rockville, Maryland, USA). Animal studies were con-

ducted in compliance with all relevant local, state, and federal regulations and were approved by

the Bioqual Institutional Animal Care and Use Committee (IACUC approval number 20-015P).

Subgenomic mRNA assay

The assay has been described previously [29]. In brief, RNA was isolated from macaque BAL

fluid and nasal swabs using the IndiSpin QIAcuba HT Pathogen Kit (Indical Bioscience - Leip-

zig, Germany). RNA was reverse transcribed to cDNA using Superscript VILO (Invitrogen -

Carlsbad, California, USA) and stored at 4˚C until RT-PCR assays were performed. A Taqman
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custom gene expression assay (Thermo Fisher Scientific - Waltham, Massachusetts, USA) was

designed using the sequences target the E gene sgRNA [79]. The sequences for the custom assay

were as follows, forward primer: sgLead-CoV2.FWD: CGATCTCTTGTAGATCTGTTCTC,

E_Sarbeco_R: ATATTGCAGCAGTACGCACACA, E_Sarbeco_P1_(probe): VIC-ACACTAGC-

CATCCTTACTGCGCTTCG-MGB. Reactions were performed on QuantStudio 6 and Flex Real-

Time PCR systems (Applied Biosystems - Bedford, Massachusetts, USA). Analysis was performed

on the QuantStudio Real-Time PCR Software (Life Technologies - Singapore). Standard curves

were used to calculate sgRNA copies per mL or per swab.

Anti-spike and RBD ELISA

The assay has been described previously [29]. In brief, 96-well plates were coated with 1ug/mL

SARS-CoV-2 spike (S) or RBD protein in 1× DPBS and incubated at 4˚C overnight. After

incubation, plates were washed once with was buffer (0.05% Tween 20 in 1x DPBS) and

blocked with 350-uL Casein block/well for 2 to 3 hours at room temperature. After incubation,

block solution was discarded and plates were blotted dry. Serial dilutions of heat-inactivated

serum diluted in casein block were added to wells and plates were incubated for 1 hour at

room temperature, prior to 3 washes and a 1-hour incubation with a 1:1,000 dilution of anti-

macaque IgG HRP (NIH NHP Reagent Program) at room temperature in the dark. Plates

were washed 3 times, and 100 uL of SeraCare KPL TMB Stop solution per well. The absor-

bance at 450 nm was recorded using a VersaMax or Omega microplate reader.

Pseudovirus neutralizing antibody assay

The assay has been described previously [29]. In brief, the packaging plasmid psPAX2 (AIDS

Resource and Reagent Program), luciferase reporter plasmid pLenti-CMV Puro-Luc (Addgene),

and spike protein expressing pcDNA3.1-SARS CoV-2 SDCT of variants were cotransfected into

HEK293T cells by lipofectamine 2000 (Thermo Fisher Scientific). Pseudoviruses of SARS-CoV-2

variants were generated by using Wuhan prototype strain (Wuhan/WIV04/2019, GISAID acces-

sion ID: EPI_ISL_402124), D614G mutation, B.1.1.7 variant (GISAID accession ID:

EPI_ISL_601443), or B.1.351 variant (GISAID accession ID: EPI_ISL_712096). The supernatants

containing the pseudotype viruses were collected 48 hours posttransfection, which were purified

by centrifugation and filtration with 0.45-mm filter. To determine the neutralization activity of

the plasma or serum samples from participants, HEK293ThACE2 cells were seeded in 96-well tis-

sue culture plates at a density of 1.75 × 104 cells/well overnight. Moreover, 3-fold serial dilutions

of heat inactivated serum or plasma samples were prepared and mixed with 50 mL of pseudo-

virus. The mixture was incubated at 37˚C for 1 hour before adding to HEK293T-hACE2 cells.

Fourty-eight hours after infection, cells were lysed in Steady-Glo Luciferase Assay (Promega -

Madison, Wisconsin, USA) according to the manufacturer’s instructions. SARS-CoV-2 neutrali-

zation titers were defined as the sample dilution at which a 50% reduction in relative light unit

(RLU) was observed relative to the average of the virus control wells.

