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Abstract: Intermittent theta burst (iTBS) powered by direct current stimulation (DCS) can safely be
applied transcranially to induce neuroplasticity in the human and animal brain cortex. tDCS-iTBS is
a special waveform that is used by very few studies, and its safety needs to be confirmed. Therefore,
we aimed to evaluate the safety of tDCS-iTBS in an animal model after brain stimulations for 1 h and
4 weeks. Thirty-one Sprague Dawley rats were divided into two groups: (1) short-term stimulation
for 1 h/session (sham, low, and high) and (2) long-term for 30 min, 3 sessions/week for 4 weeks
(sham and high). The anodal stimulation applied over the primary motor cortex ranged from 2.5 to
4.5 mA/cm2. The brain biomarkers and scalp tissues were assessed using ELISA and histological
analysis (H&E staining) after stimulations. The caspase-3 activity, cortical myelin basic protein (MBP)
expression, and cortical interleukin (IL-6) levels increased slightly in both groups compared to sham.
The serum MBP, cortical neuron-specific enolase (NSE), and serum IL-6 slightly changed from sham
after stimulations. There was no obvious edema or cell necrosis seen in cortical histology after the
intervention. The short- and long-term stimulations did not induce significant adverse effects on
brain and scalp tissues upon assessing biomarkers and conducting histological analysis.

Keywords: intermittent theta burst stimulation (iTBS); transcranial direct current stimulation (tDCS);
electrical stimulation; safety parameters; primary cortex; in vivo; current density; duration; frequency;
scalp

1. Introduction

Among the non-invasive neuromodulation approaches, transcranial magnetic (TMS)
and direct current stimulations (DCS) are used to regulate cortical excitability [1,2]. Clin-
ically, both stimulation techniques can induce neuroplasticity in improving motor and
memory functions in patients [3–6]. Transcranial magnetic stimulation (TMS) can be ap-
plied in the form of continuous, repetitive, or burst waveforms through a magnetic coil over
the head that works by generating an electric field in the brain via electromagnetism [7].
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A special form of rTMS consists of a series of short bursts at a high inner frequency in-
terspersed with brief periods of no stimulation, called theta-burst stimulation (TBS). It
consists of short bursts of 50 Hz rTMS which are repeated at a rate in the theta range
(5 Hz) as a continuous (cTBS) or intermittent (iTBS) train, and is the most widely utilized
method [8,9]. One commonly used transcranial electrical stimulation (TES) is a transcra-
nial DCS (tDCS), which utilizes large (25–35 cm2) electrodes to provide a small amount
of direct current (1–2 mA) to the scalp [10,11]. The stimulation alters brain function by
depolarizing or hyperpolarizing the resting membrane potential of the cell. The current
used in anodal tDCS depolarizes the resting membrane potential, increasing neuronal
firing and producing long-term potentiation (LTP)-like effects. Cathodal tDCS induces
a long-term depression (LTD)-like effect, which causes the resting membrane potential
to become hyperpolarized. Because of reduced impulsive cell firing, this LTD-like effect
reduces neuronal excitability [2,12].

According to Lisman and Idiart, theta-frequency oscillations regulate high-frequency
gamma oscillations, which are related to cognitive processing in human recognition mem-
ory [13]. Furthermore, iTBS raises the amplitude of subsequent I-waves and generates
LTP-like alterations at synaptic junctions in the motor cortex by altering the intrinsic cir-
cuitry of the motor cortex [8,14]. Furthermore, tDCS generates plastic after-effects via
membrane polarization and NMDA receptor-mediated glutamatergic synaptic transmis-
sion, according to several human and animal investigations [15,16]. Previous studies
reported that the iTBS-like anodal DC stimulation elicited the two mentioned neuroplastic
processes of iTBS and tDCS at the same time, resulting in a cumulative impact on neuroplas-
ticity. In comparison to traditional tDCS, it was found that iTBS-like anodal DC stimulation
caused a larger amplitude of motor evoked potential (MEP) [7].

