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A B S T R A C T

Accounting for non-independence in health research often warrants attention. Particularly, the availability of
geographic information systems data has increased the ease with which studies can add measures of the local
“neighborhood” even if participant recruitment was through other contexts, such as schools or clinics. We
highlight a tension between two perspectives that is often present, but particularly salient when more than one
type of potentially health-relevant context is indexed (e.g., both neighborhood and school). On the one hand, a
model-based perspective emphasizes the processes producing outcome variation, and observed data are used to
make inference about that process. On the other hand, a design-based perspective emphasizes inference to a
well-defined finite population, and is commonly invoked by those using complex survey samples or those with
responsibility for the health of local residents. These two perspectives have divergent implications when de-
ciding whether clustering must be accounted for analytically and how to select among candidate cluster defi-
nitions, though the perspectives are by no means monolithic. There are tensions within each perspective as well
as between perspectives. We aim to provide insight into these perspectives and their implications for population
health researchers. We focus on the crucial step of deciding which cluster definition or definitions to use at the
analysis stage, as this has consequences for all subsequent analytic and interpretational challenges with po-
tentially clustered data.

1. Background

Human experience takes place in multiple overlapping contexts,
including geographic contexts such as neighborhoods and cities, orga-
nizational contexts such as schools and clinics, and social contexts such
as families and friendship networks. Though the variability of health-
relevant exposures and outcomes within and between these contexts
has long been a focus of study (Mooney, Knox, &Morabia, 2014;
Morabia, 2014; Pincus & Stern, 1937), in recent years, research teams
have increasingly had opportunities to link measures from more than
one type of context within the same study population (Box 1).

The integration of multiple context types into our research reflects
the multiplicity of overlapping contexts that shape our social experi-
ence and related health risks. Health-relevant sorting into neighbor-
hoods (Bischoff&Reardon, 2013), schools (Reardon &Owens, 2014),
clinics (Sarrazin, Campbell, Richardson, & Rosenthal, 2009), and
workplaces (Goh, Pfeffer, & Zenios, 2015) has been well-documented in
the literature, complicating our ability to study the implication of

changing such contexts for our health. Beyond physical contexts there
are social networks and affinity groups that affect the health of in-
dividuals. The numerous overlapping contexts in which individuals are
embedded result in correlations within “clusters” (a term that we will
use for brevity to indicate the spatial units, institutional settings, or
other macro-units to which individuals in a study population are in-
dexed via a cluster identifier). The availability of repeated measures
over time in longitudinal studies bring further complexity as well as
value (Leckie, 2009). One or more of the clusters may take on particular
salience because of the study design or context characteristics available
for linkage (Fig. 1). Doing so makes salient the often implicit tensions
between two inferential perspectives labeled as model-based and de-
sign-based.

This paper identifies two common perspectives and their implica-
tions when considering a clustering-based analytic approach (e.g. by
using random effects or cluster robust standard errors) for studies
linking context to health. As such analytic approaches have become
easier to implement in standard statistical software (Diez Roux, 2000;
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Singer, 1998), how specifically to analyze clustered data, and whether
hierarchical or cross-classified techniques are truly necessary, should be
considered carefully (Mitchell, 2001). Attention to what have been
called “model-based” and “design-based” inference goals
(Snijders & Bosker, 2012c; Sterba, 2009), and the tensions between
perspectives and within each perspective, can elucidate how we decide
on which cluster definition (or definitions) to account for, a decision
that in turn affects all subsequent analytic and inferential steps. We aim
to provide insight into these perspectives and their implications for an
applied population health research audience. We first discuss distin-
guishing features of each perspective, and then turn to how they offer
divergent guidance under the increasingly common circumstance of
having more than one type of context available to account for non-
independence (Fig. 1).

