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The gut microbiome is a complex microbial community that has a significant influence
on the host. Microbial interactions in the gut are mediated by dietary substrates,
especially complex polysaccharides. In this environment, breakdown products from
larger carbohydrates and short chain fatty acids are commonly shared among
gut microbes. Understanding the forces that guide microbiome development and
composition is important to determine its role in health and in the intervention of
the gut microbiome as a therapeutic tool. Recently, modeling approaches such
as genome-scale models and time-series analyses have been useful to predict
microbial interactions. In this study, a bottom-up approach was followed to develop
a mathematical model based on microbial growth equations that incorporate metabolic
sharing and inhibition. The model was developed using experimental in vitro data from
a system comprising four microorganisms of the infant gut microbiome (Bifidobacterium
longum subsp. infantis, Lactobacillus acidophilus, Escherichia coli, and Bacteroides
vulgatus), one substrate (fructooligosaccharides, FOS), and evaluating two metabolic
products (acetate and lactate). After parameter optimization, the model accurately
predicted bacterial abundance in co-cultures from mono-culture data. In addition, a
good correlation was observed between the experimental data with predicted FOS
consumption and acid production. B. infantis and L. acidophilus were dominant under
these conditions. Further model validation included cultures with the four-species in
a bioreactor using FOS. The model was able to predict the predominance of the
two aforementioned species, as well as depletion of acetate and lactate. Finally, the
model was tested for parameter identifiability and sensitivity. These results suggest that
variations in microbial abundance and activities in the infant gut were mainly explained
by metabolic interactions, and could be properly modeled using Monod kinetics with
metabolic interactions. The model could be scaled to include data from larger consortia,
or be applied to microbial communities where sharing metabolic resources is important
in shaping bacterial abundance. Moreover, the model could be useful in designing
microbial consortia with desired properties such as higher acid production.

Keywords: metabolic interaction, gut microbiome diet, prebiotics, mathematical modeling,
fructooligosaccharides (FOS)
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INTRODUCTION

The human colonic microbiome is a complex microbial
community that has a significant impact on host health.
This is a diverse community that reaches high cell densities
and includes four dominant phyla (Bacteroidetes, Firmicutes,
Actinobacteria and Proteobacteria) (Lozupone et al., 2012; Qin
et al., 2013). The gut microbiome coexists with the host and
deploys important functions that impact host metabolism and gut
physiology (Rajilić-Stojanović and de Vos, 2014). Even though
its composition is variable among people (Goodrich et al., 2014),
the functions these microorganisms performed are basically
conserved (Lozupone et al., 2012; Qin et al., 2013). In certain
cases, imbalances in the composition of the microbiome are a
contributing factor to the onset of inflammatory bowel diseases
as well as autoimmune and metabolic (Greenblum et al., 2012;
Sevelsted et al., 2015; Marchesi et al., 2016; Tamburini et al.,
2016; Cox et al., 2017). How the microbiome assembles in
the first months of life appears to be important later in life
(Tamburini et al., 2016). One important factor shaping the early
microbiome is the type of feeding (Qin et al., 2013; Rajilić-
Stojanović and de Vos, 2014). Human breast milk contains
large amounts of oligosaccharides (HMO), which are selectively
utilized by beneficial gut microbes. Bifidobacterium species such
as B. longum subsp. infantis display multiple adaptations to utilize
these substrates (Thomson et al., 2017). Lactobacilli are also
abundant in the infant gut microbiome (Bäckhed et al., 2015).
In contrast, formula-fed infants have a distinct microbiome
composition, not dominated by Bifidobacterium and with a
higher representation of members of Bacteroides (B. fragilis,
B. vulgatus) and Enterobacteria (Escherichia coli, Klebsiella spp.)
(Bäckhed et al., 2015). The activity of these microbes results in
high amounts of acetate and lactate in infant feces, resulting in an
acidic pH (Cinquin et al., 2004; Tamburini et al., 2016).

