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The three types of blood cells (red blood cells for carrying oxygen, white blood cells

for immune protection, and platelets for wound clotting) arise from hematopoietic

stem/progenitor cells in the adult bone marrow, and function in physiological regulation

and communication with local microenvironments to maintain systemic homeostasis.

Hematological malignancies are relatively uncommon malignant disorders derived from

the two major blood cell lineages: myeloid (leukemia) and lymphoid (lymphoma).

Malignant clones lose their regulatory mechanisms, resulting in production of a large

number of dysfunctional cells and destruction of normal hematopoiesis. Glycans

are one of the four major types of essential biological macromolecules, along with

nucleic acids, proteins, and lipids. Major glycan subgroups are N-glycans, O-glycans,

glycosaminoglycans, and glycosphingolipids. Aberrant expression of glycan structures,

resulting from dysregulation of glycan-related genes, is associated with cancer

development and progression in terms of cell signaling and communication,

tumor cell dissociation and invasion, cell-matrix interactions, tumor angiogenesis,

immune modulation, and metastasis formation. Aberrant glycan expression occurs in

most hematological malignancies, notably acute myeloid leukemia, myeloproliferative

neoplasms, and multiple myeloma, etc. Here, we review recent research advances

regarding aberrant glycans, their related genes, and their roles in hematological

malignancies. Our improved understanding of the mechanisms that underlie aberrant

patterns of glycosylation will lead to development of novel, more effective therapeutic

approaches targeted to hematological malignancies.

Keywords: glycan, hematological malignancies, N-glycosylation, O-glycosylation, glycosaminoglycan,

glycosphingolipid, lectin

INTRODUCTION

Hematological malignancies include numerous forms of acute and chronic lymphoproliferative
and myeloproliferative diseases, derived respectively from the two major blood cell lineages:
lymphoid and myeloid cells. Notably, lymphoma, lymphocytic leukemia, and myeloma are of
lymphoid origin, whereas acute myeloid leukemia (AML), myeloproliferative neoplasm (MPN),
and myelodysplastic syndrome (MDS) are of myeloid origin. A crucial factor in development
of hematological malignancies is the dynamic interaction between transformed cells and the
bone marrow and lymphoid tissue microenvironments. There is increasing evidence that
microenvironmental changes produced by neoplastic cells progressively favor survival of these cells
and determine the clinical course of disease.

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2018.00364
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2018.00364&domain=pdf&date_stamp=2018-09-06
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:guanfeng@nwu.edu.cn
mailto:xiangli@nwu.edu.cn
https://doi.org/10.3389/fonc.2018.00364
https://www.frontiersin.org/articles/10.3389/fonc.2018.00364/full
http://loop.frontiersin.org/people/415073/overview
http://loop.frontiersin.org/people/415089/overview


Pang et al. Multiple Roles of Glycans in Hematological Malignancies

Glycans (polysaccharides), one of the four basic components
of plant and animal cells, are the most abundant and diverse
type of naturally occurring biopolymer. In addition to their
well-known roles as energy sources and structural components,
glycans often function as signaling effectors and cell recognition
markers, typically attached to cellular proteins and lipids.
Such attachment, termed glycosylation, includes N-glycosylation,
O-glycosylation, glycosaminoglycans, glycosphingolipids, and
glycosylphosphatidylinositol (GPI)-linked proteins, according to
the conserved core structure (Figure 1). Glycans are constructed
in an ordered, sequential manner that depends on distinct
substrate specificities of glycosyltransferase and glycosidase
enzymes. Glycosyltransferases synthesize glycan chains, whereas
glycosidases hydrolyze specific glycan linkages. Glycans bind to
lectins (specific carbohydrate-binding proteins) and sterically
modulate molecular interactions in cells, thereby helping to
control a variety of physiological mechanisms involved in health
maintenance or disease development.

Aberrant glycan properties, such as hypersialylation and
hyperfucosylation, are often associated with interaction of
neoplastic cells with the microenvironment (1, 2). Two
principal mechanisms that underlie aberrant glycan expression
in hematological malignancies are incomplete synthesis and
neosynthesis (3), which result mainly from altered transcription
of glycosyltransferase and/or glycosidase genes.

Numerous types of glycoconjugates may potentially interfere
with neoplastic cell processes or with the microenvironment,
leading to malignant progression. We review here recent
advances in our knowledge of aberrant glycans, and their related
genes, involved in hematological malignancies. Increasingly
detailed characterization of the biological functions of glycans
and glycan-binding proteins (particularly galectins, selectins,
and calreticulin) is progressively clarifying the physiology of
hematological malignancies.