Consider, for example, an investigation of swimming skills (Hulteen
et al., 2015) among children in a given city, with relevance to both
physical activity (Fisher et al., 2005) and drowning risk (Brenner et al.,
2009). The investigative team systematically samples schools within
the city, and then children within those schools, such that sampling
probabilities are known. Suppose also that residents of some neigh-
borhoods have received frequent marketing of private swimming les-
sons at their local swimming pool (for the sake of illustration, we

suppose this is unmeasured, as would often be the case for local social
norms or other behaviorally-relevant characteristics of context). Em-
pirically, it might be that residual clustering in the outcome is greater
based on neighborhood than by school. Exposures of interest addressed
by the investigative team across several empirical manuscripts are de-
fined at the individual (e.g., gender), school (e.g., physical education
hours/week), and neighborhood level (e.g., area-based socioeconomic
indicators). A team that adopts a design-based perspective would be
attentive to sampling weights and inference to the city population, but
might not require adding a random effect to account for within-
neighborhood clustering because that clustering is a reflection of the
clustering truly present in the city (rather than being investigator-im-
posed). By contrast, the model-based perspective would primarily be
focused on specification of the model, accounting for neighborhood
clustering if the processes shaping the skills of two children within the
same neighborhood are not considered independent; the model-based
team might consider an unweighted analysis using adjustment as a
possibly more efficient alternative to a weighted analysis. Both per-
spectives are flexible, and ideally the advantages of each will be con-
sidered, but we posit that being able to name and distinguish them will
help to avoid confusion.

2. Distinguishing features of, and selected tensions within, a
model-based perspective

A model-based perspective emphasizes the processes producing
outcome variation, and observed data are used to characterize that
data-generating process. This is the majority perspective in statistical
textbooks, including those focused specifically on multi-level modeling
(Snijders & Bosker, 2012d). Attention is paid to minimizing bias and
maximizing efficiency, and if weighting is used it is often for these
purposes. Crucially for the topic at hand, a model-based inference
perspective primarily considers independence of observations with re-
spect to residual correlations in the observed data. Measured cluster-
level characteristics may be of interest to explain such residual corre-
lations, in which case a model structure is specified and the parameters
estimated accordingly, or there may simply be an interest to account for
the variance structure because the assumption about observations’ in-
dependence does not hold.

Even before we consider the contrast with a perspective focused on
design-based inference, it is worth mentioning two tensions among
those seeking to make model-based inference. First, in decisions on
whether to condition on clusters, some may prefer a strategy specified a
priori, while others may look to the data to guide the structure of the

Box 1
The Role of the Intra-Class Correlation in Selecting a Cluster Definition.

Either perspective might turn to tools such as the intra-class correlation (ICC) to quantify how distinct clusters are with respect to the health
outcome of interest (Merlo, Chaix, Yang, Lynch, & Rastam, 2005). An ICC that is distinct from zero (or one with a 95% confidence interval
that excludes zero) might be used to justify a particular cluster definition by some with a model-based perspective (Snijders & Bosker,
2012b, 2012c, 2012d). The ICC may also be used by those with either perspective to point to areas of potential interest for substantive
investigation. Because the ICC correlation within clusters, any decision that relies on ICC values may be reversed when the same study data
are used to investigate a different outcome. Similarly, a pilot study and a full scale study might reach different conclusions about the need
to account for clustering, even though each used the same sampling strategy to study the same outcome. Thus, the design effect will depend
not only on the sampling strategy but also on the population sampled and the outcome itself. For example, among students there may be
stronger clustering of standardized test scores by classroom due to influence of the teacher and of processes by which students of similar
abilities are assigned to the same classroom, whereas school-level clustering may be stronger for physical activity outcomes due to shared
physical fitness facilities and physical education policies. To visualize this phenomenon, it may help to consider a sparse sample (Fig. 2b),
where the social contexts will often be unique or shared by few participants. Low power would result in wide confidence bounds around the
ICC, and we would be unlikely to exclude zero (however, even when power is low to detect whether the ICC for the outcome is distin-
guishable from zero, there may be sufficient power to detect an association with one of the measured cluster characteristics). By contrast, in
a dense sample (Fig. 2c) there is greater statistical power to distinguish the ICC from zero, and more opportunity to investigate the
contributions of both measured and unmeasured characteristics of shared environments.