IFNγ and IL-4 T cell ELISPOT assay

The assay has been described previously [29]. In brief, ELISpot plates were coated with mouse

anti-human IFNγ monoclonal antibody (BD Pharmingen - San Diego, California, USA) or

anti-human IL-4 monoclonal antibody (Mabtech - Stockholm, Sweden) at a concentration of

5 ug/well overnight at 4˚C. Plates were washed with DPBS containing 0.25% Tween 20, and

blocked with R10 media (RPMI with 11% FBS and 1.1% penicillin-streptomycin) for 1 hour at

37˚C. The Spike 1 and Spike 2 peptide pools contain 15 amino acid peptides overlapping by 11

amino acids that span the protein sequence and reflect the N-terminal and carboxyl-terminal
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halves of the protein, respectively. Spike 1 and Spike 2 peptide pools were prepared at a con-

centration of 2 mg/well, and 200,000 cells/well were added. The peptides and cells were incu-

bated for 18 to 24 hours at 37˚C. All steps following this incubation were performed at room

temperature. The plates were washed with coulter buffer and incubated with Rabbit polyclonal

anti-human IFN-g Biotin from U-Cytech (1 mg/mL), followed by a second wash and incuba-

tion with Streptavidin-alkaline phosphatase antibody from Southern Biotechnology (Birming-

ham, Alabama, USA) (1 mg/mL). The final wash was followed by the addition of Nitor-blue

Tetrazolium Chloride/5-bromo-4-chloro-3-indolyl phosphate p-toludine salt (NBT/BCIP

chromagen) substrate solution for 7 minutes (IFNγ) or 12 minutes (IL-4). The chromagen was

discarded, and the plates were washed with water and dried in a dim place for 24 hours. Plates

were scanned and counted on a Cellular Technologies Limited Immunospot Analyzer.

ADCP and ADNP

ADCP and ADNP were conducted as previously described [80,81]. Briefly, spike or RBD pro-

teins were biotinylated using EDC (Thermo Fisher Scientific) and EZ-link Sulfo-NHS-LC-LC

(Thermo Fisher Scientific) and then coupled to yellow/green and then coupled to yellow/green

FluoSphere NeutrAvidin-conjugated beads (Thermo Fisher Scientific, F8776). Immune com-

plexes were formed by incubating the bead+protein conjugates with diluted serum (ADNP

1:50 dilution, ADCP 1:100 dilution) for 2 hours at 37˚C and then washed to remove unbound

antibody. The immune complexes were then incubated overnight with THP-1 cells (ADCP),

or for 1 hour with RBC-lyzed whole blood (ADNP). THP-1 cells were then washed and fixed

in 4% PFA, while the RBC-lyzed whole blood was washed, stained for CD66b Pacific Blue (Bio-

Legend - San Diego, California, USA), CD3-AlexaFluro700 (BD Biosciences - Miami, Florida,

USA), and CD14-APC-Cy7 (BD Biosciences) to identify neutrophils (CD3- CD14- CD66b+)

and then fixed in 4% PFA. Flow cytometry was performed to identify the percentage of quan-

tity of beads phagocytosed by THP-1 cells or neutrophils, and a phagocytosis score was calcu-

lated (% cells positive × median fluorescent intensity of positive cells). Flow cytometry was

performed with an LSRII (BD), and analysis was performed using FlowJo V10.7.1.

ADCD

ADCD was conducted as previously described [82]. Briefly, spike or RBD protein was biotinylated

using EDC (Thermo Fisher Scientific) and EZ-link Sulfo-NHS-LC-LC (Thermo Fisher Scientific)

and then coupled to red Neutravidin-conjugated microspheres (Thermo Fisher Scientific).

Immune complexes were formed by incubating the bead+protein conjugates with diluted serum

(ADCD 1:10 dilution) for 2 hours at 37˚C and then washed to remove unbound antibody. The

immune complexes were then incubated with lyophilized guinea pig complement (Cedarlane -

Burlington, Ontario, Canada) and diluted in gelatin veronal buffer with calcium and magnesium

(Boston BioProducts - Milford, Massachusetts, USA) for 30 minutes. C3 bound to immune com-

plexes was detected by fluorescein-conjugated goat IgG fraction to guinea pig Complement C3

(MP Biomedicals - Irvine, California, USA). Flow cytometry was performed to identify the per-

centage of beads with bound C3 and a complement deposition score was calculated (% beads

positive × median fluorescent intensity of positive beads). Flow cytometry was performed with an

LSRII (BD) and analysis was performed using FlowJo V10.7.1.

Antibody-dependent NK cell degranulation

Antibody-dependent NK cell degranulation was conducted as previously described [83,84].