Microbial interactions are important for the assembly and
functioning of the gut microbiome. Dominant ecological
interactions found in the gut microbiome are competition
and cooperation (Faust and Raes, 2012). These interactions
broadly represent the sum of all physical, chemical and
microbiological activities that microorganisms exert upon others
(Roume et al., 2015; Vogt et al., 2015; Hecht et al., 2016; Rakoff-
Nahoum et al., 2016). Considering that diet is a major driver
guiding gut microbiome composition, microbial interactions
are influenced by dietary compounds (Cameron et al., 2014;
Medina et al., 2017; Tuncil et al., 2017). Cross-feeding of
fermentation breakdown products of the microbiome appears
to be common among gut species (Rogowski et al., 2015).
This has been shown for example in the utilization of mucin
and sialylated milk oligosaccharides between B. bifidum and
B. breve (Egan et al., 2014a,b), or during fructan consumption
between bifidobacteria and butyrate- producing bacteria (Moens
et al., 2016). Cross-feeding is also observed when metabolic end
products from one microorganism, such as amino acids or short
chain fatty acids (SCFA), are used by another microorganism
(Egan et al., 2014a; Moens et al., 2016). For example, lactate
and acetate are end products of lactic acid bacteria, which
could be utilized by butyrate-producing bacteria such as

Faecalibacterium prausnitzii and Eubacterium rectale (Louis and
Flint, 2017).

Modeling-based approaches have been recently developed
to study and predict the composition and interactions in
the gut microbiome (Magnúsdóttir et al., 2016). These
include ecological-statistic models, genome-scale metabolic
reconstructions (GSM) and ordinary differential equation
(ODE)-based kinetic models (Trosvik et al., 2010a; Kettle et al.,
2015). A Generalized Additive Model (GAM) (Hastie and
Tibshirani, 1990) consists of a statistic regression technique
that has been used in time-series analysis of ecological data
to characterize and estimate cross-feeding and competition
between microorganisms. GAMs do not need any assumption
about functional relationships in the group for its formulation.
However, they could be affected by overfitting when many
parameters are needed for matching the data (Wood, 2008;
Trosvik et al., 2010b). GAMs usually require a post cross-
validation process to curate the model (Ward, 2014). After
proper calibration and validation, these models provide accurate
predictions by interpolation (Trosvik et al., 2010b).

Lately, GSMs have been successfully applied to explore
microbial interactions among gut microbes (Magnúsdóttir et al.,
2016). They require an extensive database for reconstruction,
editing and gap-filling of full metabolic pathways (Thiele et al.,
2014). Several techniques based on orthology, topology and
stoichiometry of biological reactions facilitate the draft design
and curation process (Thiele and Palsson, 2010). Characteristic
features of the species to be reconstructed must be first
identified (Kanehisa, 2006). After curation and defining specific
environments and constraints, microbial interactions can be
obtained for a few species (Thiele et al., 2013).

Recently, a kinetic model constructed from experimental data
of gut microbes in a bioreactor was presented, aimed to model
the dynamic behavior of the gut microbiome (Kettle et al., 2015).
The analysis required a metabolic pathway input and a matrix
describing the compounds produced during the fermentation,
to generate an ODE system for simulation of microbiome
abundance (Walker et al., 2011). Here, microbiome complexity
was simplified assigning gut microbes to ten bacterial functional
groups (BFGs), based on metabolic properties such as similar
breakdown of complex substrates or similar SCFA production
or consumption patterns (Kettle et al., 2015). The model
showed a good fit with experimental data, which corresponded
to a continuous flow bioreactor inoculated with human fecal
microbiota.

In order to help understanding the forces dominating gut
microbiome structure and composition, here we developed and
assessed a mathematical model based on microbial growth
equations, taking into account metabolic interactions among
bacteria. We focused on the interactions of four gut microbes,
Bifidobacterium longum subsp. infantis, Lactobacillus acidophilus,
Bacteroides vulgatus and Escherichia coli, during their growth
in vitro using fructooligosaccharides (FOS) as substrate. FOS is a
well studied prebiotic with degree of polymerization of fructose
of 3–6 units (Roberfroid et al., 2010). Experimental data was
obtained from co-culture experiments, which were used later
to construct and calibrate the model, including the impact of
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metabolic inhibition or stimulation on bacterial growth. The
model was finally validated using additional experimental data
of the consortium of the four species on FOS using a biological
reactor.

MATERIALS AND METHODS

Microorganisms and Media
Microorganisms used in this study were obtained from the
UC Davis, Department of Viticulture and Enology Culture
Collection (L. acidophilus ATCC 4356, B. infantis ATCC 15697,
Escherichia coli K12), and the American Type Culture Collection
(Bacteroides vulgatus ATCC 8482; Manassas, VA, United States).
Bacteria were, respectively, cultured at 37◦C for 24 h in de
Man–Rogosa–Sharp (MRS), MRS supplemented with 0.05%
L-cysteine-HCl (Loba Chemie, India), LB broth, or Reinforced
Clostridium Medium (Becton-Dickinson) supplemented
with 1 g/L L-cysteine. All bacteria excepting E. coli were
routinely grown under anaerobic conditions in an anaerobic jar
(Anaerocult, Merck, Germany) with anaerobic packs (Gaspak
EM, Becton Dickinson). All media were pre-reduced in an
anaerobic jar overnight before inoculation, and prior to each
assay bacteria were sub-cultured twice.