N-GLYCOSYLATION

N-glycans are linked to asparagine (Asn) residues of proteins,
specifically a subset residing in the Asn-X-Ser/Thr motif
and having a common, conserved five-sugar core structure.
Variation in N-glycosylation of proteins, including the well-
studied glycoprotein immunoglobulin G (IgG), has physiological
significance in hematological malignancies. Mizuochi et al.
(4) first reported truncation of N-glycan chain of IgG in
a study of myeloma proteins, and many subsequent studies
demonstrated effects of N-glycosylation patterns of IgGs on
their biological functions. Galactose (Gal) residues are absent
from total serum IgG of rheumatoid arthritis patients (5),
and this altered glycosylation state activates complement via
mannose-binding protein (6). Sialylation of Fc fragment core
polysaccharide of IgG enhances its anti-inflammatory properties
via distinct Fcγ receptors (7). Addition of fucose (Fuc) to
the glycan core interferes with binding of IgG to FcγRIIIA
(CD16a), and greatly reduces its capacity for antibody dependent
cell-mediated cytotoxicity (ADCC) (8). Lauc et al. (9) used
mass spectrometry in combination with genome sequencing

to quantify N-linked IgG glycans, and identified nine genetic
loci associated with IgG glycosylation, most of which showed
strong associations with autoimmune disorders, inflammatory
conditions, and/or hematological malignancies. Four of these
were glycosyltransferase genes: ST6GAL1, B4GALT1, FUT8, and
MGAT3. Leukemia cell function has been shown to be affected
by aberrant N-glycosylation of other glycoproteins (e.g., CD79a,
µ, CD82, CD95, MPL) besides IgG (Table 1); however, the
related N-glycan synthesis genes have not been investigated in
detail. Future studies utilizing an “omics” approach (combination
of genomics, proteomics, and glycomics) will help elucidate
glycosylation processes of single glycoproteins.

Biosynthesis of a given N-glycan is a systemic process
involving dozens of glycosyltransferases and glycosidases.
Aberrant structures typically result from abnormal expression
of these enzymes. The three processes most commonly
involved in aberrant expression of N-glycan-related enzymes
in hematological malignancies are sialylation, fucosylation, and
bisecting β D N acetylglucosamine (GlcNAc), as described
separately below.

Sialylation
Sialic acids play key roles in cell recognition, adhesion, and
signaling. Commonly, sialic acids are attached to galactose or
N-acetylgalactosamine residues via a α2,3 or α2,6 linkage and
sialic acid can be attached to another sialic acid residue via a α2,8
linkage, forming polysialic acid structure.

Enhancement of global sialylation, particularly α2,6 and
α2,3 linked sialylation resulting from altered expression of
the sialyltransferases ST6Gal and ST3Gal, is associated with
malignancy (17). Bone marrow hematopoietic stem cells and
progenitor cells form surface α2,6-linked sialic acids through the
action of circulating ST6Gal1 (originating mostly from the liver),
rather than endogenous ST6Gal1 (18). Elevated ST6Gal1 and
ST3Gal5 mRNA levels are positively correlated with increased
risk of pediatric acute leukemia. Increased expression of ST6Gal1
contributes to multidrug resistance (MDR) of leukemia cells
by regulation of P-glycoprotein (P-gp) and MDR-associated
protein 1 (MRP1) through phosphoinositide 3-kinase (PI3K)/Akt
signaling (2). However, T cell acute lymphoblastic leukemia cell
line, CCRF-CEM, decreases ST6Gal expression and, thus, α2,6
sialylation of global membrane glycoprotein to acquire resistance
to microtubule targeting drug desoxyepothilone B (19). Elevated
ST3Gal4 in chronic myeloid leukemia (CML) cells is associated
with imatinib resistance (20). α2,3 linked sialic acids are also
often found to modify O-glycans (21). Sialylation of N-glycan
and O-glycan on platelets play a part in the regulation of
homeostasis and clearance (22, 23). Desialylated platelets can
be rapidly cleared by liver macrophages via the recognition of
hepatic asialoglycoprotein receptor (also called the Ashwell–
Morell receptor) (21, 24, 25).

Polysialic acid (PSA) is a linear homopolymers comprising
α2,8-linked sialic acids, typically attached to neural cell adhesion
molecule (NCAM). Two polysialyltransferases, ST8SiaII and
ST8SiaIV, play dominant roles in PSA synthesis (26). PSA
is best known for its proposed role in modulating neuronal
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FIGURE 1 | Aberrant features of glycan expression in hematological malignancies.

TABLE 1 | Aberrant N-glycosylation of single glycoproteins associated with

hematological malignancies.