Fig. 1. A schematic diagram of overlapping sources of clustering. Subjects recruited from
schools A and D are both clustered in schools and in an overlapping subset of census
tracts. Which, if any, of these clustering sources does an analyst need to account for?
Notes: This study recruited students from schools A and D, then measured neighborhood
conditions in census tracts referring to students in those tracts (1, 2, 4, 5, 6, 8, and 9).
Does the analyst need to account for clustering on tracts, on schools, or both? How should
we decide, noting that the clusters are overlapping and not hierarchical? A design-based
perspective would emphasize the recruitment setting, indicating that inference about
students in general must account for clustering of students within schools. A model-based
perspective would emphasize whether clustering is important to approximating the
probability model generating the observed data.
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model. Often, the two strategies are blended, starting with an a priori
strategy and then using sensitivity analyses to explore modifications to
that strategy as colleagues and reviewers suggest them. A similar ten-
sion can be noted in deciding which variables to include as covariates: a
strategy informed by expert knowledge and optimized to address the
causal question of interest has clear strengths, but exploration of the
data may suggest a simpler model that would serve just as well or a
more complex model that fits the data better (which may come along
with risks of overfitting the data). Investigators with model-based in-
ference goals differ also in whether they view the implementation and
interpretation challenges of more complicated models as inherently
problematic due to the potential for user error, or as opportunities to
enhance training and interdisciplinary partnerships. We will return to
divergent views of model complexity as we conclude our discussion of
analytic implications of model-based and design-based perspectives.

2.1. Key features of a design-based perspective, and potential relevance to
multiple sampling strategies

A design-based perspective emphasizes generalizability of estimated
parameters to a well-defined finite population. This perspective is more
commonly invoked by those designing and using complex survey
samples or within institutions such as municipal health departments
that have responsibility for health in a particular locality. From a de-
sign-based perspective, the distributional assumption about the data-
generating process made using a model-based approach are replaced by
the introduction of empirical randomness from the random sampling
design. Thus, from a design-based perspective, greatest concern about
“non-independence” would arise if sampling probabilities are not in-
dependent. Non-independent sampling probabilities could arise, for
example, in a two-stage sampling design or with respondent-driven
sampling. Knowing that an adjacent member of the population has been
sampled is informative for guessing whether I, too, will be sampled.

There are designs other than complex survey samples in which
sampling probabilities can be correlated, suggesting the design-based
perspective has wider relevance than may be at first assumed. For ex-
ample, a convenience or purposive sample that recruits through in-
stitutional settings may have unequal but unknown sampling prob-
abilities, in which case information about the target population from
other sources can help to characterize any divergence from what would
be expected in a census or simple random sample, designs in which all
observations in the underlying population are equally likely to get into
the analytic dataset.

In most real-world studies, even those with a random sampling plan,
study refusals and missing data create a mismatch between the char-
acteristics of those included in the analysis and those targeted for re-
cruitment. A study planned to include a simple random sample of the
target population may nonetheless find that refusals or missing data are
common within certain clusters. Weighting can be used to maximize the
correspondence of analytic results with what would be expected for the
entire target population (Lee & Forthofer, 2005). If an association varies
in strength across demographic groups, some of which were less likely
to be in the sample, those individuals who were unlikely to be in the
sample are assigned higher weights; the weighted result is shifted to-
ward the average for that group as compared to the unweighted result
(Chaix et al., 2011). Thus, from a design-based perspective, weights are
often used to better approximate a representative sample taken from a
specific finite population. Integration of survey weights with mixed
models and other approaches continues to be an active topic for
methods development (Carle, 2009; Rabe-Hesketh & Skrondal, 2006; Si,
Pillai, & Gelman, 2015).

2.2. What makes us question the assumption of independence?

Human health has individual-level causes, but these are not the only
opportunities to intervene if we seek to improve the health of

populations. The distributions of health within and between popula-
tions are shaped by factors that lie above the individual and influence
individuals’ actions and interactions within societies. Examples of these
factors include political factors, the economy and corporate practices,
local built environments, and the social structure. These macrosocial
factors create differential access to resources and opportunities and
influence the level and distribution of health and disease within and
between populations. Thus, as humans we are embedded in social
structures, creating organized complexity (Jacobs, 1961).

Despite the importance of various contexts for human lives, in many
studies this fades to the background and is not explicitly investigated or
accounted for in our statistical analyses. There are two common triggers
for discussion of whether we need to account for non-independence in
health studies, based on different considerations of when clustering
could represent a threat to study validity.

First, as emphasized under a model-based perspective, we may have
an awareness of (and possibly an interest in explaining) shared varia-
bility in the health outcome arising from how subjects are clustered
within a population. Research teams might characterize geographic
clusters through data linkage or through audits of the local environ-
ment (e.g., systematic observation of streets, parks, or stores). Often
such studies rely on the availability of the participant’s home address,
which researchers subsequently geocode. Administrative units such as
US census tracts are commonly used, in which case characteristics will
be identical for those living in the same census tract, and may be cor-
related for those living in adjacent census tracts (Diez Roux et al.,
1997). Likewise, linkage to institutional records may allow character-
ization of school environments, workplaces, clinical settings, and other
contexts. Characterizing contexts makes the possibility of residual
correlations within clusters more salient, as we realize that we have not
necessarily captured all relevant aspects of shared experience among
individuals in the same cluster.