Co-culture Batch Experiments
Combinations of L. acidophilus (La), E. coli (Ec), B. vulgatus (Bv)
and B. infantis (Bi) were prepared in co-culture experiments.
Culture media used was a modified version of previously
described ZMB (Zhang et al., 2009), which was supplemented
with hemin (0.01 g/L, Sigma–Aldrich, St. Louis, MO,
United States) and L-cysteine-HCl (0.5 g/L, Sigma–Aldrich,
St. Louis, MO, United States). Single amino acid groups in ZMB
were replaced by Bacto-Tryptone (at 28 g/L). Carbon sources
used were either lactose (10 g/L; Lyngby, Denmark) or FOS
(10 g/L; Raftilose Synergy 1, Orafti, Malvern, PA, United States)
as carbon source. Single cultures of B. infantis (Bi), B. vulgatus
(Bv), E. coli (Ec) and L. acidophilus (La); and co-cultures BiBv,
BiEc, BiLa, BvEc, BvLa and EcLa were prepared. An experiment
with all bacteria (All) and a negative control with no bacteria
were included. Fresh overnight cultures of each microorganism
were washed in sterile mZMB, and 1 mL of each overnight
culture was used to inoculate 10 mL of mZMB containing FOS.
This experiment was performed in duplicate. Volumes of 200 µL
of inoculated mZMB were placed in 96 well sterile microplates,
covered with 30 µL of sterile mineral oil, and incubated in
anaerobic jars at 37◦C for either 24, 48, or 72 h. In parallel,
growth was monitored every 12 h in a microplate reader (Tecan
Infinite M200 PRO, Switzerland). Samples were recovered from
each microplate and centrifuged at 12000 × g for 2 min. Pellets
and supernatants were stored at−20◦C until use.

Quantification of Bacterial Abundance by
qPCR
Total DNA from each sample was purified using the UltraClean R©

Microbial DNA Isolation Kit (Mo Bio Laboratories, Carlsbad,

CA, United States), following manufacturer instructions and
using a Disruptor Genie (Scientific Industries, Inc., Bohemia,
NY, United States). Extracted DNA was quantified using
a NanoQuant Plate in the Tecan Infinite M200 PRO plate
reader, and diluted to 1 ng/µL to be used in qPCR reactions.
For qPCR we used 0.2 µM of the following primers: for Bv,
Bacteroidetes primer F (5′-GGTGTCGGCTTAAGTGCCAT-3′)
and Bacteroidetes primer R (5′-CGGACGTAAGGGCCG
TGC-3′); for Bi, Blon_0883F (5′-AGTTCGGCTCCAAAGAC
CTG-3′) and Blon_0883R (5′-CATGCCTCGATACGGTCGAA),
targeting an ABC solute binding protein; for Ec, Eco1457F
(5′-CATTGACGTTACCCGCAGAAGAAG) and Eco1652R
(5′-CTCTACGAGACTCAAGCTTGC-3′) (Kassinen et al., 2004);
and for La, LACTO_F (5′-TGGAAACAGRTGCTAATACCG-
3′) and LACTO_R (5′-GTCCATTGTGGAAGATTCCC-3′)
(Bartosch et al., 2004). qPCR reactions were performed using
the qPCR PowerUp SYBR Green Master Mix in MicroAmp Fast
Optical plates (Applied Biosystems, United States), and using
a StepOnePlus Real-Time PCR System (Applied Biosystems,
United States). Reactions were carried out for 2 min at 50◦C,
2 min at 95◦C and 40 cycles of 3 s at 95◦C and 30 s at 62◦C.
Absolute quantification was performed including a standard
curve using DNA from a pure culture of each species, with
dilutions starting from 1 ng/µL to 0.1 pg/µL. To convert
bacterial DNA concentrations into cell genome numbers, the
following equation was used (equation 1).

