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Epidemiological and genetic studies in humans and experi-
mental studies in animals have shown that the pathogenesis of 
most common chronic non-communicable diseases involves a 

complex interplay among polygenic susceptibility, aging, sex and a 
multitude of environmental exposures1. Intriguingly, environmen-
tal components, such as diet, physical activity and smoking, might 
exert some of their pathogenic effect via modification of the intes-
tinal microbiome2. Therefore, a first logical step in exploration of 
the intestinal microbiome as a putative chronic disease co-trigger 
appears to be the conduct of studies integrating epidemiology and 
various -omics analyses. However, for the reliability of such study 
outcomes and for the planning of subsequent clinical interventions 
and mechanistic experiments, disease-specific microbiome and 

linked metabolome features need to be separated from confounders 
introduced by pre-morbidities and co-morbidities3–5 and by mul-
tifactorial treatment6. Commonly prescribed drugs, for example, 
widely influence the gut microbiome and host metabolome7 and can 
confuse for, or even mask, genuine disease signatures7,8. Accordingly, 
a recent report argues for extensive adjustments for confounders 
that influence the human gut microbiome to avoid spurious asso-
ciations and to identify genuine disease-specific variance9.

The present microbiome and metabolome study is focused on 
IHD, a leading cause of mortality worldwide10. Previous reports 
comparing microbiome and metabolome markers of IHD cases 
and controls usually failed to adjust for the massive confounding by 
polypharmacy8 and the effect of metabolic abnormalities occurring 
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Previous microbiome and metabolome analyses exploring non-communicable diseases have paid scant attention to major con-
founders of study outcomes, such as common, pre-morbid and co-morbid conditions, or polypharmacy. Here, in the context of 
ischemic heart disease (IHD), we used a study design that recapitulates disease initiation, escalation and response to treat-
ment over time, mirroring a longitudinal study that would otherwise be difficult to perform given the protracted nature of 
IHD pathogenesis. We recruited 1,241 middle-aged Europeans, including healthy individuals, individuals with dysmetabolic 
morbidities (obesity and type 2 diabetes) but lacking overt IHD diagnosis and individuals with IHD at three distinct clinical 
stages—acute coronary syndrome, chronic IHD and IHD with heart failure—and characterized their phenome, gut metagenome 
and serum and urine metabolome. We found that about 75% of microbiome and metabolome features that distinguish individu-
als with IHD from healthy individuals after adjustment for effects of medication and lifestyle are present in individuals exhibit-
ing dysmetabolism, suggesting that major alterations of the gut microbiome and metabolome might begin long before clinical 
onset of IHD. We further categorized microbiome and metabolome signatures related to prodromal dysmetabolism, specific to 
IHD in general or to each of its three subtypes or related to escalation or de-escalation of IHD. Discriminant analysis based on 
specific IHD microbiome and metabolome features could better differentiate individuals with IHD from healthy individuals or 
metabolically matched individuals as compared to the conventional risk markers, pointing to a pathophysiological relevance of 
these features.
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during a long prodromal phase before diagnosis of IHD11–13. Such 
common metabolic dysfunctions include overweight and obesity3,5, 
type 2 diabetes (T2D)4, hypertension14 and dyslipidaemia15 (col-
lectively termed ‘dysmetabolism’ in the present study), all of which 
have been shown to exhibit both shared and disease-specific aber-
rations in microbiome and metabolome profiles. Individuals with 
the metabolic syndrome or overt T2D have vastly increased risk of 
IHD16, and asymptomatic T2D is often coincidentally found at IHD 
diagnosis17, highlighting these pre-morbidities to be a clinically rel-
evant baseline for studying overt IHD. Most studies to date have 
overlooked this aspect by either comparing individuals with IHD 
with healthy, lean individuals11 or not focusing on IHD per se but 
on various forms of atherosclerotic organ damage12,13,18. Thus, segre-
gating IHD-specific changes in gut microbial and metabolomic fea-
tures from such potential confounders remains an utmost priority.

In the MetaCardis consortium, we designed the present 
cross-sectional study including healthy individuals, individuals 
with dysmetabolic morbidities and individuals with IHD at three 
distinct clinical stages, capturing a wide spectrum of gut microbi-
ome and plasma and urine metabolome signatures for cardiometa-
bolic diseases (CMDs). With our approach for integrative analysis 
of the -omics data, we adjust for confounding by polypharmacy and 
the effect of metabolic abnormalities occurring during the prodro-
mal phase before diagnosis of IHD. Furthermore, we categorize 
microbiome and metabolome pathophysiological signatures related 
to dysmetabolism or to escalation, de-escalation or stabilization of 
IHD and its subtypes.

Results
Study design, in-depth phenotyping and multi-omics profiling. 
This study encompassed 372 individuals with IHD, including 112 
with acute coronary syndrome (ACS), 158 with chronic ischemic 
heart disease (CIHD) and 102 with IHD and heart failure (HF). 
In addition, we included 275 healthy controls (HCs) matched 
on demographics, age and sex and 222 untreated metabolically 
matched controls (UMMCs)—that is, individuals with features of 
the metabolic syndrome and, thus, at increased risk of IHD but 
receiving no lipid-lowering or anti-diabetic or anti-hypertensive 
drugs. Finally, we included 372 controls matched with individu-
als with IHD in terms of T2D status and body mass index (BMI), 
thereafter termed metabolically matched controls (MMCs) (Fig. 1). 
We profiled their serum and urine metabolome (1,558 metabolites 
and lipids) and examined their intestinal microbiome, considering 
inter-individual variations in absolute fecal bacterial cell density, a 
factor potentially reflecting the disease state and obscuring genuine 
microbiome involvement19. Inclusion of MMC and UMMC groups 
allowed for the differentiation of the gut microbial and metabolo-
mic signatures of IHD from the often-accompanied metabolic dys-
functions and related drug intake.

As expected from inclusion criteria, we found increasing CMD 
phenotype severity and related drug intake along the implied pro-
gression from HCs through treated and untreated metabolically 
matched controls (MMCs and UMMCs, respectively) to overt 
IHD cases (Extended Data Fig. 1 and Supplementary Tables 1–3). 
Despite matching for country, age, sex, BMI and T2D status, indi-
viduals with IHD remained phenotypically distinct from MMCs. 
They displayed increased visceral fat (P = 0.048), worse glycemia 
(HbA1c; P = 0.005 and fasting plasma glucose; P = 0.006), higher 
plasma concentration of liver enzymes (aspartate aminotransferase, 
alanine aminotransferase and γ-glutamyl transferase; P < 0.001) 
and increased prevalence and severity of hypertension (P < 0.001) 
(Supplementary Tables 1 and 2). Similarly, individuals with IHD 
had decreased heart contractility mirrored in reduced left ven-
tricular ejection fraction (LVEF) and increased plasma pro-atrial 
natriuretic peptide (pro-ANP) levels relative to both HCs and 
MMCs (P < 0.001), which was further altered in the HF subgroup 

relative to ACS and CIHD (P < 0.001) (Extended Data Fig. 1 and 
Supplementary Table 2).

Diet and physical activity variation across study groups. Diet 
affects microbiome composition and IHD risk2. We found that HCs 
reported healthier diets than individuals in the IHD and MMC 
groups, with higher values of composite metrics, such as alternative 
healthy eating index (aHEI20) (HC versus IHD, P < 0.001), diet diver-
sity score (DDS21) (HC versus IHD, P = 0.001), dietary approaches 
to stop hypertension (DASH22) score (HC versus IHD, P = 0.013) 
and lower overall daily energy intake (HC versus IHD, P = 0.013). 
HCs consumed significantly less fatty animal-based food and meat 
and more plant-based food rich in non-digestible polysaccharides 
(Supplementary Table 4). They further reported higher physical 
activity levels (Extended Data Fig. 1), more often being in manual 
work and undertaking more frequent moderate to vigorous leisure 
time activities than individuals with IHD or MMCs (Supplementary 
Table 4). Some of the microbiome differences between MMCs and 
individuals with IHD as opposed to HCs might also reflect a less 
healthy lifestyle.

Microbiome and metabolome changes related to dysmetabolism. 
Both the taxonomy and functional potential of the gut microbiome 
as well as the metabolome differed significantly between individ-
uals with IHD and HCs in accordance with previous reports11–13. 
Remarkably, comparing HCs to MMCs revealed even more dif-
ferential features than comparing HCs to individuals with IHD  
(Fig. 2a and Supplementary Tables 5–8). Moreover, the discrimina-
tory potential of microbiome and metabolome features was signifi-
cantly higher between individuals with IHD and HCs than between 
individuals with IHD and MMCs (Fig. 2b). We recovered most pre-
viously published IHD-related gut microbiome findings (Extended 
Data Fig. 2 and Supplementary Tables 15 and 16), primarily by 
contrasting HCs and individuals with IHD. However, most were 
already significant in MMC versus HC comparisons, suggesting 
that previous studies might have erroneously reported dysmetabo-
lism features as bona fide IHD features. These might contribute to 
increased risk of IHD, but our analyses indicate that they are not 
specific for IHD.