Second, as emphasized under a design-based perspective, inference
about a finite population from a finite sample requires assuming the
sample represents the population, and accounting for any correlations
that may have been induced by the sampling strategy.The central limit
theorem implies that with a sufficiently large random sample, inferences
about the sample are likely to recapitulate inferences about the popu-
lation. However, researchers frequently enroll subjects in clusters to
gain efficiency. For example, in a two-stage sampling design, the target
population is partitioned into clusters, often based on geographic units
(e.g. census tracts) or institutional settings (e.g. high schools). Subject
recruitment then takes place within a subset of these clusters. A sche-
matic representation of this approach is shown in Fig. 2a, wherein grid
cells represent clusters and subjects are recruited from 10 of the 100
potential clusters. Cluster-based sampling has logistical advantages
during the process of data collection relative to a simple random
sample. However, the assumption that such clustered samples fully
represent the overall population is more tenuous.

These two triggers for the need to consider clustering have been
recognized and discussed extensively in prior literature. However, they
have typically been discussed separately. Whereas literature focused on
model-based inference has focused on estimating parameters from a
probability model which could have generated the data
(Snijders & Bosker, 2012d; Sterba, 2009), literature focused on sam-
pling has taken a design-based perspective, emphasizing inference to a
finite population (crucially considering how one should account for
sample selection). While the model-based perspective suggests ac-
counting for clustering in the structure of our model (e.g., through
cluster robust standard errors or random effects), the design-based
perspective often instead deploys weights or other strategies with the
goal of accounting for sampling probabilities (thus more closely
aligning estimates and standard errors with what we would expect to
see in the target population). Both strategies may be combined in a
hybrid framework, such that both perspectives are accommodated at
the cost of increased model complexity.
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Yet examining these two perspectives separately may provide in-
sight into alternative goals we could pursue with the same data, and
doing so highlights divergent implications when deciding which cluster
type to account for or whether clustering must be accounted for ana-
lytically at all.

2.3. Sampling within clusters matters for both perspectives

Whatever our perspective, sampling within clusters shapes our si-
tuation in three ways.

First, random sampling within clusters for statistical efficiency
(Scheaffer, Mendenhall III, & Ott, 1996) generally ensures that each
cluster will have multiple observations. Because people are clustered in
reality, sampling at random with respect to clusters typically results in a
lower and less balanced number of observations per cluster, as shown in
Figs. 2b and 2c. In the context of multi-level modeling, a balanced data
structure is one with the same number of observations in each cluster.
For example, a study that sampled a total of 100 adults within 10 se-
lected ZIP codes would have a mean of 10 observations per ZIP code. If
instead the study had sampled 100 adult residents at random from 100

Fig. 2. Schematic representation of observations within clusters differing in density and sampling strategy. Notes: Panel (a) shows a balanced sampling pattern with 10 dots
sampled by design within each of 10 randomly selected clusters, a situation often handled through the use of weights or so-called “fixed effects” (dummy indicator variables for all clusters
except for an omitted reference cluster). Panel (b) shows a sparse, unbalanced pattern of 100 dots arranged randomly across 100 clusters, resulting in few observations per cluster
(including some clusters with zero observations). Panel (c) shows an unbalanced pattern 1000 dots within 100 clusters.
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ZIP codes (or, to be even more extreme, across the nearly 42,000 pos-
sible ZIP codes in the US), we would have several ZIP codes with zero
observations, and many others would have only one participant in this
sparse sample. The density of observations within clusters does not
change how important attributes of clusters are for health in the un-
derlying population. However, multiple observations per cluster (a
minimum of 2) are necessary to disentangle the between group and
within group variance, and for this purpose a balanced design will be
desirable. Further, observations that are concentrated within fewer
clusters make the measurement of cluster-level predictor variables more
feasible via geographic information systems (GIS) (Vine,
Degnan, & Hanchette, 1997), ecometric measurement (Mooney, Bader,
et al., 2014; Mujahid, Diez Roux, Morenoff, & Raghunathan, 2007), or
institutional data linkage (Jutte, Roos, & Brownell, 2011). On the other
hand, inclusion of a larger, geographically dispersed sample of clusters
may enhance variation of characteristics under study, thus addressing
concerns about statistical power and multicollinearity that plague many
place-based investigations.