Glycoprotein Disease Biological

impact

References

IgG Myeloma Immunization (4)

CD79a B-cell chronic lymphocytic

leukemia

Surface IgM

expression

(10)

CD82 Acute myeloid leukemia Trafficking and

homing

(11, 12)

CD95 Myeloproliferation and B-cell

lymphoma

Apoptosis

regulation

(13, 14)

IgM heavy

chains µ

B-cell chronic lymphocytic

leukemia

Surface IgM

expression

(10)

MPL Myeloproliferative neoplasm Cell proliferation (15, 16)

development. However, recent researches also suggest a role
for PSA in immune regulation. Drake et al. found that human
NK cells modulate expression of NCAM and the degree of
polymerization of its PSA according to activation state (27). They
also found ST8SiaIV−/− mice exhibited a specific defect in T
cell development (28). Further research revealed that, Cys-Cys-
chemokine receptor 7 (CCR7) and neuropilin-2 (NRP2), which
are both important in immune activation, are also targets of
polysialylation. After pathogen recognition, dendritic cell (DC)
traffic to secondary lymphoid organs to activate naïve T cells
through antigen presentation. CCR7 is the central chemokine
receptor controlling DC trafficking. Polysialylation of CCR7 is
essential for recognition of the CCR7 ligand CCL21. CCL21
adopts an autoinhibited conformation, which is released upon
interaction with PSA (29). The interaction of the tail of CCL21
with PSA is needed for efficient ERK1/2 activation in DCs (30).
NRP2 is expressed on the surface of DCs. Polysialylation of

NRP2 is added to its O-Glycans, and exclusively synthesized by
ST8SiaIV (31). Expression of NRP2 is up-regulated during DC
maturation, coincident with increased expression of ST8SiaIV
and with the appearance of PSA on the cell surface (32). NRP2
enhances the chemotactic migration of DCs toward CCL21
and promotes DC-induced activation and proliferation of T
lymphocytes via the enhanced PSA-mediated effect (33, 34).

Fucosylation
Fucosylated glycans are synthesized by a wide variety of
fucosyltransferases. Fucosylation, which includes terminal
fucosylation and core fucosylation, is a non-extendable
modification. There are 11 different, known fucosyltransferases
(FUT) that have been cloned to date. FUT1 and FUT2 are
involved in the synthesis of α1,2 fucose, while FUT3, 4, 5,
6, 7, and 9 are involved in the synthesis of α1,3/α1,4 fucose,
as a terminal modification that is not further elongated.
FUT8 exclusively adds α1,6 fucose to the innermost GlcNAc
residue of N-glycans, forming core fucosylation. However, the
fucosyltransferase activity of either Fut10 or Fut11 has not been
confirmed (35). Fucosylation of hematopoietic cells plays an
essential functional role in homing to bone marrow, because
fucosylation of cell surface molecules is responsible for binding
to P- and E-selectins constitutively expressed by microvessels in
marrow. Pretreatment with α1,3 fucosyltransferase VI (FucT-VI)
enhances interaction of CD34+ stem cells and early progenitor
cells with microvessels and thus promotes marrow homing
during cord blood transplantation (36). Enhanced expression of
sialyl Lewis X (SLex) in adult T cell leukemia cells is dependent
on α1,3 fucosyltransferase VII (FucT-VII) activity. Human
T-lymphotropic virus 1 (HTLV 1) retrovirus, the etiologic agent
of adult T cell leukemia, encodes a transcriptional activator
protein (TAX) which regulates the FUT7 gene that encodes
FucT-VII, the limiting enzyme controlling SLex synthesis in
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leukocytes (1). Overexpression of FUT8 and core fucosylation
have been demonstrated in several types of cancer (37). FUT8
had an inhibitory effect on hemoglobin production and erythroid
differentiation of leukemia cells during hematopoiesis (38, 39).
α1,3 and α1,4 fucose does not just modify proteins but also
glycosphingolipid. However, so far aberrant α1,3 and α1,4
fucosylation of glycosphingolipid in hematological malignancies
has not been documented.

Bisecting GlcNAc
The enzyme β1,4-mannosyl-glycoprotein 4-β-N-acetylglucosami
nyltransferase (MGAT3) catalyzes addition of a bisecting GlcNAc
residue to glycoproteins, which has a suppressive effect on
several types of cancer (40). Elevation of MGAT3 activity was
observed in CML patients in blast crisis and in multiple myeloma
patients (41). MGAT3 overexpression in K562 leukemia cells
enhanced resistance to natural killer cell cytotoxicity and spleen
colonization (42), via regulation of cell recognition by bisecting
GlcNAc moieties (43).

O-GLYCOSYLATION

O-glycosylation is a common covalent modification of serine
(Ser) and threonine (Thr) residues of glycoproteins. The most
common type of protein O-glycosylation involves α linkage via
β-D-N-acetylgalactosamine (GalNAc) to the -OH of Ser or Thr
by an O-glycosidic bond, resulting in “O-GalNAc glycan”; this
process can be extended to various other structures. Other types
of O glycans include those attached via GlcNAc, Fuc, or glucose
(Glc) (44).

O-GalNAc Glycans
O-GalNAc glycans, also known as mucin-type O glycans, are
found mainly in transmembrane and secreted glycoproteins,
attached to certain Ser or Thr residues.