At higher microbiome architecture levels, there was a significant 
shift from the Bacteroides 1 and Ruminococcus enterotypes toward 
the low bacterial cell-count-associated Bacteroides 2 as disease wors-
ened23 (Fig. 2c). These findings mirror significant loss of microbial 
gene richness (Fig. 2d) and absolute gut bacterial cell load (that is, 
microbial load) in both MMCs and individuals with IHD to HCs. 
In contrast, no differences were found when individuals with IHD 
were compared to MMCs (Supplementary Table 5). Bacterial gene 
depletion and Bacteroides 2 prevalence were even more exacerbated 
in UMMCs, possibly due to drugs not yet being prescribed and the 
presence of a more obese phenotype in this group24. Consistently, 
the total number of gut microbiome and metabolome features sig-
nificantly differential in abundance was higher when HCs were 
compared to UMMCs relative to MMCs (Extended Data Fig. 3).

Microbiome and metabolome signatures of IHD. We consider the 
identification of genuine microbiome and metabolome signatures 
of IHD—that is, disease features not better explained as indirect 
associations via drugs and demographics—to be a major contribu-
tion of our study. Additionally, we further differentiate IHD features 
from their metabolic morbidities by categorizing them according 
to their signatures among the various group comparisons across 
the CMD spectrum, focusing qualitatively on condition specificity 
and quantitatively on effect size (Fig. 3 and Extended Data Fig. 4). 
We identify features as being specific to dysmetabolism (Fig. 3a,b) 
or IHD (Fig. 3a,c) by exhibiting a significant change only under 
the respective condition—that is, HCs versus MMCs/UMMCs for  

Nature Medicine | VOL 28 | February 2022 | 303–314 | www.nature.com/naturemedicine304

http://www.nature.com/naturemedicine


ArticlesNaturE MEDIcInE

Feature classification
Based on the statistical significance and directional congruence among various group comparisons

(applied to features with non-confounded status)

IHD-specific features—characteristic of IHD worsening (IHDF, n = 283)
Markers that exhibit significant shift uniquely in the IHD state relative to controls

IDH escalation features—characteristic of IHD initiation (ESCF, n = 98)
Early markers of IHD that also exhibit significant changes in individuals with 
metabolic pre-morbidities

IHD de-escalation features—characteristic of IHD treatment/
lifestyle modifications (DSCF, n = 98)

Markers that exhibit opposing patterns of change when HC versus MMC is compared
with MMC/UMMC versus IHD

Dysmetabolism features (DMF, n = 767)

Representing metabolic dysregulation in an individual, which is present in the
pre-morbid state but not substantially further advanced in IHD cases

Healthy controls
(HC) n = 275

Untreated metabolically
matched controls 
(UMMC) n = 222

Acute coronary
syndrome

(ACS) n = 112

Chronic ischemic
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Ischemic heart disease (IHD) n = 372

Intervention with polypharmacy

Effect of polypharmacy filtered using a deconfounded pipeline

Metabolic pre-morbidities

Effect of metabolic dysregulation segregated from IHD using metabolic matching

Gut microbial diversity indexes and
taxa (MGS) (n = 735)

Gut microbial functional modules 
(KEGG and GMM) (n = 770)

Metabolites in fasting serum
(n = 1,513)

Metabolites in urine
(n = 45)

All features (n = 3,063)

Non-confounded features
(n = 1,246)

Metabolically 
matched controls
(MMC) n = 372

Fig. 1 | Overview of the study design. Top: the 1,241 individuals studied here are a subset of individuals from the European MetaCardis cohort, in which 
participants underwent deep bioclinical phenotyping combined with gut microbiome and serum and urine metabolome profiling. Participants were 
classified as being HCs (n = 275, healthy by self-report and no intake of lipid-lowering, anti-diabetic or anti-hypertensive drugs) and a combined group of 
patients diagnosed with IHD (n = 372, on various drugs). The IHD group included cases with ACS (n = 112), CIHD (n = 158) and HF (n = 102) due to CIHD. 
Two additional control groups were included: MMCs without diagnosed IHD (n = 372, matched on age, BMI and T2D status of the individuals with IHD, 
some of whom were prescribed lipid-lowering, anti-diabetic and anti-hypertensive medication but no IHD-related drugs) and untreated (non-medicated) 
metabolically matched non-IHD controls (UMMCs, n = 222, no intake of lipid-lowering, anti-diabetic, anti-hypertensive or IHD drugs). Bottom: microbiome 
and metabolome features were segregated into four categories, as indicated. The human icons were adapted from https://smart.servier.com/.
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dysmetabolic features (DMFs) or MMC/UMMCs versus individu-
als with IHD for IHD-specific features (IHDFs). Additionally, we 
identify features based on whether they exhibit a typical shift in 
effect size in both dysmetabolism and IHD, either maintaining it in 
the same direction from dysmetabolism to IHD—that is, escalation 
features (ESCFs)—or, on the contrary, in the opposite direction—
that is, de-escalation features (DSCFs) (Fig. 3a,d). Specifically, 
ESCFs represent early markers of IHD that continue to increase/
decrease during metabolic morbidity (that is, HCs versus MMCs/
UMMCs) to overt IHD (that is, MMCs/UMMCs versus individuals 
with IHD) (Fig. 4b). In contrast, DSCFs exhibit a reverse pattern of 
shift when considering the effect sizes between HCs versus MMCs/
UMMCs and MMCs/UMMCs versus individuals with IHD (Fig. 
4c). In brief, for features already aberrant in MMCs, DSCFs repre-
sent those being restored toward HC levels in diagnosed and treated 
IHD, plausibly associated to disease stabilization.

Most significant IHD-associated features were categorized as 
primarily indicators of general dysmetabolism rather than specific 
to IHD, whereas next in order of frequency were features specific 
to IHD and then de-escalation and escalation features (Figs. 1 and 
3, Supplementary Fig. 1 and Supplementary Table 17). This pattern 
remained largely valid also when the three IHD subtypes were con-
sidered separately (Supplementary Fig. 2), in line with our observa-
tion of a major shift in gut microbiome and metabolome during the 
dysmetabolic stage before IHD diagnosis.

Of 121 species that were markers of dysmetabolism (that is, 
DMFs) (Supplementary Table 17), an overwhelming majority 
(85%) were depleted in IHD, paralleling observations for the ACS 
cases analyzed in the companion paper25. Twenty-three species 
were IHD-specific markers (Figs. 4a and 5), with a similar trend 
toward depletion in patients (65%). They included three proteobac-
teria—Acinetobacter, Turcimonas and Acetobacter—that were pre-
viously reported depleted in IHD (Extended Data Fig. 2). Among 
eight species enriched in IHD, two were Betaproteobacteria of the 
Burkholderiales order. Interestingly, Burkolderia pseudomallei is 
reported as a possible cause of endocarditis26. A single species, an 
uncharacterized Ruminococcus depleted in IHD, was an IHD esca-
lation marker (Fig. 4b); ruminococci include butyrate producers, 
and their depletion might contribute to the reduced production 
potential of short-chain fatty acids (SCFAs) in IHD. Six species were 
de-escalation markers (Fig. 4c); they belonged to the Clostridiales 
order, and all but one, Eubacterium siraeum, were unclassified at 
species or even genus taxonomic level. Eubacterium was previously 
reported to be depleted in atherosclerosis (Fig. 4 and Supplementary 
Table 17). In contrast, microbiome functions (gut metabolic modules 
(GMMs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
modules) were mostly enriched in IHD (Extended Data Fig. 5).

In parallel, the metabolome reporting most of IHD-specific 
markers showed a marked enrichment, with only 50 of 203 
IHD-specific markers (25%) being depleted in IHD relative to HC 

(Fig. 4 and Supplementary Table 17). We identified enrichment of a 
range of IHD-specific metabolites, including intermediaries of the 
choline and carnitine pathways quantified by ultra-performance 
liquid chromatography with tandem mass spectrometry (UPLC–
MS/MS)—that is, choline, betaine-aldehyde, 4-butyrobetaine, 
linoleylcarnitine and trimethylamine (TMA), the precursor of tri-
methylamine N-oxide (TMAO), which is known to modulate IHD 
risk27. Other such carnitine metabolites included medium-chain 
and long-chain fatty acyl carnitines, suggesting an increase in trans-
port into the mitochondria through the carnitine shuttle, typically 
for β-oxidation. In particular, microbial aromatic acids, such as 
phenylacetate, reported to be inversely associated with species-level 
genome bin (SGB) 4712 in the companion paper25, or benzoate, fol-
low a similar process, producing phenylacetatylcarnitine or benzo-
ylcarnitine. They undergo conjugation with amino acids to form, 
for instance, phenylacetylglutamate or hippurate28, of which both 
phenylacetylcarnitine and phenylacetylglutamate are IHD-specific 
markers in our study (Fig. 4a).