Cell copies/mL =

Avogadro N◦ (1/mol) · DNA quantity (g/mL) ·

Genome 16S copy number

Genome size (pb) · 660(
g

mol )

Batch Bioreactor Culturing
Four independent batch co-culture experiments were performed
in a 250 mL bioreactor (Mini-bio Applikon Biotechnology,
Netherlands), using mZMB as culture media supplemented with
FOS at 1%. In these experiments, the four microorganisms (Bi-
La-Ec-Bv) were inoculated at an initial OD630 of 0.05. The
bioreactor has two six-bladed Rushton turbines and operated
at 100 rpm. The temperature was set at 37◦C and the pH was
maintained at 5.5 with automatic injection of 3N HCl and 3N
NaOH. The dissolved oxygen concentration was set at 1 ppm
by purging N2 (99.99% grade) before inoculation and during
the lag phase. The foam level was controlled adding 100 µL
antifoam in the inoculum (Polydimethylsiloxane base, Winkler,
Chile). Two milliliter from the bioreactor were obtained every 2 h
and centrifuged at 4000 × g for 5 min. Supernatants were stored
at−20◦C for carbohydrate and SCFA quantification. Pellets were
stored for DNA extraction, quantified and diluted to 10 ng/µL
for qPCR assays as described above in an AriaMx Realtime PCR
System (Agilent Technologies, Santa Clara, CA, United States).

Sample Analysis
Total carbohydrate quantification was performed using the
phenol-sulfuric acid method (Tuomivaara et al., 2015). Acetate
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and lactate were quantified by HPLC using an Aminex HPX-
87H ion exchange carbohydrate-organic acid column (Bio-Rad,
United States) at 35◦C with a flow rate of 0.450 mL/min (H2SO4
5 mM, mobile phase) on a LaChrom L-700 HPLC system
(Hitachi, Japan), equipped with a Diode Array and a Refractive
Index detectors as described previously (Mendoza et al., 2017).

Model Development
The equations used in the model are described in the Model
development section in Supplementary Material. The model,
the parameter identifiability and sensitivity analysis codes are
also presented in Supplementary Material. As input for the
determination of the parameters, mono-culture and paired
co-culture abundance data are required, in addition to an
estimation of acetate and lactate produced and carbohydrate
consumed under these conditions. To simplify the analysis, some
assumptions were taken into account: (a) an inhibition term was
added to Monod kinetics (Model development, Supplementary
Material); (b) a microorganism will prefer the consumption
of the main carbon sources (glucose, lactose), over other
intermediates produced during the fermentation; (c) the ability
of a microorganism to produce or consume an intermediate was
determined from its metabolic pathway and the literature, and
later confirmed experimentally in mono-cultures.

RESULTS

Model Description
In this work a kinetic black-box model was developed, aimed
to predict the abundance of a bacterial population, substrate
consumption and SCFA production, based on mono and co-
culture data (Figure 1). The model is based on microbial
growth equations, but it also considers the metabolic influence
of one microorganism on another. This could be considered as a
feedback control mechanism (Figure 1).

Parameter Settings in Mono-culture
For single microorganisms, the general model consisted of 5
ODEs (Equations 2, 4, 5, and 6 in Supplementary Material),
17 parameters and constitutive Monod-like inhibition equations
(Sacher et al., 2011). Mono-culture parameters (Table 1) were set
as described in the Parameter fitting section in the Supplementary
Material. 96 well-plates mono-cultures of Bi, Bv, Ec and La
were prepared, in a semi-synthetic media (mZMB) and using
FOS as the sole carbon source. Bacterial abundance, FOS
consumption and acetate and lactate produced were measured
to fit model parameters. An average of eight parameters were
set for each bacterium (Table 1), which were found by the
optimization task. The calculated error in the assay is shown
in Supplementary Table S1. For any microorganism and under
all conditions, parameter Ks (half-velocity constant) appeared
insensitive.

Paired Co-culture and Parameter Fitting
The model was later expanded to include the metabolic
interaction between two microorganisms. This model consists

FIGURE 1 | Model general representation. Initial substrate and product
concentrations and lag phase are used as input (black bars). Microbial growth,
consumption, and acid production are considered to interact with other
bacteria. Final outputs are observed substrate, acids, and biomass.

of 7 ODEs, 17 parameters per bacteria and two interaction
parameters per co-culture. Every parameter not calibrated in
mono-culture was set in this step. In order to fit the co-culture
parameters, all paired combinations of microorganisms were
cultured in FOS and analyzed as described above. Figure 2A
shows the percentage of change in abundance for all six paired
combinations, determined experimentally. As a comparison,
Figure 2B shows these percentage changes according to the
fitted models. Most of the times, the model was able to
predict well the changes in abundance in all co-cultures.
Experimentally, initial Ec cell numbers were higher than the
other microorganisms. However, during growth Bi and La
recovered in part their levels compared to Ec (Figures 2A,B).
Co-culture data allowed the prediction of Bv predominance over
La and Bi during growth on FOS, which was also observed
experimentally.