Aberrant O-GalNAc glycans, such as the disaccharide
Thomsen-Friedenreich antigen (T antigen; CD176),
monosaccharide GalNAc (Tn antigen; CD175), and their
sialylated forms (ST antigen and STn antigen [CD175s]), result
from incomplete synthesis of O-glycans and are associated
with malignancy. The first step of mucin O-glycosylation,
whereby Tn antigen is formed, is transfer of GalNAc from
UDP-GalNAc to Ser or Thr, catalyzed by polypeptide-N-acetyl-
galactosaminyltransferase (ppGalNAcT). Tn antigen is strongly
expressed in chronic lymphocytic leukemia (CLL) (45), as a result
of overexpression of GALNT11, a member of the ppGalNAcT
family (46). Mutation or epigenetic silencing of T synthase
C1GalT1 specific chaperone 1 (Cosmc; C1GALT1C1) blocked
further O glycan elongation and shifted the pathway toward
generation of Tn and STn through ST6GalNAc1 action (47, 48).
Expression of Cosmc cDNA in Jurkat cells restored C1β3Gal-T
activity and T antigen expression (49). Antitumor drugs with
T or Tn antigen as therapeutic target have been developed
(50, 51).

Mucin1 (MUC1; CD227) is a protein composed of ∼1,000
amino acids whose molecular mass can be increased to over 1,000
kDa by addition of hundreds of O-glycans. MUC1 is translated

as a single polypeptide and undergoes autoproteolysis to form
two subunits: (i) N-terminal subunit (MUC1-N), containing
glycosylated tandem repeats, and (ii) C-terminal transmembrane
subunit (MUC1-C), which in turn forms a stable non-covalent
heterodimer at the cell surface. Aberrant glycoforms of MUC1-
N occurring in hematological malignancies may affect oncogenic
functions of MUC1-C (52), including cell proliferation (53) and
resistance to apoptosis and cytotoxic injury (54–56). MUC1
appears in a variety of hematological malignancies, including T
and B cell lymphomas and myelomas (57), and is a potential
prognostic marker and therapeutic target for several types
of non-Hodgkin lymphoma (58, 59). MUC1 expressed in
lymphoma cells is phosphorylated upon T cell receptor ligation,
resulting in T cell activation (60).

Some aberrant fucosylation in O-GalNAc glycans were also
observed, as referred in part 2.2.

O-GlcNAcylation
O-GlcNAcylation refers to covalent attachment of GlcNAc sugars
to Ser or Thr residues of nuclear or cytoplasmic proteins.
O-GlcNAcylation, similarly to protein phosphorylation, is an
enzymatic modification whose half-life is typically shorter
than that of the attached protein. It is catalyzed by a single
enzyme (O linked GlcNAc transferase; OGT) that transfers
GlcNAc from UDP-GlcNAc to the protein substrate. N-acetyl β-
glucosaminidase (OGA; also known as O-GlcNAcase), encoded
by MGEA5 gene, rapidly removes the O-GlcNAc modification.
These enzymes, acting together, dynamically alter the post-
translational state and function of proteins in response to cellular
signals. c-Myc is glycosylated by O-linked GlcNAc at Thr-58,
a known phosphorylation site and “mutational hot spot” in
lymphomas. Hierarchical phosphorylation of Ser-62 and Thr-
58 and alternative glycosylation/ phosphorylation of Thr-58, in
combination, regulate the many functions of c-Myc in cells
(61). On the other hand, O-GlcNAcylation and phosphorylation
may act together to trigger increased STAT5 phosphorylation
levels and oncogenic transcription in hematopoietic cells (62).
In CLL patients, protein O-GlcNAcylation was higher than
in normal lymphocytes, and both OGT and OGA protein
levels were elevated. Patients whose lymphocytes had the
highest levels of O-GlcNAcylated proteins showed better
prognosis, as determined by standard prognostic markers (63).
The above findings indicate that leukemic lymphocytes have
higher O-GlcNAcylation levels than do normal lymphocytes,
with consequent blocking of signal pathways essential for
rapid leukemia cell proliferation (64). OGT may also act in
cooperative fashion with the tumor suppressor Ten-Eleven
Translocation-2 (TET2), whose haploinsufficiency initiates
myeloid and lymphoid transformation, thereby promoting post-
transcriptional modification of histones and facilitating gene
expression via double epigenetic modification of both DNA
and histones (65, 66). OGT can induce the differentiation of
MDS/AML cells in vitro and extend the survival rate of mice
carrying leukemic cells expressing mutant ASXL1, which occurs
at high frequencies in myeloid malignancies, by conjugating
O-GlcNAc to ASXL1-S199 and thereby stabilizing this tumor
suppressor protein (67).
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O-Fuc and O-Glc
Epidermal growth factor (EGF)-like repeats are small protein
motifs (∼40 amino acids) defined by six conserved cysteine
residues which form three disulfide bonds. They are found
in hundreds of cell surface and secreted animal proteins, and
some have unusual O-linked Fuc or Glc residues. The enzymes
O-fucosyltransferase 1 (POFUT1) and O-glucosyltransferase 1
(POGLUT1; hCLP46), are responsible for addition of O-Fuc
and O-Glc, respectively. O-Fuc and O-Glc modifications are
essential for proper Notch function. POGLUT1 is overexpressed
in primary AML, T cell acute lymphoblastic leukemia (ALL),
and other leukemia cell lines (68, 69). POGLUT1 overexpression
enhances Notch activation and regulates cell proliferation in a cell
type-dependent manner (70, 71). POFUT1 regulates lymphoid
and myeloid homeostasis through modulation of Notch receptor
ligand interactions (72).