Along the same lines, we observed an increase in pro-inflammatory 
lipids derived from arachidonic acid (C20:4) starting with ara-
chidonoylcarnitine, 5-hydroxyeicosatetraenoic acid (5-HETE) as 
well as leukotriene B4 and 9-/13- hydroxyoctadecadienoic acid 
(9-HODE/13-HODE), which are known mediators of inflammation 
and atherogenesis29,30. In contrast, fatty acid methyl esters, includ-
ing methyl hexadecanoate, methyl linolenate and methyl oleate, 
along with alpha-tocopherol, known for vasoprotective31 and anti-
oxidant properties32, respectively, were among the top metabolites 
whose depletion constitutes markers specific for IHD (Fig. 4a). 
Notably, similar patterns remained in IHD subtype-specific analy-
ses (Extended Data Figs. 6–8 and Supplementary Table 17).

Most IHD escalation features represented by the metabolome 
exhibited an initial depletion upon dysmetabolism, which contin-
ued after IHD diagnosis (Fig. 4b and Supplementary Table 17). 
Besides several complex phospholipids, including sphingomy-
elins and glycerophospholipids, several carotenoids (for example, 
carotene diols and β-cryptoxanthin) and ergothioneine, which are 
known to improve cardiovascular health, exhibited the above deple-
tion pattern, whereas glutathione metabolism and markers of oxida-
tive stress (for example, cystathionine and cys-gly oxidized) instead 
escalated. Ergothioneine, in particular, has been associated with 
reduced cardiovascular and overall mortality33 and was also identi-
fied as a key metabolite exhibiting a positive correlation with SGB 
4712 (that is, both SGB 4712 and ergothioneine exhibiting deple-
tion) in ACS cases relative to controls in the companion paper25. 
Consistently, in the present study, a reduction in circulating levels 
of ergothioneine was also observed in individuals with ACS and HF 
relative to HCs (Supplementary Table 17).

In contrast, 4-cresol exhibited an enrichment pattern from 
dysmetabolism to IHD (Fig. 4b). 4-cresol is a bacterial product of 
colonic fermentation of phenylalanine and tyrosine and a precursor  

Fig. 2 | Alterations of gut microbiome and metabolome features along the natural history of IHD. a, Violin plots representing the distribution of 
significant gut microbiome and metabolome features among various group comparisons before and after data being subjected to the drug deconfounding 
pipeline (lower line, lower quartile; medium line, median; upper line, upper quartile). Numbers below each subplot represent total features in the 
respective group comparison (shown as x axis) that retained significance (FDR ≤ 0.1) plotted against the Cliff’s delta (y axis) for each set of features before 
(uncorrected) or after drug deconfounding (corrected). b, Box plots showing classifier performance comparison using HCs or MMCs as controls relative 
to individuals with IHD, based either on all microbial features (left) or on quantified metabolome features (right) as input (center line, median; box limits, 
upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers). Two-sided MWU P values are included for each comparison. c, Pie chart 
(right) comparing the percent (shown as numbers) distribution of four enterotypes among various study groups. Table (left) shows the chi-squared P 
value for each study group relative to the three control groups—that is, HC, MMC and UMMC. d, Box plots (upper) comparing gut bacterial gene richness 
among the indicated study groups (violin, distribution; center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points, 
outliers). Table (below) shows the two-sided MWU P values for each study group relative to the three control groups—that is, HC, MMC and UMMC. 
Two-sided MWU and chi-squared tests were used for assessing the significance of group-wise comparisons in a, b, d and c, respectively, using HC 
(n = 275), MMC (n = 372), UMMC (n = 222), IHD (n = 372), ACS (n = 112), CIHD (n = 158) and HF (n = 102) groups. Multiple testing corrections were 
done using the Benjamini–Hochberg method, and FDR ≤ 0.1 was considered significant. NS, not significant.
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for uremic toxin 4-cresylsulfate. Similarly, phenylacetylglutamine, 
another uremic toxin derived from microbial phenylacetate and 
that acts through adrenergic receptors34, showed an enrichment 
pattern from dysmetabolism to IHD. It was also shown (by ref. 25) 

to be inversely associated with SGB 4712. The findings implicate 
these metabolites as key targets for early intervention. 4-Cresol, in 
particular, has been found in lower concentrations in the blood of 
vegetarians than of omnivores35; it has also been shown to inhibit 
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colonocyte oxygen consumption36 and to be reduced once fat intake 
is curbed37. In our study, this compound appeared as an ACS and 
CIHD escalation feature, and it was also one of the top markers spe-
cifically enriched in the blood of individuals with HF, likely related 
to its role in uremia38, with dysregulation of fluid homeostasis being 
a key feature of HF (Extended Data Fig. 7). Interestingly, we also 
observe in another MetaCardis study that 4-cresol plays a causal 
role in the gut microbiome–kidney–heart axis in HCs, culminating 
in increased pro-ANP levels (Chechi et al., in revision).

Most DSCFs (89% and 100% for metabolites and predicted 
microbiome functions, respectively) exhibited the pattern of initial 
depletion at the stage of dysmetabolism but an apparent reversal at 
the stage of treated IHD (Fig. 4c). For instance, O-acetylsalicylate, 
the active component in aspirin, appeared as an archetypal DSCF 
putatively due to patient treatment compliance in IHD. Similarly, 
several catecholamine intermediates and end-products, bilirubin 
products, bile acids and odd-chain lipids with bacterial origin were 
identified as DSCFs. Moreover, TMA production (MC0022) and 
butyrate production II (MF0089) as gut microbial functional fea-
tures exhibited a depletion at the dysmetabolism stage but an appar-

ent restoration at the IHD stage (Extended Data Fig. 5). Overall, 
these observations might point toward a responsiveness of both 
microbiome and metabolome features to long-term multifactorial 
treatment, plausibly contributing to stabilization of IHD. In addi-
tion, achieving a stabilized IHD state appeared to involve restor-
ing lost gut microbial cell density (Fig. 4c) alongside a capacity 
to degrade BCAAs and galactose while restoring lost capacity for 
butyrate and acetate production (Extended Data Fig. 5).

Microbiome and metabolome markers of IHD sub-phenotypes. 
Detailed analysis of ACS-, CIHD- and IHD-caused HF groups pro-
vided more granularity for relative shifts in microbiome and metab-
olome features (Fig. 5, Extended Data Figs. 6–9 and Supplementary 
Table 17).

The total number of features typical for each IHD subgroup com-
pared to controls was highest for CIHD, followed by HF and ACS. 
CIHD exhibited the most differential changes in the gut microbiome 
functional potentials (Extended Data Fig. 9), whereas ACS exhibited 
predominantly differential changes in metabolome features (Fig. 5, 
Extended Data Figs. 6–9 and Supplementary Table 17).

MMC/UMMC versus IHD
(no significance)

HC versus IHD
(no significance)

HC versus MMC/UMMC
(significant change)

HC versus IHD
(significant change)

HC versus MMC/UMMC
(significant change)

d

MMC/UMMC versus IHD
(significant change)

HC versus IHD
(no significance)

HC versus MMC/UMMC
(no significance)

IHDF
(64)

MMC/UMMC versus IHD
(significant change)

HC versus IHD
(significant change)

HC versus MMC/UMMC
(no significance)

IHDF
(139)

IHDF
(80)

c

MMC/UMMC versus IHD
(no significance)

HC versus IHD
(no significance)

HC versus MMC/UMMC
(significant change)

DMF
(381)

MMC/UMMC versus IHD
(no significance)

HC versus IHD
(significant change)

HC versus MMC/UMMC
((1) Significant change)

((2) Same direction as of HC vs IHD)

DMF
(386)

MMC/UMMC versus IHD
((1) Significant change)

((2) Same direction as of
HC versus MMC/UMMC)

ESCF
(18)

MMC/UMMC versus IHD
((1) Significant change)

((2) Reverse direction as of
HC versus MMC/UMMC)

DSCF
(92)

MMC/UMMC versus IHD
((1) Significant change)

((2) Same direction as of
HC versus MMC/UMMC)

ESCF
(80)

MMC/UMMC versus IHD
((1) Significant change)

((2) Reverse direction as of
HC versus MMC/UMMC)

DSCF
(6)

b

No significant change

HC

MMC/
UMMC

MMC/
UMMC

MMC/
UMMC

MMC/
UMMC

HC

HC

HC

a

IHD-specific features (IHDF)

FDR < 0.1

FDR < 0.1

Escalation features (ESCF)

FDR < 0.1

FDR < 0.1

De-escalation features (DSCF)

FDR < 0.1

IHD

IHD

IHD

FDR < 0.1
No significant change

IHD

Dysmetabolism features (DMF)