Second, sampling within clusters can exaggerate similarities within
clusters if differences in equipment, calibration, or data collection
personnel are present between clusters. For example, if fitness testing is
conducted within schools (Rundle et al., 2012), differences in the ways
that students are incentivized using grades or in the method of re-
cording results (e.g., by peers versus by teachers) may induce differ-
ential measurement error. This error could make the scores more si-
milar for students at the same school than would be expected based on
the similarity of their underlying fitness levels.

Third, sampling within clusters embeds some particular definition
of a cluster into our study design, despite the multiplicity of potential
factors on which clustering occurs and potential definitions of those
clusters. Humans are simultaneously clustered by residential neigh-
borhood, workplace or school, physician, friendship group, and any
number of other social and physical contexts with potential relevance
for their health. The design of randomized studies can also embed a
particular cluster definition into the design (Liao, Zhou, & Spiegelman,
2015; Raudenbush, 1997; Saville &Wood, 1991).

3. Selecting a cluster definition using different perspectives

In some studies of context and health, there is only one source of
clustering considered. Perhaps geographic units such as postal codes
were prominent in our sampling strategy and characterized through
linkage to spatial data. The research team would likely agree easily that
postal code “neighborhoods” should be used to account for clustering.

However, different perspectives can be revealed when there is more
than one defensible way to identify how individuals are clustered
(Fig. 1). For example, consider an investigation of childhood obesity in
relation to neighborhood characteristics conducted as part of a study in
which subjects were sampled through schools (Gordon-Larsen, Nelson,
Page, & Popkin, 2006). A design-based perspective would emphasize
the sampling strategy and any investigator-induced structure in the
sampling probabilities that would result. Inference about students in
the finite population of students attending the schools from which the
sample was drawn must account for sampling of students within
schools. A model-based perspective would instead emphasize ac-
counting for clustering that helps to approximate the probability model
generating the observed data, whether by school or by neighborhood or
both.

3.1. Socially connected individuals may share common factors

We have just noted that clustered sampling tends to make our
choice of a cluster identifier obvious: the primary sampling unit.
Indeed, if sampling was intended to characterize the population of
clusters, a two-level mixed effects model is appealing because of the
parallel between the data collection and analytic approaches. However,

investigators with a model-based perspective may be tempted to at least
consider other cluster definitions. The common practice of geocoding
home addresses (Rushton et al., 2006) and grouping the addresses
within neighborhoods, often defined using postal codes or other ad-
ministrative units (Riva, Gauvin, & Barnett, 2007), made such geo-
graphic units a popular option. Furthermore, some For geographic re-
search, some researchers have taken steps to combine administrative
units after review to create more meaningful groupings (Sampson,
Raudenbush, & Earls, 1997), but ultimately each observation is in one
and only one group. Even for spatial analyses where predictors have
been collected for personalized neighborhood boundaries (Lovasi,
Grady, & Rundle, 2012), accounting for clustering is often handled
through a return to reliance on administrative boundaries that can be
used to define random effects or to construct cluster robust standard
errors. Likewise, linkage to data on workplace, school, clinic, or other
health-relevant settings raises the salience of both modeled and residual
clustering of health outcomes within such settings, even if they were
not accounted for during sampling.

Such a search for potential clustering may be productive, and per-
haps should be pushed even further. Having found a defensible and
readily available cluster definition, we may benefit from further delving
into other sources of non-independence that are not so easily measured,
such as approaches that more continuously account for the distance
between observations spatially (Chaix, Merlo, Subramanian,
Lynch, & Chauvin, 2005; Rainham, McDowell, Krewski, & Sawada,
2010) or across social networks (Luke &Harris, 2007). Choosing the
most readily measured definition (such as postal code) might obscure
the more complex ways in which individual are socially interconnected.
While the design-based perspective might view this merely as a missed
opportunity for substantive investigation (and not required to appro-
priately account for investigator-induced clustering of sampling prob-
abilities), a model-based perspective would call into question whether a
model structure that ignores this source of non-independence is mis-
specified and thus suspect.