Spike or RBD protein was coated on Maxisorp ELISA plate (Thermo Fisher Scientific) and

then blocked with 5% BSA. Diluted serum (1:25 dilution) was then added and incubated for 2
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hours at 37˚C. Human NK cells were isolated from peripheral blood by negative selection

using the RosetteSep Human NK cell enrichment cocktail (STEMCELL Technologies - Van-

couver, British Columbia, Canada) following the manufacturer’s instructions. Human NK

cells were then added to the bound antibody and incubated for 5 hours at 37˚C in the presence

of RMPI+10% FBS, GolgiStop (BD), Brefeldin A (Sigma - Burlington, Massachusetts, USA),

and anti-human CD107a-PE-Cy5 antibody (BD Biosciences). After incubation, cells were

washed, stained with CD16-APC-Cy7, CD56-PE-Cy7, and CD3-Pacific Blue (BD Biosciences)

and fixed in 4% PFA for 15 minutes. Intracellular staining was performed using the FIX/

PERM Cell fixation and permeabilization kit (Thermo Fisher Scientific), and cells were stained

for IFNγ-APC and macrophage inflammatory protein-1β-PE (BD Biosciences). Results were

reported as percentage of NK cells positive for CD107a, IFNγ, or macrophage inflammatory

protein-1β. Flow cytometry was performed with an LSRII (BD), and analysis was performed

using FlowJo V10.7.1.

Isotype and FcR-binding Luminex profiling

Isotyping and FcR profiling was conducted as previously described [84–86]. Briefly, spike,

RBD, or variant proteins were carboxyl coupled to magnetic Luminex microplex carboxylated

beads (Luminex - Austin, Texas, USA) using NHS-ester linkages with Sulfo-NHS and EDC

(Thermo Fisher Scientific) and then incubated with serum (Isotypes 1:100 dilution, FcRs

1:1,000 dilution) for 2 hours at 37˚C. Isotyping was performed by incubating the immune

complexes with secondary mouse-anti-rhesus antibody detectors for each isotype (IgG1, IgG2,

IgG3, IgG4, and IgA) and then detected with tertiary anti-mouse-IgG antibodies conjugated to

PE. FcR binding was quantified by incubating immune complexes with biotinylated FcRs

(FcγR2A-1, FcγR2A-2, FcγR2A-III, FcγR2A-IV, and FcγR3A, courtesy of Duke Protein Pro-

duction Facility) conjugated to Steptavidin-PE (Prozyme - Hayward, California, USA). Results

were reported as median fluorescent intensity of PE staining for each antigen+bead combina-

tion. Flow cytometry was performed with an IQue (Intellicyt - Albuquerque, New Mexico,

USA) and analysis was performed on IntelliCyt ForeCyt (v8.1).

Multivariate analysis

All analyses were performed after removing the Sham samples and were performed using

Python version 3.8.5. PCAs, PLS-DAs, and partial least square regressions (PLS-Rs) were per-

formed using the “scikit-learn” package [87], with all measurements (antibody titers, FcR

binding, ADCD, ADNP, ADCC, NK cell cytokine secretion, and degranulation) z-scored

using scikit-learn’s StandardScaler(). Samples were color coded on the PCA and PLS-DA visu-

alizations using labels for either vaccine dose group or assignment of “protected” and “not pro-

tected/only protected BAL” based on the result of the viral load analysis. Ellipses were drawn

for each of the labeled groups and extend 2 standard deviations in all directions based on the

distribution of the corresponding group; they thus represent two-dimensional 95% confidence

intervals. For the polar barplots, each feature is normalized by dividing by the maximum value

of that feature within the dataset to obtain a percentile measurement, and the mean percentile

measurement is computed for members of each group and represented on the plot. For the

analyses described in Fig 6, PLS-PM [33] was performed using the “plspm” library in R version

4.1.0. Latent variables were comprised of a linear combination of all relevant WT spike-

directed antibody features (with for example the “functional latent score” being a linear combi-

nation of ADCC, ADCP, ADNP, and NK cell degranulation and cytokine secretion). The

value of a latent variable for any given sample was computed as a weighted mixture of these

constituent features, with the weights being determined with the PLS-PM protocol, iterating
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until convergence. The correlations heatmap was constructed using the “pandas” package [88].

Visualization for all multivariate analyses was accomplished using a combination of the

“plotly” [89] and “matplotlib” [90] packages.