Fig. 3 | Approach used for categorization of microbiome and metabolome features in the cross-sectional study. a–d, Gut microbiome and plasma and 
urine metabolome features that exhibited a statistically significant shift uniquely when treated MMCs, untreated UMMCs and treated individuals with 
IHD were compared with HCs were categorized as DMFs (a,b) as these features exhibited significant alterations in association with metabolic syndrome 
(that is, obesity and T2D) and not IHD per se. In contrast, gut microbiome and plasma and urine metabolome features that exhibited a significant change 
when either MMCs or UMMCs were compared with individuals with IHD were categorized as IHDFs. In addition, features exhibiting a significant change 
in individuals with IHD relative to HCs were categorized as IHDFs when they exhibited a simultaneous significant shift in individuals with IHD relative 
to MMCs or UMMCs (a,c). Next, we considered the natural trajectory of IHD in two stages—that is, HCs versus MMCs or UMMCs (representing the 
dysmetabolism stage) and MMCs or UMMCs versus individuals with IHD (representing the IHD stage). Features exhibiting a significant change under 
both dysmetabolic and IHD stages and in the same direction (representing disease progression) were thus labeled as ESCFs (a,d), whereas those 
exhibiting a significant change in the reverse direction (representing disease stabilization) were labeled as DSCFs (a,d). Our approach evaluated every 
feature across all group comparisons using the criteria of (1) non-confounded status (that is, feature cannot be confounded by any tested host variables, 
including drug treatment); (2) significance status (that is, feature has to exhibit FDR < 0.1 for respective group comparison); and (3) a directional 
alignment status (that is, direction of change when disease stages are considered) for categorization as DMF (b), IHDF (c), ESCF or DSCF (d). (See 
Extended Data Fig. 4 and Methods for more details.) The arrow size further reflects the number of features identified by each route for respective 
categorization: 767 DMFs, 283 IHDFs and 98 each of ESCFs and DSCFs were identified. Two-sided MWU was used for assessing the significance of 
group-wise comparisons using HC (n = 275), MMC (n = 372), UMMC (n = 222) and IHD (n = 372) groups. Multiple testing corrections were done using 
the Benjamini–Hochberg method, and FDR ≤ 0.1 was considered significant. The human icons were adapted from https://smart.servier.com/.
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information from Metabolon (Methods) who performed the analysis.
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Most (69%) of the dysmetabolism-linked species found by IHD 
versus HC comparisons were also present in comparisons of IHD 
subgroups versus HC, suggesting that the major disruption of the 
microbiome, which appears to be related to metabolic dysfunction, 
might persist throughout the various stages of IHD.

Strikingly, for the ACS subgroup, besides the 91 dysmetabolism- 
related species, no other species markers (ACS-specific, ESCF- 
related or DSCF-related) were found (Supplementary Table 17). 

In the same ACS group, the pattern was very different for serum 
metabolites where only 55% of markers were related to dysmetabo-
lism, whereas 25% were ACS-specific (Supplementary Table 17). 
We, thus, observed the acute disease phase being characterized by 
microbiome alterations almost exclusively related to dysmetabo-
lism, presumably accumulating during the long prodromal stage, 
as well as host metabolome perturbations unrelated to dysmetabo-
lism, presumably beginning only shortly before the ACS event. It is 
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tempting to suggest that the conjunction of the two might be condu-
cive to some of the decompensation observed in ACS.

When considering the metabolome markers specific to ACS, 
eight of the top ten metabolites were drug analytes or drug 
metabolites, related to aspirin, metroprolol and atorvastatin. 
There was also an increase in pro-inflammatory metabolites such 
as 5- and 12-hydroxyeicosatetraenoic acid (HETE), leukotriene 
B4 and B5, as well as products of microbial–host phenylalanine 
co-metabolism (phenylacetylcarnitine, phenylacetylglutamate and 
2-hydroxyphenylacetate), followed by indoxylsulfate and TMA, 
which is consistent with the identified overall IHD-specific signa-
ture. Likewise, some of the ACS-specific depleted metabolites were 
also less abundant in IHD, including health beneficial metabolites 
such as alpha-tocopherol, ergothioneine, methyl oleate and methyl 
hexadecanoate (Extended Data Fig. 6 and Supplementary Table 17).

In contrast to the findings in ACS, 19 and 31 specific spe-
cies markers were found for CIHD and HF, respectively, indicat-
ing additional microbiome changes in the chronic phases of IHD. 
Noticeably, these changes affected genera represented by only a few 
species: eight of 14 depleted and 11 of 17 enriched species in HF 
cases, respectively, belonged to genera represented by no more than 
six species (P = 2.9 × 10−5) as estimated by the number of species 
belonging to different genera found in our study (Extended Data 
Figs. 7 and 8 and Supplementary Table 17).

Most CIHD-specific features was enriched in cases over con-
trols (Extended Data Figs. 7 and 9 and Supplementary Table 17). 
This was particularly the case for microbiome functional poten-
tials for amino acid biosynthesis, including BCAA (KEGG mod-
ules M00019, M00570 and M00432), methionine (KEGG module 
M00017) and lysine (KEGG module M00030) (Extended Data Fig. 
9). Similarly, enhanced degradation of aromatic amino acids phe-
nylalanine and tyrosine (GMM modules MF0027 and MF0026) 
was reflected by increased abundance of phenylacetate metabo-
lites (phenylacetylcarnitine and phenylacetylglutamate). We also 
observed increased abundance of methionine and two of its metab-
olites (N-acetylmethionine sulfoxide and γ-glutamylmethionine), 
which are known to be associated with cardiovascular phenotypes39. 
Of interest, the gut microbiome-derived l-methionine biosynthe-
sis pathway was recently directly associated with atherosclerotic 
plaque burden and enhanced metabolic risk score for cardiovas-
cular disease18, whereas l-methionine sulfoxide as a product of 
protein methionine oxidation might influence thrombosis and vas-
cular function40 (Extended Data Figs. 7 and 9 and Supplementary 
Table 17). In addition, the abundance of multiple UPLC–MS/

MS-quantified carnitines, including decanoylcarnitine and oleoyl-
carnitine, was elevated in CIHD.

Some metabolite features also exhibited HF specificity with an 
enrichment of 4-cresol, 4-cresyl sulfate (also called p-cresol sulfate), 
4-cresylglucuronide (also called p-cresol glucuronide), choline 
and TMA as well as several carnitines (3-methylglutarylcarnitine, 
suberoylcarnitine (C8), octadecanedioylcarnitine (C18) and levu-
linoylcarnitine, including microbiome-derived carnitines (benzo-
ylcarnitine and phenylacetylcarnitine)). In contrast, metabolites, 
such as alpha-tocopherol, ergothioneine and 3-indoleglyoxylic 
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acid, exhibited HF-specific depletion (Extended Data Fig. 8 and 
Supplementary Table 17). These findings point toward altered 
fatty acid metabolism, which is known to play a crucial role in HF 
pathogenesis41.

Classification of participants into clinical subgroups. Robustness 
of our microbiome and metabolome signatures was evaluated by 
comparing the performance of orthogonal partial least squares 
discriminant analysis (O-PLS-DA) models for classifying ACS 
(n = 112), CIHD (n = 158) and HF (n = 102) relative to HC (n = 275) 
and MMC (n = 372) (Extended Data Fig. 10). Classification was 
based on (1) clinical markers routinely assessed during IHD diag-
nosis; (2) deconfounded microbiome and metabolome markers 
specific for each IHD subtype identified in the current study; and 
(3) a combination of the two. Models were built by randomly split-
ting our MetaCardis study population into groups of 70% and 30%, 
respectively, and using the former for training and the latter for 
testing; the process was iterated 1,000 times to minimize overfit-
ting. The performance of the specific -omics markers on the testing 
sets yielded area under the curve (AUC) values greater than 0.7 in 
all cases and was systematically higher than that of clinical mark-
ers only, in particular for classification relative to the MMC group. 
Combination of the two marker types did not improve classification 
relative to MMC and only marginally improved classification rela-
tive to HC (Extended Data Fig. 10).

To validate our classification models further, we took advantage 
of the independent dataset from the companion paper25, focusing on 
our ACS subgroup to match the pathology of the Israeli study sample. 
ACS-specific metabolomics markers from the two studies were highly 
correlated (Cliff ’s delta values computed relative to HC are shown in 
Fig. 6a and Supplementary Table 18), confirming that similar changes 
were observed in the two studies and validating a large fraction of our 
ACS-specific metabolome features. Notably, our markers exhibited 
strong discriminatory potential when employed in O-PLS-DA mod-
els trained in our population and tested in the independent Israeli 
population25. Models based on our ACS-specific metabolome mark-
ers with clinical variables (model 3, area under the receiver operating 
characteristic curve (AUROC) = 0.87) or without clinical variables 
(model 2, AUROC = 0.85) performed substantially better than a 
model based on clinical variables alone (AUROC = 0.764) (Fig. 6c). 
Altogether, our work confirmed the robustness of the discriminatory 
potential of our deconfounded microbiome and metabolome mark-
ers in a clinical setting (Fig. 6 (metabolome markers) and Extended 
Data Fig. 10 (microbiome and metabolome markers)).

Discussion
We show that a vast majority of the intestinal microbiome and 
circulating and urine metabolome signatures that were previously 
reported as characteristic of IHD and that do not reduce to drug 
treatment effects are, in fact, already present in individuals with 
common dysmetabolic phenotypes, such as obesity and T2D. Our 
observations further align with the presence of a reduced gut bacte-
rial cell density and changes in the abundance of multiple species 
and microbial functional potentials. Accounting for bacterial cell 
density, we identify the low-cell-count Bacteroides 2 enterotype23 as 
a biomarker both in individuals with dysmetabolism and in indi-
viduals diagnosed with IHD. We particularly highlight low gut bac-
terial cell count as one of the microbiome features linked with IHD, 
which appears to reverse in treated IHD cases. Interestingly, both 
the present paper and another recent MetaCardis publication42 sug-
gest that statin drugs widely prescribed to individuals with CMD 
might help restore gut bacterial cell load. These results are particu-
larly relevant because several statins and their drug metabolites 
(mostly related to atorvastatin) and β-blockers (metroprolol and its 
metabolites) are reflected in the here-identified specific signatures 
of IHD and its subtypes.