Figures 3A,B compares the experimental consumption of
FOS by the co-cultures with the values simulated with the
fitted model. Most experimental and simulated combinations
showed total carbohydrate depletion between 24 and 48 h. In
general the model indicated a faster consumption compared
to experimental data. One important exception was the BvLa
paired co-culture, in which not all of the carbohydrate was
consumed. This behavior was not captured by the model, which
assumed that since both bacteria reached 100% consumption
in single culture, the same rule should apply to their
combination.

Figure 4A shows the concentration of acetate produced over
time. In certain cases the model predicted the experimental
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TABLE 1 | Parameters found via scatter search in mono-culture and then used in co-culture optimization.

Parameter description Unit B. infantis B. vulgatus E. coli L. acidophilus

Kd h−1 0.0139 0.0045∗ 0.0001∗ 0.0461

Ks g 0.0412∗ 0.0203∗ 0.0190∗ 0.0027∗

µmax h−1 0.3344 0.3574 0.5063 0.4282

Yxs
gbiomass

gsubstrates
0.4268∗ 0.0054 0.8812 0.1561

Ia g 29.9727 3.8514 3.4468 0.1723

Il g 14.8256 48.8576∗ 8.4569 17.4298

Ms
gsubstrates
gbiomass

∗h−1 0.0003 0.0001 0.0055 0.0001

Yax
gbiomass
gacetate

2.0165 5.1489∗ 4.8884 1∗

Y lx
gbiomass
glactate

10.2774 10.5967 1∗ 1.5487∗

Ksa g 0.0874∗ 0.0231 8.6831 1∗

Ksl g 0.0615 6.2647 0∗ 0.3547

βmaxA h−1 0.4687 0.1322 0.284525∗ 0∗

βmaxL h−1 0.1497 0.0006∗ 0∗ 0.0011∗

µmaxA h−1 0∗ 0∗ 0.1139 0∗

µmaxL h−1 0∗ 0.0242 0∗ 0.0074∗

YxA
gbiomass
gacetate

1∗ 1∗ 0.3076 1∗

YxL
gbiomass
glactate

1∗ 0.0247 1∗ 1∗

Set parameters are indicated by (∗).

FIGURE 2 | Changes in bacterial population during growth on FOS, expressed as percentage of the co-culture in time. (A) experimental data of co-cultures; (B)
model estimation of abundance in co-cultures; (C) abundance of the four-species co-culture in microplates, experimental (Left) and estimated by the model (Right);
(D) abundance in the four-species co-culture in the bioreactor during growth on FOS, experimental (Left) and estimated by the model (Right).

behavior of acetate production. Bi combinations displayed larger
acetate amounts compared to other co-cultures, and in certain
cases the model predicted higher values than what was observed.
Interestingly, the model predicted that acetate production in
co-culture BiEc will have a peak and later decrease. This was
also observed experimentally, but at a different time and different
intensity (Figure 4A). These results indicate that Bi growth is an
important parameter for sensitivity assays.

Figure 5A displays the concentration of lactate in co-cultures.
A good agreement between observed and predicted data was
obtained in co-cultures BiLa, BiEc and LaEc. Combinations
BiBv and BvLa were predicted to produce lactate because of

Bi and La activities; however, lactate amounts were negligible
and not reproduced well by the model. In addition, BvEc
co-culture showed production of lactate, but the model
assumptions and structure did not consider this situation.
The error calculated (equation 10 in Supplementary Material)
for the parameter fitting process is shown in Supplementary
Table S1.

The parameters determined in paired co-cultures are shown
in Table 1. The interaction parameters in Table 2 indicate
the influence of one microorganism on another’s growth rate.
A negative value indicates that one microorganism favors
another’s growth, while a positive term indicates inhibition.
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FIGURE 3 | Heat map representing FOS concentration in co-cultures and its prediction by the model. (A) FOS concentration in paired co-cultures. (B) Model
estimation of FOS concentration in paired co-cultures; (C) experimental and predicted FOS concentration in the four-species co-culture in microplates; (D)
experimental and predicted FOS concentration in the four-species co-culture in the bioreactor.

FIGURE 4 | Acetate production and estimation by the model. (A) Experimental data in paired co-cultures, compared to values predicted by the model; (B)
experimental and predicted acetate values of the consortium in microplate assay; (C) experimental and predicted acetate values of the consortium in the bioreactor.