A previous study reported the use of 10 Hz and iTBS dorsomedial prefrontal cor-
tex (DMPFC) rTMS as a safe and tolerable stimulation intervention for major depression.
The outcomes were compared for 6 min iTBS and 30 min 10 Hz protocols in a clinical
population [17]. In recent years, TES—specifically tDCS—has received more attention
as a potential therapy for neurological and psychiatric illnesses. Several attractive clin-
ical properties, including safety, tolerability, the convenience of use, affordability, and
portability, have piqued interest in employing TES for therapeutic purposes [10]. It has
been hypothesized that daily anodal tDCS across the left dorsolateral prefrontal cortex
(DLPFC) relieves depression by reversing the hypoactivity found in major depressive
disorder (MDD) [18]. One study proposed that depression is linked to lower levels of
brain-derived neurotrophic factor (BDNF), a neurotrophin important for synaptic strength-
ening and neuronal endurance [19], and suggested that the upregulation of BDNF levels,
as a critical neurobiological mechanism for depression alleviation, might be involved in
antidepressant actions.

Based on simulated and animal studies, only a percentage of the electric current pene-
trates the cortex, resulting in neuronal polarization and excitability in the cortex [20–23]
and hippocampus [20,24]. tDCS has been studied for many clinical and assistive applica-
tions, including depression [25,26], motor rehabilitation [27], speech rehabilitation [28–30],
pain control [31–33], and working memory [34]. Regarding safety, tDCS was used in
previous studies without any adverse effects when appropriate standards were imple-
mented [10,35–39]. Currently, the use of tDCS across many applications is widespread, so
more studies are required to standardize the safe tDCS dosing parameters [40–42]. Few
studies have evaluated the effects of the special waveform of tDCS, i.e., iTBS. Convention-
ally, iTBS is outputted from TMS to induce neuroplasticity in nerve tissue [43,44]. However,
recently, two studies by our search team reported the use of iTBS waveform delivered
through electrical stimulations in animals in vivo experiments [7] and stroke patients [45]
for its efficacy. In an animal study, it was reported that tDCS-iTBS (0.25 mA tDCS and 50 Hz
iTBS for 190 s) is a feasible therapeutic approach for enhancing neuromodulatory effects [7],
while the clinical study implied that the stroke patients had significantly improved upper
limb functioning from using tDCS-iTBS (1 mA anodal tDCS and 1.5 mA iTBS for 20 min for
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3 days/week for 6 weeks) stimulation along with rehabilitation compared to rehabilitation
alone [45].

To assess the safety of tDCS on microglial cells in rodents, one study reported the
activation of these cells by 0.5 mA anodal or cathodal stimulation for 15 min [46]. Another
study showed that anodal tDCS at a current intensity of 0.4 mA (31.8 A/m2 electrode cur-
rent density) induced microglial alterations in neurodegeneration-related morphology [47].
The histological analysis of one study mentioned that anodal tDCS can induce brain lesions
in rats at a stimulation intensity of 0.5 mA using 25 mm2 electrodes (20 A/m2) [48]. Liebe-
tanz et al. reported the brain lesion threshold intensity for cathodal tDCS as 0.001–1 mA for
15–270 min (143 A/m2) [49]. The safety effects of tDCS on the human brain were studied
by using neuron-specific enolase (NSE), magnetic resonance imaging (MRI), and electroen-
cephalography (EEG) data in previous studies [15,50,51]. There is a scarcity of research
on the safety of special waveform of tDCS, i.e., iTBS, in animal cortex using biomarkers
and immunohistological assays. One of the studies examined the effects of deep brain
stimulation (DBS) on apoptosis in the hippocampal pedunculopontine tegmental nucleus
(PPTg). It reported a decreased level of caspase-3 for apoptotic activity and myelin basic
protein (MBP) for brain injury biomarkers, without any change in cytokine interleukin-6
(IL-6) for inflammation after the application of DBS [52]. According to the analysis of
cortical activity markers, the expressions of GABA-synthesizing enzyme GAD67 (67 kD
isoform of glutamate decarboxylase), calcium-binding proteins parvalbumin (PV), and
calbindin (CB) were lowered by iTBS but not by cTBS one day after the last session. Because
the magnetic stimulation did not target a specific cortical location, these alterations were
visible in many cortical areas in all animals, regardless of whether they completed the
task. However, the frontal and barrel cortex, which are engaged in the learning process,
exhibited a considerably smaller reduction in PV and CB expression than the visual cortex,
which was not involved in the activity [53].