In individuals with diagnosed IHD and treatment-induced 
improvement of vascular, inflammatory and lipid health markers, 
we found less aberrant microbiome and metabolome profiles when 
compared to healthy individuals. Still, we found bacterial species 
specifically altered in IHD cases, and most of them were depleted 
in agreement with findings of the companion paper25. Similarly, we 
observed a depletion of IHD-specific metabolites, including the 
fatty acid esters, ergothioneine and alpha-tocopherol, known for 
vasoprotective31 and antioxidant properties32, whereas metabolites 
enriched in individuals with IHD included intermediates related to 
TMA and compounds derived from tryptophan and phenylalanine 
metabolism. Finally, 4-cresol and phenylacetylglutamine stood out 
as representatives of ESCF, potentially mirroring disease severity.

In IHD subtype analyses, we identified multiple dysmetabolism- 
related gut microbiome changes in individuals with ACS, further 
strengthening our hypothesis that gut microbiome alterations take 
place in the prodromal stages before the onset of IHD. In contrast, a 
substantial fraction of altered host metabolites (45%) in individuals 
with ACS was unrelated to dysmetabolism. In addition, we found 
alterations of the microbiome and metabolome that were specific 
for CIHD and HF, putatively conditioned by a conjunction of inter-
vention and disease worsening.

Of relevance for actionable targets in future preclinical and 
clinical trials, we confirm reduced microbiome potentials for bio-
synthesis of SCFAs and increased production of BCAAs43 in indi-
viduals at increased risk of asymptomatic coronary atherosclerosis 
before IHD diagnosis. In the later phases of IHD pathogenesis, we 
show an overwhelming role for microbial–host metabolism of aro-
matic amino acids derived from phenylalanine and tyrosine—that 
is, emerging from phenylacetate and cresol co-metabolism. Thus, 
our findings suggest that, beyond diminishing microbial–host pro-
duction of TMAO, future interventions aiming to delay or prevent 
IHD might be directed at increasing microbial SCFA biosynthesis 
but lowering microbial production of aromatic amino acids and 
BCCAs. Finally, the identified microbiome and metabolome fea-
tures allowed us to stratify individuals with IHD from healthy indi-
viduals or metabolically matched individuals at levels above those 
achieved with conventional risk markers, pointing to their patho-
physiological relevance.

In conclusion, at prodromal dysmetabolic stages and at both 
early and late clinical manifestations of IHD, multiple deconfounded 
microbiome and metabolome alterations are present, reflecting dis-
tinct metabolic pathways. Several of these are modifiable and might 
be targets for future mechanistic experiments and clinical trials 
aiming at IHD prevention.
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Methods
Study design and participants. The MetaCardis project included HCs and 
individuals at increasing stages of dysmetabolism and IHD severity, aged 18–75 
years old and recruited from Denmark, France and Germany between 2013 
and 2015. IHD cases were classified into patients with first case of ACS (<15 d); 
patients CIHD with normal heart function; and patients with documented HF 
and IHD as demonstrated by echocardiography-evaluated LVEF less than 45%. 
Our study encompassed 372 individuals with IHD (112 with ACS, 158 with 
CIHD and 102 with HF caused by CIHD). In addition, 275 HCs were matched 
on demographics, age and sex as well as 222 UMMCs—that is, individuals with 
features of the metabolic syndrome but receiving no lipid-lowering, anti-diabetic 
or anti-hypertensive drugs. Finally, we included 372 controls matched with 
individuals with IHD in terms of T2D status and BMI (referred to as MMCs).

Exclusion criteria were known confounders of the gut microbiome—that is, 
antibiotic use in the 3 months before inclusion, past history of abdominal cancer 
with and without radiation therapy, intestinal resection except for appendectomy 
and inflammatory or infectious diseases, including hepatitis B, hepatitis C or HIV.

Additionally, patients with a history of organ transplantation, patients receiving 
immunosuppressants, patients with estimated glomerular filtration rate (eGFR) 
<50 ml/min/1.73 m2 and patients with drug or alcohol addiction were excluded. 
Ethical approval was obtained from the Ethics Committee CPP Ile-de France, 
the Ethical Committees of the Capital Region of Denmark (H-3-2013-145) and 
the Ethics Committee at the Medical Faculty at the University of Leipzig (047-
13-28012013). All study participants provided written informed consent, and all 
clinical investigations were undertaken according to Helsinki Declaration II.

Bioclinical variables. Clinical measurements were made using standardized 
operating procedures concluded before patient recruitment. Bioclinical variables 
included age, sex, BMI, smoking status, dietary intake, physical activity and 
drug intake. We obtained habitual dietary information using food frequency 
questionnaires adapted to cultural habits of each of country of recruitment. 
Smoking status was obtained from a standardized questionnaire, and information 
on physical activity was assessed using the Recent Physical Activity Questionnaire. 
Drug intake was assessed either by recall or from medication list, and a medical 
specialist interviewed study participants about adherence to prescribed medication.

T2D was defined as fasting plasma glucose ≥7 mmol l−1 and/or Hba1c ≥6.5% 
and/or individuals taking any glucose-lowering agents. Hypertension was defined 
as systolic blood pressure >140 mmHg and/or diastolic blood pressure >90 mmHg 
and/or individuals taking anti-hypertensive drugs. Echocardiography enabled the 
measure of LVEF for diagnosis of HF (LVEF <45%). Renal function was assessed 
via eGFR calculated using the Modification of Diet in Renal Disease equation44.

Blood was collected in the morning after an overnight fast. Plasma and 
serum samples were stored at the clinical centers at −80°C until shipment 
to a central laboratory facility. Fasting plasma glucose, total and HDL 
cholesterol, triglycerides, creatinine and HbA1c levels were measured using 
standard enzymatic methods. LDL cholesterol concentrations were measured 
enzymatically for German participants or by the Friedwald equation for French 
and Danish participants. Alanine aminotransferase, aspartate aminotransferase 
and γ-glutamyltransferase were measured by enzyme-coupled kinetic assays. 
Ultra-sensitive C-reactive protein was measured using an Image Automatic 
Immunoassay System (Beckman Coulter). High-sensitivity IL-6 was measured 
using the Human IL-6 Quantikine HSELISA Kit (R&D Systems). IFN-γ-induced 
protein 10 (IP-10) and C-X-C motif chemokine ligand 5 (CXCL5), CCL2, Eotaxin, 
IL7, MIF, MIP1b, SDF1 and VEGFa were measured using a Luminex assay 
(ProcartaPlex Mix&Match Human 13-plex, eBioscience). Plasma pro-ANP was 
measured using a processing-independent assay45.

Stool sample collection. Stool samples were processed according to International 
Human Microbiome Standards (IHMS) guidelines (SOP 03 V1). Samples were 
collected by study participants at home and immediately stored at −20 °C until 
they were transported on dry ice and frozen 4–24 h later at −80°C in plastic tubes 
at the biobanks of corresponding recruitment centers.

Microbial load measurement by flow cytometry. Microbial loads of fecal samples 
were processed and analyzed as described23. In brief, 0.2-g frozen (−80 °C) aliquots 
were suspended in physiological solution to a total volume of 100 ml (8.5 g l−1 
NaCl, VWR); the slurry was diluted 1,000 times; and samples were filtered using 
a sterile syringe filter (pore size 5 µm, Sartorius). Next, 1 ml of the microbial 
cell suspension was stained with 1 µl of SYBR Green I (1:100 dilution in DMSO, 
shaded 15-min incubation at 37 °C, 10,000 concentrate, Thermo Fisher Scientific). 
The flow cytometry analysis was performed using a C6 Accuri flow cytometer 
(BD Biosciences) based on Prest et al.46. Events were monitored using the FL1 
533/30-nm and FL3 >670-nm detectors. Instrument and gating settings were kept 
identical for all samples (fixed staining/gating strategy46), and cell counts were 
converted to microbial loads per gram of fecal material (microbial load index).