GLYCOSAMINOGLYCANS

Proteoglycans consist of a core protein to which one or more
glycosaminoglycan (GAG) chains are covalently attached to Ser
or Thr. GAGs are unbranched, often long, polysaccharides with
a repeating disaccharide structure; they include heparan sulfate,
chondroitin sulfate, dermatan sulfate, and keratin sulfate. The
location is determined by the core protein. GAG chains, the
essential functional parts, are produced by various biosynthetic
pathways and are often highly sulfated, with resulting capability
to bind cytokines, chemokines, or growth factors. Through such
binding, they can modulate cell growth and differentiation, and
thus help control embryogenesis, angiogenesis, and homeostasis.
In multiple myeloma cells, the secretory-vesicle proteoglycan
serglycin is the major proteoglycan expressed and constitutively
secreted. High serglycin levels are present in bone marrow
aspirates of >30% of newly diagnosed multiple myeloma
patients, and are required for adhesion, in vivo growth, and
vascularization of multiple myeloma cell (73, 74). Serglycin level
is correlated with drug resistance in hematological malignancy
cell lines (75). Serglycin is a selective marker for immature
myeloid cells, and can distinguish AML from Philadelphia
chromosome negative (Ph-) MPN (76). Serglycin attaches to
CS4 and CS6 moieties, but not to heparin or heparan sulfate,
and interacts with CD44 in a variety of hematopoietic cells
(77). Cell surface proteoglycan syndecan-1 (CD138) is highly
expressed in multiple myeloma cells (78) and function as
a coreceptor for HGF that promotes HGF/Met signaling in
MM cells (79). Heparanase is an endo-ß-d-glucuronidase that
trims the heparan sulfate chains of proteoglycans, releasing
biologically active fragments of heparan sulfate. Heparanase
enhances shedding of syndecan-1 and high levels of heparanase
and shed syndecan-1 in the tumor microenvironment are
associated with elevated angiogenesis and poor prognosis in
myeloma, by activating integrin and VEGF receptors on adjacent
endothelial cells thereby stimulating tumor angiogenesis (80, 81).
Heparan sulfate is a complex molecule because of modification
by sulfation and epimerization. Heparan sulfate of syndecan-
1 has more sulfated motifs than in normal plasma cells.

These highly sulfated motifs bind various angiogenic and
growth factors and present them to their respective receptors,
and therefore play crucial roles in multiple myeloma cell
survival, proliferation, and metastasis (82). A large number of
transferases and modifying enzymes are involved in regulating
fine structural properties of GAGs. The synthetic mechanisms
responsible for generating cellular GAG structures remain poorly
understood.

Hyaluronan (HA) is a unique GAG, not sulfated and not
attached to a protein or lipid, that is secreted into extracellular
compartments. It can interact non-covalently with various
matrix components, and can be bound at the cell surface by
receptors such as the adhesion molecule CD44 (83). CD44/HA
interaction inmonocytic cells plays crucial roles in cell migration,
inflammation, and immune responses. CD44 binding ability is
regulated by sialidase induced in response to cytokine stimulation
(84). CD44 and HA cooperate with stromal cell-derived factor
1 (SDF-1) in trafficking of human CD34+ stem/ progenitor
cells to bone marrow (85). A CD44 glycoform expressed on
primitive CD34+ human hematopoietic progenitor cells is the
ligand of both E-selectin (86) and L-selectin (87), through
sialylated, fucosylated binding determinants on N-glycans. Ex
vivo glycan engineering of mesenchymal stromal cell CD44,
derived from adipose tissue or marrow (88), confering the
native CD44 glycoform tropism to bone, which is essential for
stem cell-based tissue engineering and other adoptive cellular
therapies (89).