More generally, in our complex and socially integrated real world,
there is no guarantee that the within-group correlation observed in
sampled clusters in a cluster-based sample is stronger than correlation
within alternative geographic or organizational groups. The model-
based perspective suggests that adjusting analytically only for sample-
based clusters would be insufficient (due to misspecification of the
model), particularly if an alternate form of clustering empirically shows
stronger within-group residual correlation. By contrast, the design-
based perspective is concerned with clustering that the sample design
creates by deliberately oversampling within some units. It is concerned
with units that are literally not independently sampled. It seeks to re-
move this investigator-induced dependency. The approach acknowl-
edges that people may be alike because of membership in other geo-
graphic or social groups but that this is not investigator-induced. It
warrants study with whatever means best illuminates whether and why
people within groups are alike but it should not be equated with, or
confused as being the same as, non-independence that the investigator
creates.

A potential compromise position is to account for multiple types of
clustering, using tools such as cross-classified mixed models (Diez Roux,
2002). Cross-classified models are gaining increasing use in fields such
as education research (Rasbash, Leckie, Pillinger, & Jenkins, 2010) and
in population health research (Carroll-Scott et al., 2015; Dunn, Milliren,
Evans, Subramanian, & Richmond, 2015; Milliren, Richmond, Evans,
Dunn, & Johnson, 2017), but have additional potential for use. Yet the
potential ways that observations may be clustered can easily over-
extend what we can handle given sample size and implementation
challenges. If we adopt the design-based perspective, we may declare
that we have done enough by accounting for our sampling methods,
and that although further clustering may be of interest, it need not be
accounted for in analyses where non-independence is merely a nui-
sance. Indeed, some robustness to model misspecification, such as
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omitted interaction terms, is a key advantage of adopting a design-
based perspective (Lee & Forthofer, 2005) and a potential justification
for the efficiency “costs” inherent to many weighted analyses (Bollen,
Biemer, Karr, Tueller, & Berzofsky, 2016). (In contrast, from a model-
based perspective we would be more focused on the implications for
model efficiency and uncertainty, and on evaluating whether ac-
counting for clustering results in more appropriate standard errors and
95% confidence intervals.) Thus, a design-based perspective relieve us
from chasing additional ways to account for residual clustering in our
data.

Regardless, once clusters have been defined, the definition has im-
plications for how analyses proceed.

3.2. Implications of cluster definition for analysis of clustered data

There are several analytical techniques commonly used to analyze
clustered data, including mixed-effect models, generalized estimating
equations (GEE), and cluster robust standard errors (Cerin, 2011;
Hubbard et al., 2010; Subramanian &O’Malley, 2010). GEE is a popu-
lation-based approach based on a quasilikelihood function and provides
the marginal or “population averaged” estimate of the parameters,
whereas the mixed or “mixed-effect” model employs random effects to
capture variation between clusters and provides a conditional or
“cluster-specific” estimate of the parameters for individual-level pre-
dictors. An approachable overview and comparison of analytic choices
following cluster sampling has been presented for the context of built
environment and physical activity research (Cerin, 2011). For those
who would like more detailed guidance there are a number of excellent
texts (Gelman &Hill, 2007; Raudenbush & Bryk, 2002a;
Snijders & Bosker, 2012d). While in some cases a design-based ap-
proach using weights might only estimate simple statistics such as
means and ratios, a design adjusted variance estimator using Taylor
linearization can be employed to account for design-based features,
more of a hybrid (Graubard & Korn, 2002).

An investigator’s decision to employ one technique over another is
potentially a function of the research question. Of note, the choice of
cluster definition may be more consequential than the estimator choice
(Zorn, 2006), though additional examination of this question is needed.
For some questions in which variance partitioning (Brunton-Smith,
Sturgis, & Leckie, 2017; Dundas, Leyland, &Macintyre, 2014; Leckie,
French, Charlton, & Browne, 2014; Leckie & Goldstein, 2015; Merlo,
2014; Næss & Leyland, 2010) or cluster-level prediction (Brunton-Smith
et al., 2017; Cerda, Buka, & Rich-Edwards, 2008; Croon & van
Veldhoven, 2007; Steele, Clarke, Leckie, Allan, & Johnston, 2017) play
a key role, mixed models have clear advantages. Likewise questions that
pertain to variance partitioning across more than two levels (Browning,
Cagney, &Wen, 2003; Sarkar, Gallacher, &Webster, 2013) would point
toward the use of mixed models over GEE and cluster robust standard
errors. Often, however, the research focus is on estimating fixed effects
relevant to a hypothesized context-health association, and the conclu-
sions would likely be robust to the modeling approach (Cerin, 2011;
Stephen W. Raudenbush & Bryk, 2002b). For individual-level pre-
dictors, on the other hand, there is a key distinction between the con-
ditional estimates from mixed models and the marginal estimates from
GEE. While conditional estimates are expected to be farther from the
null than marginal estimates in logistic models or other generalized
forms used for categorical outcomes (Hosmer & Lemeshow, 2000;
Snijders & Bosker, 2012a), there is mathematical equivalence of mar-
ginal and conditional estimates for linear models of a continuous out-
come.