Statistical analysis

Statistical analysis for the results described in Fig 3 onward was performed using Python 3.8.5.

In the analyses described in Fig 6, measurements of antibody, FcR binding, and functional

enrichments as well as neutralizing antibody and T-cell IFNγ secretion were represented using

violin plots. The region enclosed by each box represents the interquartile range of the variable

for a particular group, and the line bisecting each box is the median. For the analysis repre-

sented in S3B Fig, each functional enrichment score was calculated by taking an average of the

Z-score for each measured variant spike-directed antibody feature (with the exception of

B.1.1.7 and B.1.351, for which RBD-directed antibody features were used; for example, “func-

tional enrichment” is the average z-score for ADCC, ADCP, NK cell degranulation, etc.).

Mann–Whitney U tests were used to determine statistical significance of differences between

groups for both the violin plots and the volcano plot, as normality could not be assumed for

these features. Similar analysis was performed to generate S2 Fig, using WT spike-directed fea-

tures. Two different Python packages were used to conduct these tests, “statannot” and “scipy”

[91]. A p-value of� 0.05 was considered significant for an individual test, with this p-value

adjusted for multiple hypothesis testing using Holm–Bonferroni corrections (% beads

positive × median fluorescent intensity of positive beads). Flow cytometry was performed with

an LSRII (BD), and analysis was performed using FlowJo V10.7.1.

Supporting information

S1 Fig. Correlation between each anti–SARS-CoV-2 spike feature, neutralizing antibodies,

and T-cell function, between each vaccine dose group. (A–D) Correlation plots showing the

r2 correlation between each immune feature among all vaccine regimens. (A) Group 1 1 × 1011

VPs, (B) Group II, 5 × 1010 VPs, (C) 1.125 × 1010 VPs, and (D) 2 × 109 VPs. This figure can be

generated using the data and code deposited in the “src” folder of https://github.com/dzhu8/

Ad26-Dose-Down. Instructions to do so can be found in the README file. SARS-CoV-2,

Severe Acute Respiratory Syndrome Coronavirus 2; VP, viral particle.

(EPS)

S2 Fig. Enrichment scores for WT spike-directed features. (A) The violin plots show the dis-

tribution of each labeled feature between completely protected NHPs (orange) and NHPs lacking

complete protection (purple). Functional, antibody, and Fc enrichment were calculated by com-

puting the average z-score of all WT spike-directed effector functions, antibody titers and Fc

receptor binding measurements, respectively. This figure can be generated using the data and

code deposited in the “src” folder of https://github.com/dzhu8/Ad26-Dose-Down. Instructions to

do so can be found in the README file. NHP, nonhuman primate; WT, wild-type.

(EPS)

S3 Fig. Further profiling of the humoral response to VOCs. (A) The humoral response was

profiled against several additional variants and SARS-CoV-2 proteins (Spike: WT, D614G,

N501Y, E484K, B.1.1.7, K417N; RBD: WT, N501Y, E484K, B.1.351, P.1). The squares repre-

sents the z-scored value for each immune feature (x-axis) for each NHP (y-axis). Z-score was

calculated across each individual column. (B) The violin plots show the distribution of each

labeled feature between completely protected NHPs (orange) and NHPs lacking complete pro-

tection (purple). Functional, antibody and Fc enrichment were calculated by computing the
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average z-score of all anti-variant effector functions, antibody titers and Fc receptor binding

measurements, respectively. (C) Scatterplots of WT spike directed enrichment scores against

variant-directed enrichment scores, with the computed Spearman correlation included in the

plot title. Each point represents an NHP, either completely protected (orange) or lacking com-

plete protection (purple). (D) The PCA scores plot and associated loadings show the degree of

discrimination achieved using only the combination of functional, antibody and Fc enrich-

ment scores created with anti-variant features. Each point represents an NHP, either

completely protected (orange) or lacking complete protection (purple); ellipses correspond to

the 95% confidence intervals for each group. This figure can be generated using the data

deposited in the “data” folder and code deposited in the “src” folder of https://github.com/

dzhu8/Ad26-Dose-Down. Instructions to do so can be found in the README file. Data for

S3A Fig can be found in “data/figure7_data.” NHP, nonhuman primate; PCA, principal com-

ponent analysis; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2; VOC, vari-

ant of concern; WT, wild-type.

(EPS)
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