GLYCOSPHINGOLIPIDS (GSLS)

GSLs, composed of a glycan linked to a lipid ceramide
(Cer), include a series of neutral “core” structures and
gangliosides, which carry one or several sialic acids. Lipid
rafts on cell membranes, which contain GSLs and protein
receptors, play key roles in hematological malignancies through
regulation of retention, quiescence, mobilization, and homing
of hematopoietic stem/progenitor cells (90). Several GSLs are
markers of hematological malignancies; e.g., Gg3 in Hodgkin
lymphoma (91) and Gb3 in Burkitt lymphoma (92), which
result from precursor accumulation during incomplete GSL
synthesis. Cer, a central molecule in sphingolipid metabolism,
functions effectively as a tumor-suppressing lipid, inducing
antiproliferative and apoptotic responses in a variety of
cancer cells (93). Cer can be phosphorylated to form Cer-1-
P, or glycosylated to form glucosylceramide (GlcCer). These
derivatives have functions antagonistic to those of Cer, including
anti-apoptotic effects (94). The normal balance between Cer
and its derivatives is disrupted in hematological malignancies,
particularly those displaying chemotherapeutic resistance (95).
GlcCer was shown to be a marker for MDR cancers; it
is present consistently in MDR cell lines and absent (or
present at very low levels) in corresponding drug-sensitive
cells (96). GlcCer synthase, the enzyme that attaches the Glc
moiety to Cer, is co-overexpressed with P-glycoprotein in MDR
leukemia cells (97, 98), and blocks drug-induced cell cycle
arrest (99).
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Gangliosides are often expressed aberrantly in malignant
cells. They are important in cancer biology as both cell surface
structures and molecules shed by malignant cells (100). Pediatric
ALL patients showed enhanced levels of ST3GAL5 (GM3
synthase), which catalyzes α2-3-sialylation of lactosylceramide
(LacCer), and resulting ganglioside GM3 (101). On the other
hand, membrane type- and ganglioside-specific sialidase NEU3
was downregulated in these patients, and overexpression of
NEU3 in ALL cells led to a significant increase of Cer, and
induction of apoptosis in lymphoblasts (101). GM3 was found
to induce monocytic differentiation in leukemia cells (102).
In contrast, NEU3 inhibited megakaryocytic differentiation by
degradingmembrane sialic acids, maintain low level of GM3, and
downregulating the PKC/ERKs/p38 MAPK pathway (103, 104).

LECTINS

Lectins are glycan-binding proteins that are typically highly
selective for specific glycan structures. They include selectins,
galectins, and the molecular chaperones calreticulin. Aberrant
glycosylation alters the abundance of ligands for endogenous
lectins, and thereby affects multiple cellular mechanisms
involving the corresponding glycans.

Selectins
SLex and SLea determinants are sialylated antigens associated
with malignancy and also well-studied ligands for selectins,
which are vascular cell adhesion molecules (VCAMs) belonging
to the C type lectin family. There are three types of selectin:
E-selectin in endothelial cells, L-selectin in lymphocytes, and
P-selectin in platelets and endothelial cells. High expression of
ST3 β-galactoside α2,3-sialyltransferase 6 (ST3GAL6) promotes
transendothelial migration to bone marrow and survival of
multiple myeloma cells, through generation of functional SLex

determinants, the ligands of E-selectins on endothelial cells (105).
Leukemia cells initiate interactions between Lex determinants
and E-selectins by directly activating resting endothelial cells.
The activated endothelial cells then induce E-selectin-mediated
adhesion of a subset of leukemia cells. The adherent leukemia
cells are sequestered in a quiescent state and are unaffected by
chemotherapy (106). Defective homing of umbilical cord blood
cells to bone marrow, resulting in delayed engraftment of cord
blood transplantation, is related to low fucosylation levels of cell
surface molecules responsible for binding to P- and E-selectins
constitutively expressed by marrow microvessels (36). L-selectin
is the key factor controlling binding of B-cell CLL cells to high
endothelial venule (HEV) walls of lymph nodes in vivo, which is
related to cell growth and drug resistance of CLL (107). P-selectin
glycoprotein ligand 1 (PSGL-1) is the primary ligand for L- and
P-selectin, and can bind E-selectin if appropriately glycosylated
(108). PSGL-1 plays a crucial role in hematogenous metastasis of
lymphoid cancer cells, and led to liver and spleen colonization
in in vivo experiments (109). The number of circulating PSGL-1-
positive microparticles released from activated or apoptotic cells
is a prognostic indicator for leukemia and lymphoma patients
following allogeneic stem cell transplantation (110). PSGL-1 can
also be a therapeutic target; immunotherapy with anti-PSGL-1

mAbs was used in combination with mCRP blockage-induced,
complement-mediated lysis of multiple myeloma cells in vivo
(111).