An alternative of using dummy indicator variables as “fixed effects”
comparing each of the clusters to an excluded reference cluster can also
be considered, and due to efficiency implications this is usually con-
sidered when the number of clusters is relatively low (Cerin, 2011; G. S.
Lovasi & Goldsmith, 2014).

Further, the selection of a cluster definition, which as discussed

above can be informed by a model-based or design-based perspective,
becomes even more important if one is reporting parameter estimates
that are conditional on cluster. Mathematically, this distinction is fairly
inconsequential when using linear models for continuous predictors,
but it becomes more important when working with logistic or other
generalized mixed models(Hosmer & Lemeshow, 2000; Mood, 2010;
Snijders & Bosker, 2012a, 2012d).

4. When is it necessary to account for clustering?

Most analysts would agree that we will gain nothing from efforts to
account for clustering in datasets that are extremely sparse with respect
to a given potential cluster definition (i.e., most clusters have only one
observation) (Clarke, 2008; Rasbash et al., 2010).

However, when multiple observations per cluster exist, the decision
becomes more complicated. Even when there are several observations
per cluster (Fig. 2c), a given outcome may not be strongly patterned by
cluster. Moreover, the decision is neither purely theoretical nor purely
empirical, but must balance both substantive and statistical con-
siderations (Snijders & Bosker, 2012d). Mixed models or GEE ap-
proaches may be attractive if such divergence is detected, particularly
because of their robustness to unbalanced designs with observations
missing at random conditional on cluster (Ghisletta & Spini, 2004).
However, from a design-based inference perspective (Lee & Forthofer,
2005), some emphasize that independent sampling probabilities justify
analytic approaches that do not explicitly account for potentially
health-relevant clustering in social contexts.

Analysts may empirically check if the outcome variable has an ICC
that is distinguishable from zero, as introduced briefly above. Even
those favoring a priori specification of how the model will account for
clustering, coauthor or reviewer suggestions may warrant an empiri-
cally-informed response. The ICC can be approximated even if the
outcome variable is dichotomous (Merlo et al., 2006; Ridout,
Demetrio, & Firth, 1999). While often ICC is evaluated for the outcome
variable, examining the ICC for model residuals is common as well, and
is arguably even more closely aligned with the question of whether
there is unexplained non-independence in our data. If the ICC for our
outcome is estimated as zero, there is no variation between groups
beyond what would be expected by chance. We may then have little to
gain by explicitly accounting for clustering. However, what ICC we
consider as substantially greater than zero is dependent on the research
context and the dataset; small but statistically significant ICCs may
easily result from the use of ‘Big Data’ (Mooney, Westreich, & El-Sayed,
2015). Point estimates and confidence intervals (Snijders & Bosker,
2012b) thus may be more informative than p-values alone, and re-
searchers may find comparisons to an r2 statistic helpful when inter-
preting the magnitude of an ICC. Both the ICC and r2 are describing a
portion of variance explained (by the cluster-level identifier or by
covariates in a regression model, respectively), and for both of these we
would expect to occasionally note values as low as 2% (ICC or r2 of
0.02) as statistically distinguishable from zero, and explaining 5% or
more of the outcome variance (an ICC or r2 ≥ 0.05) is considered
important (Subramanian &O’Malley, 2010) and occasionally much
higher ICCs are noted in health research (J Merlo, Wagner,
Ghith, & Leckie, 2016; Rodriguez & Goldman, 1995, 2001).