Stool sample processing and metagenomic analyses. Total fecal DNA was 
extracted following the IHMS guidelines (SOP 07 V2 H). Samples were 
sequenced in a non-randomized order using ion proton technology (Thermo 

Fisher Scientific) resulting in 23.3 ± 4.0 million (mean ± s.d.) single-end short 
reads with an on-average length of 150 bases. Sequencing was carried out with 
standardized protocols at a single site (Metagenopolis) over a period of 18 months. 
There was no significant bias of the sequencing date for different Metacardis 
groups (Kruskal–Wallis P value of 0.4 for HC, MMC, UMMS and IHD groups). 
Reads were cleaned using Alien Trimmer (version 0.4.0)47 to (1) remove resilient 
sequencing adapters and (2) trim low-quality nucleotides at the 3′ side using a 
quality and length cutoff of 20 bp and 45 bp, respectively. Cleaned reads were 
subsequently filtered from human and other possible food contaminant DNA 
using human genome RCh37-p10, Bos taurus and Arabidopsis thaliana with an 
identity score threshold of 97%. Gene abundance profiling was performed using 
the 9.9 million gene integrated reference catalog of the human microbiome48. 
Filtered high-quality reads were mapped with an identity threshold of 95% to the 
9.9 million gene catalog using Bowtie2 (version 2.3.4)49 included in METEOR 
version 3.2 (https://forgemia.inra.fr/metagenopolis/meteor) software50. A gene 
abundance profiling table was generated by means of a two-step procedure using 
METEOR version 3.2. First, reads mapped to a unique gene in the catalog were 
attributed to their corresponding genes. Second, reads that mapped with the same 
alignment score to multiple genes in the catalog were attributed according to the 
ratio of their unique mapping counts. The gene abundance table was processed for 
rarefaction and normalization and further analysis using the MetaOMineR (momr, 
version 1.31) R package5. To decrease technical bias due to different sequencing 
depth and to avoid any artifacts of sample size on low-abundance genes, read 
counts were rarefied. The gene abundance table was rarefied to 10 million reads 
per sample by random sampling of 10 million mapped reads without replacement. 
The resulting rarefied gene abundance table was normalized according to the 
fragments per kilobase of transcript per million mapped reads (FPKM) approach 
to give the gene abundance profile table.

Metagenomic species (MGS) are co-abundant gene groups with more than 
500 genes corresponding to microbial species. In total, 1,436 MGS were clustered 
from 1,267 human gut microbiome samples used to construct the 9.9 million 
gene catalog48. MGS abundances were estimated as the mean abundance of the 
50 genes defining a robust centroid of the cluster (if more than 10% of these 
genes gave positive signals). Abundances were corrected for bacterial cell count 
by multiplying by an index factor calculated as the bacterial cell count of the 
sample divided by the mean value of this bacterial cell count over the dataset as a 
whole. MGS taxonomical annotation was performed using all genes by sequence 
similarity using NCBI blast N; a species-level assignment was given if more than 
50% of the genes matched the same reference genome of the NCBI database 
(November 2016 version) at a threshold of 95% of identity and 90% of gene length 
coverage. Remaining MGS were assigned to a given taxonomical level from genus 
to super-kingdom level, if more than 50% of their genes had the same level of 
assignment. MGS richness (MGS count) was calculated directly from the rarefied 
MGS abundance matrix. Bacterial gene richness (gene count) was calculated by 
counting the number of genes detected at least once in a given sample, using the 
average number of genes counted in ten independent rarefaction experiments. 
MGS richness (MGS count) was calculated directly from the rarefied MGS 
abundance matrix.

Customized microbial module analysis. Customized module sets included 
previously described GMMs51 covering bacterial and archaeal metabolism 
specific to the human gut environment with a focus on anaerobic fermentation 
processes, expanded with a specific set of six modules zooming in on bacterial 
TMA metabolism52. Additionally, after a previously published strategy to build 
manually curated gut-specific metabolic modules51,53, we constructed a novel set of 
20 modules describing microbial phenylpropanoid metabolism (phenylpropanoid 
metabolism modules) from shotgun metagenomic data. Abundances of customized 
modules were derived from the ortholog abundance tables using Omixer-RPM 
version 1.0 (https://github.com/raeslab/omixer-rpm)51,54. The coverage of each 
metabolic variant encoded in a module was calculated as the number of steps 
for which at least one of the orthologous groups was found in a metagenome, 
divided by the total number of steps constituting the variant. The coverage of the 
GMM was defined as equal to the one of the variants with maximum coverage. 
Module presence/absence was identified with a detection threshold of more 
than 66% coverage to provide tolerance to mis-annotations and missing data 
in metagenomes. Module abundance was calculated as the median of KEGG 
orthology abundance in the pathway with maximum coverage. Abundances were 
corrected for bacterial cell count similarly to MGSs.

Metabolic profiling. We deployed a comprehensive metabolic phenotyping 
strategy combining in-house analysis by proton nuclear magnetic resonance 
(1H-NMR) spectroscopy, gas chromatography coupled to mass spectrometry (GC–
MS) and targeted UPLC–MS/MS with untargeted UPLC–MS data generated by 
Metabolon, as described in detail below:

1H NMR spectroscopy. 1H-NMR experiments were carried out using a Bruker 
Avance spectrometer operating at 600 MHz, as reported55–57. Structural assignment 
was performed using data from literature, the Human Metabolome Database 
(http://www.hmdb.ca/), S-Base (Bruker) and in-house databases55. 1H-NMR 
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spectra were pre-processed and exported to MATLAB for multivariate statistical 
analyses using O-PLS-DA, as previously reported58. Absolute metabolite 
quantifications were also derived using Bruker’s In Vitro Diagnostics for research 
(IVDr) quantification algorithms.

GC–MS semi-targeted profiling. Serum samples were prepared, analyzed and 
processed using standard protocols. In brief, serum samples (100 μl) were cleaned 
up with methanol protein precipitation, evaporated to dryness, derivatized 
and injected to an Agilent 7890B-5977B Inert Plus GC–MS system. The 
chromatographic column was an Agilent ZORBAX DB5-MS (30 m × 250 µm × 
0.25 µm + 10 m Duragard). The temperature gradient was 37.5 min long, and the 
mass analyzer was operated in full-scan mode between 50 m/z and 600 m/z. Peaks 
were annotated with the use of the Fiehn library (Agilent G1676AA Fiehn GC/MS 
Metabolomics RTL Library, User Guide, Agilent Technologies, https://www.agilent.
com/cs/library/usermanuals/Public/G1676-90001_Fiehn.pdf). Metabolic features 
with high reproducibility (CV <30%) and linearity (that is, dilution signal rho > 
0.9 and false discovery rate (FDR)-corrected P < 0.05 (one-tailed Spearman)) were 
kept in the final dataset, resulting in 102 annotated metabolic features.

UPLC–MS/MS isotopic quantification of methylamines and carnitines. UPLC–MS/
MS was employed for the determination of absolute concentrations for TMA, 
TMAO, choline, betaine, γ-butyrobetaine, betaine-aldehyde, butyryl-carnitine, 
isovaleryl-carnitine, OH-isovaleryl-carnitine, stearoyl-carnitine, oleoyl-carnitine, 
linoleoyl-carnitine, myristoyl-carnitine, lauroyl-carnitine and decanoyl-carnitine.

Serum samples (50 μl) were prepared as follows: (1) samples were spiked 
with 10 μl of Internal Standard solution (13C3/15N-TMA, d9-TMAO, d4-choline, 
d9-isovaleryl carnitine and d9-betaine in water, 1 mg l−1; Sigma-Aldrich); (2) 
30 μl of ethyl-2-bromoacetate solution (22.5 g l−1 of ethyl-2-bromoacetate and 
1.4% NH4OH in acetonitrile) was added, and derivatization of trimethylamines 
(TMA and 13C3/15N-TMA) to their ethoxy-analogues was completed after 30 min 
at room temperature; and (3) 910 μl of protein/lipid precipitation solution (94% 
acetonitrile/5% water/1% formic acid) was added; samples were centrifuged for 
20 min (4 °C at 20,000g); and 400 μl of the supernatants was transferred to UPLC 
autosampler 500-μl-well plates. Sample injections (5 μl, full loop) were performed 
to a Waters Acquity UPLC-Xevo TQ-S UPLC–MS/MS system equipped with an 
Acquity BEH HILIC (2.1 × 100 mm, 1.7 µm) chromatographic column. An isocratic 
elution was applied with 10 mM ammonium formate in 95:5 (v/v) acetronitrile:water 
for 11.5 min at 500 μl ml−1 and 50 °C. Positive electrospray (ESI+) was used as 
ionization source, and mass spectrometer parameters were set as follows: capillary, 
cone and sources voltages at −700 V, −18 V and 50 V, respectively; desolvation 
temperature at 600 °C; and desolvation/cone/nebulizer gases were high-purity 
nitrogen at 1,000 L h−1, 150 L h−1 and 7 bar, respectively. Collision gas was high-purity 
argon. Mass spectrometer was operated in multiple reaction monitoring mode. The 
monitored transitions were the following: for derivatized TMA, +146>+118/59 m/z 
(23/27 V); for derivatized 13C3/15N-TMA, +150>+63/122 m/z (27/22 V); for TMAO, 
+76>+59/58 m/z (12/13 V); for d9-TMAO, +85>+68/66 m/z (18/20 V); for choline, 
+104>+60/45 m/z (20/22 V); for d4-choline, +108>+60/45 m/z (20/22 V); for 
isovaleryl-carnitine, +246>+85/145 m/z (19/19 V); for d9-isovaleryl-carnitine, 
+255>+85 m/z (19 V); for betaine, +118>+59/73 m/z (18/19 V); for d9-betaine, 
+127>+68 m/z (19 V); for γ-butyrobetaine, +146>+87/60 m/z (17/19 V); 
for betaine-aldehyde, +103>+60.5/74 m/z (12/12 V); for butyryl-carnitine, 
+232>+85/173 m/z (14/12 V); for OH-isovaleryl-carnitine, +262>+86/61 m/z 
(20/20 V); for stearoyl-carnitine, +428>+86/371 m/z (21/17 V); for oleoyl-carnitine, 
+426>+86/61 m/z (22/22 V); for linoleoyl-carnitine, +424>+86/69 m/z (24/24 V); 
for myristoyl-carnitine, +372.5>+86/61 m/z (24/24 V); for lauroyl-carnitine, 
+344.5>+86/61 m/z (21/21 V); and for decanoyl-carnitine, +316.5>+86/145 m/z 
(21/21 V). The system was controlled by MassLynx (version 4.2, Waters) software, 
also used for the data acquisition and analysis.