Galectins
Galectins are a family of lectinmolecules that display intracellular
and extracellular effects making them useful agents in treatment
of inflammation and tumor progression. They are classified
as (i) “prototype” galectins (e.g., galectin-1 and−7) that have
one carbohydrate recognition domain (CRD) and can undergo
dimerization; (ii) “tandem-repeat” galectins (e.g., galectin-9) that
contain two homologous CRDs in tandem in a single polypeptide
chain; and (iii) galectin-3, which contains a CRD connected to
a non-lectin N-terminal region responsible for oligomerization.
Poly-LacNAc structure (elongated β1,4 GalT glycan chain) is
a ligand for galectins. During hematopoiesis, galectin-glycan
interactions maintain formation of microenvironmental niches,
modulate acute and chronic inflammatory responses, and
provide “on-and-off” signals that help control the balance
between immune cell responsiveness and tolerance (112, 113).

The roles of galectin-1 and−3 in hematological malignancies
have been well-studied. Overexpression of galectin-1 is correlated
with activation of AP-1 pathway in malignant cells of Hodgkin
lymphoma. Galectin-1 can serve as a predictive biomarker for
relapsed or refractory Hodgkin lymphoma (114), and its serum
levels reflect tumor burden and adverse clinical features (115).
In clinical studies, neutralization of galectin-1 was an effective
therapeutic strategy (114). In CLL, increased level of galectin-
1 derived from myeloid cells was required for full stimulation
of malignant cells through reduced threshold of B-cell receptor
signaling (116). In multiple myeloma, galectin-1 displayed
dual functions depending on CD45RA expression of malignant
cells: it promoted viability and proliferation of CD45RA− cells
through aggregation of β1-integrin, and induced growth arrest
of CD45RA+ cells through inhibition of ERK phosphorylation
(117). Aberrant expression of galectin-1 and/or−3 in patients
with MPNs is also discovered to correlate with JAK2 mutation
in these diseases and state of cell differentiation (118).

Galectin-3 is overexpressed in diffuse large B-cell lymphoma,
the most common type of non-Hodgkin lymphoma in adults.
Cell-surface galectin-3 binds a subset of highly glycosylated
CD45, the major receptor tyrosine phosphatase in B-cells, and
enhances its phosphatase activity, with consequent increase of
anti-apoptotic activity (119). Bone marrow stromal cells also
participate in drug resistance of AML and ALL by secreting
galectin-3. Soluble galectin-3 is internalized by leukemia cells
and transported to the nucleus, stimulates transcription of
endogenous LGALS3 mRNA and thus activates the Wnt/β-
catenin signaling pathway in leukemia cells, which is critical
in cytotoxic drug resistance (120, 121). In AML, high galectin-
3 expression in bone marrow is an independent unfavorable
prognostic factor for overall patient survival (both M3 and
non-M3) (122, 123). In CML, malignant cells in chronic phase
showed galectin-3 levels much higher than those in bone
marrow hematopoietic cells from control subjects or acute
leukemia patients. Co-culture of five CML cell lines with
bone marrow stromal cells induced galectin-3 expression and
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increased proliferative potential and resistance to genotoxic
agents (124). In multiple myeloma, the supporting effect of
galectin-3 was reduced, and malignant cells were sensitized to
chemotherapeutic drugs, by treatment with two agents: galectin-
3 antagonist GCS-100 and an N-terminally truncated form of
galectin-3 (124).

Galectin-9, in cooperation with its highly expressed ligand
TIM-3, leads to T cell exhaustion and increased survival of
AML cells (125). In multiple myeloma, a recombinant protease-
resistant mutant form of human galectin-9 had a strong
antiproliferative effect on malignant cells, dependent in part on
MAPK pathway activation (126).

Calreticulin (CALR)
Ph- MPNs are a group of diseases involving excessive bone
marrow cell production, including essential thrombocytosis (ET),
polycythemia vera (PV), and primary myelofibrosis (PMF).
Thrombopoietin (TPO) receptor (MPL/TpoR) is the key cytokine
receptor in MPN development, and activates MPL-JAK-STAT
signaling inMPN stem cells (127). IncompleteMPL glycosylation
was a common feature of Ph- MPNs, which was first discovered
in PV patients (15). N-glycosylation on the MPL exert essential
regulatory roles on MPL cell surface localization and function
(128).

Calreticulin (CALR) and Calnexin(CNX), a pair of
homologous C-type (calcium-dependent) lectins found in
endoplasmic reticulum, act together as molecular chaperones
to ensure proper folding and function of newly synthesized
N-glycoproteins (129). CALR mutations are the second most
frequent mutation after JAK2 in ET and PMF, nevertheless,
no CALR mutations were found in patients with PV, which is
specifically associated with JAK2 mutations. Moreover, CALR
mutations are mutually exclusive with mutations in both JAK2
and MPL, indicating it may be responsible for the initiation of
this disease (130, 131). The most frequent CALR mutations, type
1 (52-bp deletion; c.1092_1143del) and type 2 (5-bp insertion;
c.1154_1155insTTGTC) accounted for 53.0% and 31.7% of all
CALR mutations, respectively (130). All the mutations of CALR
are insertion or deletion mutations in the last exon (exon 9)
encoding the C-terminal amino acids of the protein, resulting
in a novel C-terminal positively charged polypeptide tail and
absence of last four amino acids (KDEL) contain the endoplasmic
reticulum–retention signal (130).