Values near 0 suggest a greater interaction effect, while values
near the limit indicate there is no effect on the other bacteria.
A strong inhibition was found from Ec to Bv, and in general the
effects observed were positive or neutral.

Model Validation Using Bacterial
Consortia
Finally, the model was validated using independent experimental
data from co-culture of the four microorganisms using FOS as the
sole carbon source. The experiment was set in microplates and
analyzed as discussed above. To test the validity of the model in
another set-up, the consortium was additionally cultured on FOS

in a 250 mL pH/oxygen controlled stirred bioreactor. This batch
system offers a much more controlled and reproducible anaerobic
environment, which also provides much faster growth compared
to microplates.

Figure 2C shows percentage abundance data obtained for
each member of the consortium in microplate assays. The initial
levels of Bv were much lower compared to the other three
microorganisms. Interestingly, the amounts of La, Ec and Bi
in the well-plates cultures were closely predicted by the model.
Under these conditions, Bi dominated the co-culture using FOS,
followed by La. A good prediction was also observed for the total
carbohydrate concentration in spent media (Figure 3C). Finally,
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FIGURE 5 | Lactate production and estimation by the model. (A) Experimental data in paired co-cultures, compared to values predicted by the model; (B)
experimental and predicted lactate values of the consortium in microplate assay; (C) experimental and predicted lactate values of the consortium in the bioreactor.

TABLE 2 | Interaction parameters (efji in equation 8, Supplementary Material)
found in co-cultures by the model.

B. infantis B. vulgatus E. coli L. acidophilus

B. infantis – 99.99 16.33 45.05

B. vulgatus −40.52 – 0.16 1.99

E. coli −37.56 −57.14 – −26.61

L. acidophilus −70.23 −32.74 −99.99 –

Negative values indicate growth stimulation, and positive indicates a negative effect
on growth. Values near 0 indicate a stronger effect.

the amounts of acetate and lactate appeared overestimated by the
model (Figures 4B, 5B).

As expected, growth of the consortium in the bioreactor
resolved in a shorter time compared to the assays above
(Figure 2D). Therefore, time was linearly adjusted for
comparison and integration in the model. As in microplates, we
observed a predominance of Bi and La. This observation was
sustained during the course of the fermentation. Interestingly, the
model was also able to predict this predominance (Figure 2D).
In addition, both the model and data showed a full consumption
of FOS at 12 h (Figure 3D). Finally, a good agreement of
acetate and lactate amounts between the experimental evidence
and the model was obtained (Figures 4C, 5C). Since La was
a good competitor during growth on FOS in the bioreactor,
lactate concentrations appeared higher compared to previous
experiments (Figures 5A–C). The parameters that define the
production of lactate and acetate in Bi appear to be important
in the four-bacterium co-culture, considering the predominance
of Bi.

Finally, we performed a simple additional simulation to test
the prediction capabilities of the model where a bacteriostatic
agent is used against each member of the consortium (Figure 6).
In every co-culture where Bi was able to grow, it predominated

over the others (Figures 6B–D). On the other hand, if Bi was
inhibited, Ec predominated in the co-culture (Figure 6A).

Parameter Identifiability Analysis
Parameter identifiability was used to find correlations between
parameters (Parameter identifiability in Supplementary
Material). This analysis is important for further reducing the
number of fitted parameters by setting one of them and defining
the other as a function. Inspection of the parameter covariance
matrix is one way to find which parameters allow the model to be
identifiable. As shown in Figure 7, highlighted cells display a high
correlation (positive or negative). Usually parameters inside a
cluster have a high correlation. In this case, this could be observed
for all parameters from the same microorganism. For example,
production of acetate and lactate in Bi are directly correlated,
while some correlations between microorganisms were found.
La’s parameters (Ysx – biomass yield, µmax – Maximum growth
rate, Ia – Acetate inhibition constant, Il – Lactate inhibition
constant) are inversely correlated to Ec bacterial parameters
such as growth and inhibition constants. This suggests that the
higher the La growth, the lower the E. coli biomass yield and
higher inhibition. Several parameters associated to Bv growth
were mostly directly correlated to Ec growth, indicating a more
neutral or cooperative interaction.