UPLC–MS untargeted profiling. Serum samples were extracted and profiled by 
Metabolon using a UPLC–MS-based methodology59. Annotated metabolites 
and unknown features (denoted X-00000) were identified by comparing sample 
features with ion features in a reference database of pure chemical standards and 
previously detected unknowns, followed by detailed visual inspection and quality 
control, as reported60.

For all metabolomic assays, we randomized the sample preparation order 
across the whole study so that each sample preparation batch included samples 
from all study groups. For MS untargeted assays, median batch correction was 
performed by adjusting batch-wise study sample variable medians according to 
a scalar derived from adjusting pooled reference sample medians, so that pooled 
reference sample medians are identical across all batches.

The randomized sample preparation batches were also tested for association 
with study groups using univariate statistics (Fisher’s exact test or Kruskal–Wallis 
test), and P > 0.05 was observed across all methods (GC–MS, Fisher’s exact 
test, P = 0.23; UPLC–MS targeted, Fisher’s exact test, P = 0.12; and UPLC–MS 
untargeted (Metabolon), Fisher’s exact test, P = 0.65). In addition, NMR run order 
exhibited a Kruskal–Wallis P = 0.49. To choose a single measurement for the 
duplicate metabolites observed across platforms, we prioritized measurements 
based on the analytical quality of the data as follows:

	(1)	 Targeted quantification using isotopic standards (for example, UPLC–MS/MS 
for acylcarnitines and TMA)

	(2)	 Relative abundance with structural ID confirmed by native standards (for 
example, Metabolon UPLC–MS)

	(3)	 Relative/absolute or quantification by NMR calibrated against a database/ 
reference dataset (for example, > NMR quantifications and manually  
assigned peaks)

	(4)	 Relative or quantification with metabolite ID check against a standards  
database (for example, GC–MS)

Drug deconfounding analysis. The pipeline was used to assess to what extent 
observed differences among groups of study participants in microbiome, 
metabolome and bioclinical feature abundance are confounded, in the sense 
of being consequences of other (treatment or risk factor) variables different 
among the groups more so than characteristic of the specific phenotype 
itself. We employed the post hoc filtering approach implemented in the R 
package metadeconfoundR (version 0.1.8; see https://github.com/TillBirkner/
metadeconfoundR or https://doi.org/10.5281/zenodo.4721078) that was devised 
within the MetaCardis consortium8.

The pipeline has two steps. In the first, all associations between -omics features 
and the set of independent variables (disease status, drug treatment status and risk 
markers, including age and smoking status) are determined under non-parametric 
statistics (Mann–Whitney U-test (MWU) or Spearman test, adjusted for multiple 
testing using the Benjamini–Hochberg method). For each feature significantly 
(FDR < 0.1) associated with defined phenotype status, it is checked whether it 
has significant associations with any potential confounder. If not, it is considered 
trivially unconfounded (not confounded (NC)). If at least one covariate also has 
significant association with the feature, then, for each such covariate, a post hoc 
test for confounding is applied. This test takes the form of nested linear model 
comparisons (likelihood ratio test for P values), where the dependent variable 
is the feature (X), and the independent variables are the disease status (A) and 
the tested covariate (B) versus a model containing only the covariate (B), thus 
testing whether disease status (A) adds explanatory statistical power beyond the 
covariate (B). If this holds (likelihood ratio test (LRT) P < 0.05) for all covariates 
(B), then disease status is confidentially deconfounded (CD) concerning its effect 
on feature X; it cannot be reduced to any confounding factor. For each covariate 
(B) where significance is lost, a complementary modeling test is performed of the 
complementary model pairs, predicting (X) as a function of (A) and (B) versus 
a model containing (A) alone, thus testing whether the covariate (B) in turn is 
equally reducible to (A). If for at least one such covariate (B), (B) has independent 
effect (LRT P < 0.05) on top of (A), then the feature (X) is considered confounded 
by (B). However, if in none of the pairwise tests the original significance holds, 
then (A) and (B) are considered so correlated that their relative influence cannot be 
disentangled. We consider these cases laxly deconfounded (LD), in the sense that, 
for these cases, clear confounding influence can neither be concluded nor ruled 
out. The R package was applied to the present dataset considering medication 
status either as binary variables or as normalized dosages.

Our deconfounding pipeline takes into account linear effects related to drug 
categories. Still, we were not able to control for every possibly lifestyle confounding 
factor, making a lack of full confounding adjustment a limitation of our study.

Statistical analyses. Downsampled microbiome functional profile and taxonomic 
composition data, metabolite and quantitative clinical phenotype measurements 
were assessed between and within groups using non-parametric tests (MWU and 
Spearman test) corrected for multiple testing using the Benjamini–Hochberg 
approach. All tests undertaken as part of the univariate biomarker analyses 
involved comparing only two groups. The main exception was the comparison 
between the three study centers where we applied a Kruskal–Wallis test. 
Non-parametric directional standardized effect sizes were likewise taken as the 
Cliff ’s delta and Spearman rho, respectively. Classification models were built using 
multivariate O-PLS-DA using the ropls R package. ROC analysis was performed 
using the ROCR package. To control for influence of covariates associated with 
disease severity, including sex, smoking, dietary indices and drug treatment, a post 
hoc test approach was adopted as outlined above. R packages, including lmtest, 
orddom, ropls, ROCR, circlize, ggplot2, PCMCR using R version 4.0.2 and RStudio 
versions 1.4.1717 and 1.2.5033, were used for various analyses.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Supplementary information on data availability is linked to the online version of 
the paper at www.nature.com/nature. Raw shotgun sequencing data that support 
the findings of this study have been deposited in the European Nucleotide Archive 
with accession codes PRJEB37249, PRJEB38742, PRJEB41311 and PRJEB46098, 
with public access. Metabolome data have been uploaded to Metabolights and 
MassIVE with respective accession numbers—that is, serum NMR and  
urine NMR with accession number MTBLS3429, serum GCMS with accession  
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number MassIVE MSV000088042 and additional isotopically quantified 
serum metabolites using UPLC–MS/MS with accession number MassIVE 
MSV000088043. Processed pseudonymized per-subject -omics and metadata 
are provided in Supplementary Tables 9–13, and medication profiles are given in 
Supplementary Table 14.