Until the present research, no study has reported the neuroprotective effects of the
special waveform of tDCS, i.e., iTBS, on a rat brain after short- and long-term stimulations
using a low current density. Therefore, the rationale of this study was to evaluate the safety
of the iTBS waveform delivered through electrical current power by the previously designed
and implemented novel transcranial burst electrostimulation device, which confirmed the
feasibility and neuroplastic effects of tDCS-iTBS waveform for neurostimulation on the
brain [7] in vivo experiments. Thus, in our current study, we conducted brain and scalp
tissue analysis to evaluate the safety of the tDCS-iTBS in the animal model after stimulations
for 1 h and 4 weeks.

2. Results

The results of the present study demonstrate a non-significant change in biomarkers
(caspase-3 activity, cortical and serum MBP levels, NSE expression, and cortical and serum
IL-6 levels) and histology of cortical tissues after short- and long-term stimulations to
highlight the safety of tDCS-iTBS waveform intervention (Table 1).

2.1. Effect of tDCS-iTBS on Caspase-3 Activity

In this study, we found that caspase-3 activity increased in low (2.5 mA/cm2) and high
current density (4.5 mA/cm2) interventions in short- and long-term stimulations compared
to sham. The high-density stimulation resulted in slightly more increased activity of
caspase-3 in the rat cortex. The difference between sham, low, and high current density
for short- and long-term stimulations did not reach a significance level (p values > 0.05,
Figure 1).
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Table 1. Descriptive statistics of biomarkers during short- and long-term stimulation (n = 31).

Subgroups Sham Low High

Parameters Mean ± SD Min–Max Mean ± SD Min–Max Mean ± SD Min–Max

Groups

Short-term
stimulation

(n = 15)

Caspase-3
(units) 0.39 ± 0.10 0.24–0.50 0.47 ± 0.11 0.34–0.56 0.48 ± 0.08 0.34–0.56

Cortical
MBP

(ng/mg)
2.57 ± 0.57 2.10–3.55 2.62 ± 0.44 2.10–3.30 2.71 ± 0.27 2.51–3.18

Serum
MBP

(ng/mL)
0.01 ± 0.02 0.00–0.05 0.02 ± 0.02 0.01–0.05 0.01 ± 0.02 0.00–0.05

Cortical
NSE

(ng/mg)
5.96 ± 0.69 4.81–6.60 5.86 ± 1.16 3.93–6.80 6.26 ± 0.80 5.48–7.58

Cortical
IL-6

(pg/mg)
1748.81 ± 122.30 1577.53–1902.30 1871.44 ± 332.47 1435.70–2300.69 1985.92 ± 511.68 1275.53–2542.05

Serum
IL-6

(pg/mg)
848.71 ± 368.95 492.57–1436.97 830.49 ± 263.27 535.99–1200.00 888.29 ± 347.84 283.70–1138.80

Long-term
stimulation

(n = 16)