CALR mutations prevent proper maturation of certain
proteins (132), notably MPL in the case of Ph- MPNs.
CALR mutants show alterations in MPL stability, maturation,
trafficking (133), and N-glycan pattern. The majority of MPL
in these mutants remains in an immature, high high-mannose
form that is EndoH-sensitive (16). Pathogenic CALR mutants
interacted with extracellular N-glycosylated residues of MPL
via a glycan-binding site on the C-terminal tail (134, 135).
Such interaction led to activation of MPL and downstream
JAK2, and subsequent promotion of TPO-independent growth,
accompanied by STAT5 phosphorylation. In a mouse model,
engraftment of CALR mutant bone marrow cells resulted in
thrombocytosis, but did not show same effect in MPL knockout
mice, further confirming the MPL-dependence of calreticulin

mutants (136). Moreover, CALR mutants are secreted proteins,
which may be able to activate other cells, especially monocytes,
to secrete inflammatory cytokines (137).

MPN patients carrying CALR mutations presented with
higher platelet counts and lower hemoglobin levels than patients
with mutated JAK2 (138), thus have a lower risk of thrombosis
and have longer overall survival than those with a JAK2mutation
(130). CALR-positive MPNs have a more benign clinical course
than the corresponding disorders associated with JAK2 or MPL
mutations.

Ruxolitinib is a JAK inhibitor that ameliorates splenomegaly
and constitutional symptoms associated with myelofibrosis
(both PMF and post-ET/PV) (139), and is also superior
to standard therapy in controlling the hematocrit, reducing
the spleen volume, and improving symptoms associated with
PV (140). And ruxolitinib ameliorated the thrombocytosis in
CALR mutant mice and attenuated the increase in number
of BM megakaryocytes and HSCs, revealing a vital role
for MPL and STAT5 activation in CALR mutation-induced
MPN (141).

The WHO added CALR mutations to the 2016 revision
of MPN diagnostic criteria (142), while accurater and simpler
prognostic models are needed to be validated for routine clinical
practice (143).

CONCLUSION AND PERSPECTIVES

Glycoconjugates are major components of animal cells and
play essential roles in many physiological processes. Progress
in glycobiology has led to the discovery of increasing numbers
of aberrant glycans, and elucidation of the functions of certain
glycans and related genes. Several serological markers currently
used in the clinic are based on the detection of circulating
glycoproteins or glycoconjugates with altered glycosylation.
Most discoveries of aberrant glycosylation in hematological
malignancy are based on genomics analysis using patient
samples, mostly focusing on the abnormal expression of
genes for glycosyltransferases and glycosidases. In recent years,
the development of mass spectrometry-based proteomic and
glycomic techniques make it possible to discover the abnormal
glycoproteins and glycolipids, and cancer-related and glycosite-
specific glycan structures, with the limited samples (144). Tracing
back the abnormal glycan structures to the corresponding genes
may sparkle this field in hematological malignancy study.

Recent studies revealed that aberrant glycosylation of
hematopoietic microenvironment impact the malignant process
by interacting with neoplastic cells, such as high serglycin
level in multiple myeloma (74). The microenvironment of
bone marrow or lymphoid tissue can be active participants
to help neoplastic cells to resist drug therapy and avoid
immune response. Future works are needed to understand
the mechanisms of those aberrant glycan patterns not only in
the aspect of cellular self-regulation, but also in the aspect of
cell-cell communication within their microenvironment. The
glycosylation of microenvironment could be one promising
direction of hematological malignancy research in future.
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The discovery of aberrant glycans and exploration of
underling their mechanisms would expand their applications
as diagnosis marker or therapeutic target for hematological
malignancies.

For example, Roneparstat (SST0001), a 100%N-acetylated and
glycol split heparin, inhibited myeloma growth and angiogenesis
via disruption of the heparanase/syndecan-1 axis (145). As
an heparanase inhibitor used in phase I clinical trial in
hematological malignancies, Roneparstat presented an excellent
safety profile, without clinically relevant systemic reactions, and
an excellent tolerability profile (146). In other hands, glyco-
engineered antibodies, such as anti-CD20 monoclonal antibody
(Obinutuzumab [GA101]) may enhance the effective treatment
for CD20+ B-cell non-Hodgkin’s lymphoma (NHL), CD20+

follicular NHL, and CLL (147). In vitro glyco-engineering could
be a powerful approach to develop monoclonal antibodies
with homogenous humanized glycosylation in clinical trials of
hematological malignancies.

The integrated reseach of glycomics and glycobiology with
hematological malignancy will further boost the scientists to
oversee the merging of biological disciplines and molecular
mechanisms into physiology and disease.
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