Code availability
The novel drug-aware univariate biomarker testing pipeline, described in 
full elsewhere8, is available as an R package (metadeconfoundR; Birkner 
et al., manuscript in preparation) on GitHub (https://github.com/TillBirkner/
metadeconfoundR) and also at https://doi.org/10.5281/zenodo.4721078. The 
latest version (0.1.8) of this package was used to generate the data shown in this 
publication. In addition, the scripts using this package to perform the analysis 
presented here are available at https://doi.org/10.5281/zenodo.5516219.
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Extended Data Fig. 1 | Overview of selected bio-clinical variables of the various groups. Box plots (above) representing the distribution of key bio-clinical 
variables in various study groups (lower line, lower quartile; medium line, median; upper line, upper quartile). Table (below) shows the two-sided MWU P 
for respective group comparisons using HC (n = 275), MMC (n = 372), UMMC (n = 222), IHD (n = 372), ACS (n = 112), CIHD (n = 158), HF (n = 102). IHD: 
ischemic heart disease patients, HC: healthy controls, MMC: metabolically matched controls, UMMC unmedicated metabolically matched controls, ACS: 
acute coronary syndrome, CIHD: chronic IHD, HF: heart failure due to CIHD, BMI: body mass index; HbA1c: glycated haemoglobin, pro-ANP: pro-atrial 
natriuretic peptide, MWU: Mann-Whitney U.
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Extended Data Fig. 2 | Microbiome findings from the literature. Cuneiform plot shows literature review of gut microbial taxonomic and predicted 
functional features reported to be associated with IHD, while highlighting their individual replication in the present MetaCardis study group either as a 
general dysmetabolism biomarker (seen only in case of HC versus MMC), or as an IHD biomarker (seen also in case of MMC versus IHD) (Supplementary 
Table 15). The literature review was performed as a keyword search in PubMed (Medline) using combinations of the words ‘microbiota’ and ‘microbiome’ 
with the word ‘atherosclerosis’, ‘cardiovascular disease’, ‘coronary artery disease’, ‘ischemic heart disease’, ‘myocardial infarction’, ‘acute coronary 
syndrome’, ‘angina pectoris’ and ‘heart failure’. Studies61–72 were identified that met the following criteria: 1) published during the recent 15 years, 2) 
reporting data from human studies with at least 15 participants, 3) using culture-independent methods for microbiota profiling and 4) evaluating the link 
between human microbiota and manifestations of impaired heart disease (Supplementary Table 16). Results on functional features were derived from 
four studies using whole-genome shotgun sequencing68,71,72. Results imputed from 16 S rRNA gene analyses were not included. Point marker color and size 
reflect MetaCardis findings (Cliff’s delta), with arrows displaying direction of effects. Literature findings are shown at a uniform effect size. Markers are 
shown only for features significantly different in abundance (FDR < 0.1) and have a bold border if they cannot be reduced to the confounding influence of 
any drug or drug combination prescribed to treat dysmetabolism. While the majority of literature findings are recaptured in our study when comparing HC 
and IHD, relatively fewer were found in MMC and IHD comparisons, implying them to be general markers of dysmetabolism rather than being IHD-only 
microbiome markers. Two-sided MWU tests were used for assessing the significance of group-wise comparisons using HC (n = 275), MMC (n = 372), 
UMMC (n = 222) and IHD (n = 372) groups. Multiple testing corrections were done using Benjamini-Hochberg method and FDR < = 0.1 was considered 
significant. IHD: ischemic heart disease patients, HC: healthy controls, MMC: metabolically matched controls, MWU: Mann-Whitney-U tests, FDR: 
false-discovery rate.
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Extended Data Fig. 3 | Distribution of differential features among various group comparisons pre- and post- deconfounding. (a) Venn diagrams 
showing the comparative shift in the number of gut microbiome and metabolome features that remain differentially abundant (FDR < 0.1) in various group 
comparisons when healthy individuals (HC) and drug-treated IHD cases are compared to untreated metabolically matched controls (UMMC) or (b) 
drug-treated metabolically matched controls (MMC) without any adjustments for potential confounders followed by (c) drug-deconfounding. Two-sided 
MWU tests were used for assessing the significance of group-wise comparisons using HC (n = 275), MMC (n = 372), UMMC (n = 222) and IHD (n = 372) 
groups. Multiple testing corrections were done using Benjamini-Hochberg method and FDR < = 0.1 was considered significant. IHD: ischemic heart disease 
patients, MWU: Mann-Whitney-U tests, FDR: false-discovery rate.
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Extended Data Fig. 4 | Operational classification of microbiome and metabolome features from the perspective of IHD pathology. A classification 
tree was constructed based on significance and alignment of effect size and directionality of microbiome and metabolome features in the various group 
comparisons leading to the identification of: Features that reflect metabolic dysregulation in the individual but are not associated with diagnosed IHD: 
dysmetabolism features (DMF). Features that are significantly associated with IHD but are also significantly altered in metabolically dysregulated 
individuals in the same direction; we suggest that these features are early markers of IHD pathogenesis in individuals with metabolic dysregulation: IHD 
escalation features (ESCF). Features that are significantly associated with IHD but are also significantly altered in metabolically dysregulated individuals 
in the reverse direction; we suggest that these features are early markers of IHD seen in metabolically dysregulated individuals. However, they exhibit 
reversibility. This may plausibly be due to 1) long-term drug-treatment and improvement in overall lifestyle of the IHD individuals, 2) a compensatory 
response to the initiation of disease or 3) a trajectory-associated differential response to disease development. We propose that some of these features 
contribute to the stabilization of IHD and dysmetabolism and we coin those IHD de-escalation features (DSCF). IHD-specific features (IHDF) that 
achieve a significant shift only under IHD diagnoses. Two-sided MWU tests were used for assessing the significance of group-wise comparisons using 
HC (n = 275), MMC (n = 372), UMMC (n = 222), IHD (n = 372), ACS (n = 112), CIHD (n = 158), HF (n = 102) groups. Multiple testing corrections were 
done using Benjamini-Hochberg method and FDR < = 0.1 was considered significant. HC: healthy controls, MMC: metabolically matched controls, UMMC 
unmedicated metabolically matched controls, IHD: ischemic heart disease, ACS: acute coronary syndrome, CIHD: chronic IHD, HF: heart failure due to 
IHD, MWU: Mann-Whitney U, FDR: false-discovery rate.
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Extended Data Fig. 5 | Gut microbial functional features categorization. Gut microbial functional features (GMM and KEGG modules) categorized as 
escalation-, de-escalation-, and IHD-specific biomarkers when features classification scheme (as shown in Fig. 3, Extended Data Fig. 4 and described in 
supplementary methods) was applied to various group comparisons involving HC, MMC and IHD subjects. HC: healthy controls, MMC: metabolically 
matched controls, IHD: ischemic heart disease.
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Extended Data Fig. 6 | Features categorization for ACS subgroup. Microbiome and metabolome features categorized as escalation-, de-escalation-, 
and ACS-specific biomarkers when features classification scheme (as shown in Fig. 3, Extended Data Fig. 4 and described in supplementary methods) 
was applied to various group comparisons involving HC, MMC and ACS groups. HC: healthy controls, MMC: metabolically matched controls, ACS: acute 
coronary syndrome, ESCF: escalation features, DSCF: De-escalation features. Gut microbiome features included taxonomic (prefix: Taxon) and microbiome 
density indices, whereas metabolome features included serum and urinary metabolites. Only features exhibiting absolute effect size > 0.1 are displayed 
whereas the full list is given in Supplementary Table 17).
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Extended Data Fig. 7 | Features categorization for CIHD subgroup. Microbiome and metabolome features categorized as escalation-, de-escalation- and 
CIHD-specific biomarkers when features classification scheme (as shown in Fig. 3, Extended Data Fig. 4 and described in supplementary methods) was 
applied to various group comparisons involving HC, MMC and CIHD groups. HC: healthy controls, MMC: metabolically matched controls, CIHD: chronic 
IHD. ESCF: escalation features, DSCF: De-escalation features. Gut microbiome features included both taxonomic (prefix: Taxon) and microbiome density 
indices, whereas metabolome features included serum and urinary metabolites. Only features exhibiting absolute effect size > 0.1 are displayed whereas 
the full list is given in Supplementary Table 17).
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Features categorization for HF subgroup. Microbiome and metabolome features categorized as escalation-, de-escalation- and 
HF-specific biomarkers when features classification scheme (as shown in Fig. 3, Extended Data Fig. 4 and described in supplementary methods) was 
applied to various group comparisons involving HC, MMC and HF groups. HC: healthy controls, MMC: metabolically matched controls, HF: heart failure 
due to CIHD. ESCF: escalation features, DSCF: De-escalation features. Gut microbiome features included both taxonomic (prefix: Taxon) and microbiome 
density indices, whereas metabolome features included serum and urinary metabolites. Only features exhibiting absolute effect size > 0.1 are displayed 
whereas the full list is given in Supplementary Table 17).
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Extended Data Fig. 9 | Gut microbial functional features categorization for IHD subgroups. Microbial functional features (GMM and KEG modules) 
categorized as escalation-, de-escalation- and subtype-specific biomarkers when features classification scheme (as shown in Fig. 3, Extended Data Fig. 
4 and described in supplementary methods) was applied to various group comparisons involving HC, MMC and IHD subgroups (that is, ACS, CIHD and 
HF). HC: healthy controls, MMC: metabolically matched controls, ACS: acute coronary syndrome, CIHD: chronic IHD, HF: heart failure due to CIHD. Only 
features exhibiting absolute effect size > 0.1 are displayed whereas the full list is given in Supplementary Table 17).
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Discriminatory potential IHD subtype-specific features. We compared clinical variables assessed for risk prediction in the 
companion paper25 (Model 1) with our IHD subgroup-specific gut microbiome and metabolomic features (Model 2) and a combination of the two (Model 
3) for their discriminatory potentials using orthogonal partial least squares- discriminant analysis (O-PLS-DA; ropls r package). Model 1 included ten 
variables (that is age, sex, body mass index, waist circumference, hip circumference, waist to hip ratio, systolic blood pressure, diastolic blood pressure, 
glycated haemoglobin (factored as > 5.7, 5.7-6.4 and < 6.4 mmol/l) and smoking status). Model 2 included each IHD subgroup-specific metagenomic 
species and fasting serum metabolites. Model 3 involved a combination of model 1 and 2 variables. OPLS-DA models were trained on 70% of the subgroup 
specific sample and then tested in 30% of the remaining subgroup sample using 1000 iterations of random sampling (bootstrapping). Boxplots represent 
the distribution (center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers) of area under the receiver 
operating characteristic (ROC) curves derived from 1000 bootstraps based on these models in the training set (A) and test set (B) using both healthy 
controls (HC, n = 275) and metabolically matched controls (MMC, n = 372) relative to the IHD subtype cases (ACS, n = 112, CIHD n = 158 and HF n = 102). 
Models were compared using Kruskal-Wallis test and Dunn’s pairwise multiple comparisons post hoc testing with Bonferroni correction. Dunn’s test P 
are shown for each comparison. As expected, the model performance improves significantly for model 2 and 3 relative to model 1, respectively, when 
either HC or MMCs are used as controls for IHD cases in test samples. HC: healthy controls, MMC: metabolically matched controls, IHD: ischaemic heart 
disease. ACS: acute coronary syndrome, CIHD: chronic IHD, HF: heart failure due to CIHD.
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