4.1. Is there any harm to accounting for clustering when it is not necessary?

Beyond standard recommendations to check model assumptions and
use best practices to account for our study design, should we routinely
scan for clustering within spatial units such as postal codes in health
studies? Such human health characteristics as we are likely to use as
outcomes typically cluster to a small extent within spatial units, though
often with an ICC below 0.10 (Subramanian &O’Malley, 2010). Non-
health outcomes such as housing abandonment, in contrast, may have a
neighborhood ICC above 0.50 (Morckel, 2015).
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There are several concerns that may be raised with regards to an
overly simplistic approach to clustering. First, if we account for clus-
tering within our most readily measured cluster definitions, we may
deflect attention from the other social measures that would offer va-
luable insights but which are more challenging to measure. We often
assume that the clusters themselves are independent, despite potential
adjacencies or other ties (Chaix et al., 2005). We also assume that we
are not ignoring important substructures within our clusters–though
this is less of a problem for robust standard error approaches
(Heagerty & Lumley, 2000; Lumley &Heagerty, 1999) which can ac-
count only for a single specified cluster definition, but allow arbitrary
correlations between observations within clusters. Thus, while we tend
to discuss a multi-level model as though it has dismissed any concerns
about non-independence, from a model-based perspective the decision
to use a multi-level model only modifies the approach to make dif-
ferent, and hopefully more plausible and innocuous, assumptions about
independence of our sampling probabilities and model residuals. A
limited selection of dependency structures, such as the autoregressive
form commonly used in longitudinal investigations, is available for
consideration (Hosmer & Lemeshow, 2000; Singer &Willett, 2003). It
should be emphasized that our greatest ambivalence about identifying
the appropriate approach to account for clustering comes from concerns
about unmeasured sources of variance. From a model-based perspective,
we worry that our residuals are not independent and identically dis-
tributed, as usually assumed, because of unmeasured causes. Yet our
hypotheses are more often about variables we have measured.

But concerns can also be raised due to the complexity of accounting
for clustering if doing so is unnecessary, and the complexity is parti-
cularly notable for cross-classified models. There is a tradeoff between
model complexity (without which we risk model misspecification) and
primary attention to the sampling strategy (which have efficiency costs,
but may relieve somewhat our dependence on the model specification)
(Lee & Forthofer, 2005). The easy availability of mixed models in
standard software means that they can be used casually by users who
may not be attentive to the subtleties of careful implementation. Sen-
sitivity analyses comparing results between simpler and more complex
approaches may be helpful in fostering transparency and an under-
standing of robustness of the results. Underappreciated complexity that
is already part of our logistic modeling (Mood, 2010) gets exaggerated
in the context of mixed effects modeling (Jones & Subramanian, 2013).
When our research question, perspective, and data structures point
toward the use of mixed models, their distinct advantages should be
embraced. However, perfunctory use of such models to defend against
non-independence concerns, especially when simpler approaches would
be adequate to address the research question, may open the door to user
error in interpretation or implementation. Nonetheless, there may be
untapped potential to use mixed models to address new question types,
particularly those focused on modeling variance (Brunton-Smith et al.,
2017; Leckie et al., 2014; Leckie & Goldstein, 2015) or on group-level
prediction (Lüdtke et al., 2008).

In response to complexity, training investigators to use a range of
modeling approaches well is appealing, allowing the choice of approach
to be shaped by considerations of what is most appropriate. However,
in a reality inhabited by investigators with varying levels of analytic
sophistication and understanding, guidance as to when a simpler ap-
proach can be viewed as sufficient is valuable. The design-based per-
spective seems more readily to endorse a simple approach as suffi-
cient,one which accounts for sampling probabilities, and then explores
as a substantive research problem whether and to what extent people
within theoretically relevant are more alike and why.

5. Conclusions

Some caution is clearly warranted to make sure we are appro-
priately accounting for clustering with awareness of our perspectives
and with attention to what is needed to address our research questions.
Table 1 summarizes some key contrasts between the model-based and
design-based perspectives. Whereas a model-based perspective em-
phasizes the probability model generating the data, a design-based
perspective emphasizes the need to account for how the data were
sampled. However, these perspectives only occasionally surface as a
clear difference of opinion about how to proceed. Indeed, given that
both our modeling strategies and our sampling are always imperfect
aspects of each perspective are often co-mingled in teaching and in
practice (Gelman &Hill, 2007; Snijders & Bosker, 2012d; Sterba, 2009).
However, since investigative and mentorship teams may span multiple
perspectives, attention to each is warranted, and may be particularly
important as we select a cluster definition.
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