Parameter Sensitivity Analysis
This analysis allows the determination of the influence of every
parameter in each differential equation of the model. As shown in
Figure 8, the effects of the parameters initially set are important
in every ODE, due to the fact that Bi appears as the dominant
microorganism in the consortium (Figures 2C,D). Specifically,
the second parameter of the model (Bi’s µmax) has the highest
influence on every other microorganism and their metabolic
equations. Parameters K3 and K4 (Bi’s inhibition constants of
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FIGURE 6 | Simulation of the effect of a bacteriostatic agents on the consortium. These agents are simulated to be directed and inhibit the growth of each member
of the consortium. (A) Bifidobacterium infantis is unable to grow; (B) Bacteroides vulgatus is unable to grow; (C) Escherichia coli is unable to grow; (D) Lactobacillus
acidophilus is unable to grow.

FIGURE 7 | Parameter model identifiability. Correlation values between each parameter in the model was calculated (for each microorganism including interaction).
Only >|0.95| values are highlighted; red values are inversely correlated, while blue values are directly correlated. Parameters on both axes are indicated in Table 1.

acetate and lactate) also display a large influence on other
microorganisms. In order to analyze the effects of the sensitive
parameters found in the previous assay, Figure 9 shows the
average and standard deviation after 5000 iterations of randomly
changing a parameter by 5% in its amount. The strongest effect of
changing the value of Bi’s µmax is on Ec cell numbers (Figure 9A),
variable that can vary around 4% the value. On the other
hand, a change in a parameter could also imply an advance or
delay in the kinetics. Figure 9B shows the change in the FOS
consumption kinetics due to effects of higher or lower values of
Bi’s lactate inhibition constant. Here we observed that changing
the parameter only altered the dynamics of the ODE. Finally,

Figure 9C shows the last case found in the sensitivity analysis,
a parameter that is not sensitive to any differential equation. For
example, measured Bv was not affected even after changing 50%
parameter 25 (Ec substrate yield Ysx).

DISCUSSION

The gut microbiome is a complex microbial community that
modulates several host responses. This connection to host health
makes it important to understand what forces guide microbiome
composition and cause it to drift to an altered or dysbiotic
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FIGURE 8 | Model parameter average sensitivity. Sensitivity (Y-axis) of each parameter (X-axis) for every ODE is shown. xi represents every ODE described in the
model (x1 = dS/dt, x2 = dA/dt, x3 = dL/dt, x4 = dX1/dt, x5 = dX1m/dt, x6 = dX2/dt, x7 = dX2m/dt, x8 = dX3/dt, x9 = dX3m/dt, x10 =

dX4/dt, x11 = dX4m/dt), where S: substrate; A: acetate; L: lactate. X: live biomass; Xm: total biomass. Parameters are in the same order in Figure 6.

microbiome (Cox et al., 2017). The interest in determining and
predicting key factors in the establishment and maintenance of
the gut microbiome is the major goal of several works (Trosvik
et al., 2010a; Greenblum et al., 2012; Kettle et al., 2015; Shashkova
et al., 2016).

Diet is a major modulator of the composition of the gut
microbiome, and the nature of these substrates probably dictates
which species predominate. In this study we evaluated if a
mathematical model capturing metabolic interactions is able
to recapitulate the composition and functions of a consortium
of species of the gut microbiome. For this, we chose four
representative bacteria of the infant gut microbiome, and using
experimental data from mono and co-culture, a model was
developed, calibrated and validated. Using a bioreactor, the
developed model was assessed in a more controlled environment.

The system was studied during growth on FOS, a major
prebiotic present in infant formula (Roberfroid et al., 2010).
All members of the consortium display the ability to use this
substrate (Roberfroid et al., 2010), including E. coli which could
use small amounts of mono or disaccharides found in FOS.
Moreover, different molecular mechanisms for FOS consumption
have been described (Barrangou et al., 2003). In general the
predictions by the model followed the in vitro behavior of the
consortium, either in paired co-cultures, and growing the four-
species consortium either in microplates or in a more controlled
environment such as a biological reactor. This indicates that the
model is able to predict changes in the bacterial abundance using
only co-culture data for calibration.

It is very possible that interactions and parameters determined
in this study are dependent on which prebiotic is used. FOS

are commonly added to infant formula, but in combination
with galactooligosaccharides (GOS), another important prebiotic
(Garrido et al., 2013). Breast milk contains large concentrations of
HMO, which are also a large catalog of oligosaccharides derived
from lactose (Thomson et al., 2017). Moreover, the gut epithelium
is covered with a mucin layer, containing oligosaccharides that
could be used as carbon source by infant gut bacteria (Tailford
et al., 2015). In a more realistic situation probably all these
carbohydrates contribute to shape microbial interactions in
different ways, since their chemical structure selects for specific
microbial strains endowed with the cognate molecular machinery
for utilization. However, if metabolic interactions are key in
shaping microbiome composition, we could hypothesize that a
mathematical model including these interactions could predict
microbiome composition when other substrates are used.

We observed a good fit between experimental data and
modeling results. This suggests that inhibitions observed in
certain cases could be due to acetate and lactate production,
variables that were quantified and included in the mathematical
model. Both the reactor and the microplates had an initial pH
of 5.5, however, pH was not regulated in the latter system.
Considering this, similar results in both systems could also
indicate that results obtained are independent of the pH.

A general good agreement was also observed for acid
production and carbohydrate consumption. For Bi in mono-
cultures and co-cultures where it predominates, the amounts
of acetate and lactate produced are near a 3:2 ratio (Garrido
et al., 2013). This was also observed during the growth of the
consortium in the bioreactor. Acetate production by Ec was
overestimated by the model (0.21 g of acetate per 1 g of FOS
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FIGURE 9 | Variation of the ODEs values (g/L) over time due a 5% change in
the parameters in 5000 iterations. (A) worst case scenario, with parameter 2
(Bi’s µmax) affecting measured Ec ODE; (B) a change in kinetics scenario, with
parameter 4 (Bi’s lactate inhibition constant), affecting FOS consumption; (C)
a non-sensitive parameter (measured Bv ODE), for example to Ec substrate
yield.

consumed). In general Ec was thought to benefit from other
microorganism activities in that it uses mono or disaccharides
released to the media (Table 2) (Ravcheev et al., 2013; Vuoristo
et al., 2015). Another possibility might be protein fermentation by
Ec (Lulit and Strohl, 1990). Lactate production of La determined
by the model was around 0.63 g per 1 g of substrate, a similar yield
in lactose reported (Fu and Mathews, 1999).

In some co-cultures, the concentration of either acetate or
lactate was overestimated. This was evident in Bi co-cultures
whenever it predominated. Parameters of the model could be
much better estimated in experiments with improved resolution
and more frequent measurements. Since the model in co-cultures
defines the intervals where the parameters are most sensitive,
it is possible that an increase in the number of samples would
reduce the variation of underestimated parameters. The time
points where the substrate is being fully consumed are critical,
and microorganisms could find another substrate for growth (for
secondary fermenters) or entering to a stationary phase. Also, for
Bacteroides and Escherichia cultures, the microbial concentration
could be overestimated by some intrinsic pathways of these
genera (Neis et al., 2015; Vuoristo et al., 2015).

Moreover, while acetate and lactate are major metabolic
products in this system, a more complete picture could be
obtained if the model included other metabolites. Adding more
equations of utilization and inhibition by metabolites such
as ethanol, propionate, butyrate and amino acids could be
important. Amino acid cross-feeding between Bacteroides and
Lactobacillus supports bacterial growth in vitro and in silico
(Magnúsdóttir et al., 2016).

The analysis of bacteriostatic agent effects on the culture
suggested that Bi should be predominant if other bacteria are
inhibited. However, when Bi is inhibited, La or Bv should
grow more than Ec, because of their glycolytic properties
(Ravcheev et al., 2013). This is a limitation of the model,
probably due to missing functions that describe the breakdown
of complex carbohydrates by Bv, or the protein fermentation
as a carbon source of bacteria. In addition, further work could
corroborate these hypotheses by adding the respective antibiotic
and measuring the same variables used in this work.

A possible application of this initial ODE-based model is that
it could be used to predict microbial composition in the gut
based on diet, at least in simpler microbiome communities. This
work indicates that it is possible to have a good approach to this
goal if metabolic interactions are included. Moreover, bacterial
composition of a microbiome could eventually be optimized,
for example to increase production of acetate and lactate. These
two acids are important modulators of health outcomes in the
gut. For example acetate has been shown to prevent pathogen
colonization (Fukuda et al., 2011), and lactate in the adult gut
microbiome is used by butyrate-producing bacteria (Moens et al.,
2016), a health-promoting SCFA (Louis and Flint, 2017).

Finally, this model could be useful to study interactions using a
more complex set of species of gut microbiome species. In general
these results could be important to predict the composition
of microbial communities where metabolic interactions are
relevant. Considering the flexibility of incorporating product
equations and growth inhibitions to the model, this model
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could be used to find microbial consortia with desired metabolic
properties such as maximized acid production.
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