Caspase-3
(units) 0.47 ± 0.14 0.24–0.72 – – 0.51 ± 0.21 0.23–0.87

Cortical
MBP

(ng/mg)
2.71 ± 0.27 2.34–3.10 – – 2.87 ± 0.25 2.50–3.20

Serum
MBP

(ng/mL)
0.03 ± 0.01 0.01–0.04 – – 0.02 ± 0.01 0.01–0.04

Cortical
NSE

(ng/mg)
6.48 ± 0.72 5.40–7.30 – – 6.33 ± 1.21 3.90–7.70

Cortical
IL-6

(pg/mg)
2046.38 ± 175.93 1833.00–2432.00 – – 1930.00 ± 263.71 1576.00–2455.00

Serum
IL-6

(pg/mg)
801.63 ± 213.89 490.00–1200.00 – – 865.75 ± 502.56 145.00–1600.00

Mean ± SD, average and standard deviation; min, minimum value; max, maximum value; short-term stimulation
for 1 h/session (n = 15: sham = 5, low = 5, high = 5), long-term stimulation for 3 sessions/week for total
4 weeks (n = 16: sham = 8, high = 8), subgroups (low = 2.5 mA/cm2, high = 4.5 mA/cm2); n, number of animals;
ng/mg, nanogram per milligram; ng/mL, nanogram per milliliter; pg/mg, picogram per milligram; –, study
included three subgroups (sham, low, & high) for short-term stimulation while long-term stimulation has only
two subgroups (sham & high).
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Figure 1. Effect of tDCS-iTBS on caspase-3 activity: (A) short-term (n = 15) and (B) long-term stimu-

lations (n = 16). 
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Figure 1. Effect of tDCS-iTBS on caspase-3 activity: (A) short-term (n = 15) and (B) long-term
stimulations (n = 16).
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2.2. Effect of tDCS-iTBS on Brain and Skin/Serum Biomarkers
2.2.1. Cortical MBP Expression

The myelin basic protein (MBP) is the most abundant protein of myelin in oligoden-
drocytes in the central nervous system (CNS) and Schwan cells in the peripheral nervous
system (PNS). It is responsible for the myelination of neurons. In this study, the cortical
expression of MBP (ng/mg) was increased in both short- and long-term stimulation groups
on high current density interventions. None of the groups attained the level of significance
(p values > 0.05, Figure 2).
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2.2.2. Serum MBP Expression

The serum MBP expression after short-term stimulation was higher in low current
density intervention but lower in high current density intervention than sham for both
short- and long-term stimulation groups without reaching a significant level (Figure 3).
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Figure 3. Effect of tDCS-iTBS on serum MBP expressions (ng/mg protein): (A) short-term (n = 15)
and (B) long-term stimulations (n = 16).

2.2.3. Cortical NSE Expression

The neuron-specific enolase (NSE) is a prominent biomarker of ischemic brain injury.
By the application of short-term stimulation, NSE expression was higher in high current
intervention but did not change in low current intervention as compared to the sham. For
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long-term stimulation, no change in NSE expression was observed from the sham. For both
groups, no intervention attained the level of significance (Figure 4).
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2.2.4. Cortical IL-6 Levels

The cortical IL-6 was increased for high current density rather than low current density
intervention during short-term stimulation, and was decreased for high current density
compared to sham for long-term stimulation, without any significant difference (Figure 5).
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Figure 5. Effect of tDCS-iTBS on cortical IL-6 levels (pg/mg protein): (A) short-term (n = 15) and
(B) long-term stimulations (n = 16).

2.2.5. Serum Tissue IL-6 Levels

The scalp skin tissue pro-inflammatory biomarker IL-6 level showed that high current
intervention increased the IL-6 levels for both short- and long-term stimulation groups,
but low current intervention decreased for short-term stimulation. There is no statistically
significant difference between the three interventions, suggesting that high current density
can affect the scalp tissue under-stimulation more than low current intervention (Figure 6).
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Figure 6. Effect of tDCS-iTBS on serum IL-6 levels (pg/mg protein): (A) short-term (n = 15) and
(B) long-term stimulations (n = 16).

2.3. Effect of tDCS-iTBS on Brain Tissue Morphology (H&E Staining)
2.3.1. Short-Term Stimulation H&E Staining

Figure 7a–c presents cortical tissue histology using H&E staining. After applying
short-term stimulation, only high current density intervention (Figure 7c) showed mild
edema without obvious cell shrinkage, necrosis, or microglial changes. Low current density
intervention (Figure 7b) did not show any change from the sham intervention (Figure 7a).
These results reflect the safety of short-term stimulations on rat cortical tissue because there
was no obvious difference in tissue morphology after either intervention.
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Figure 7. Effect of tDCS-iTBS on cortical tissue morphology (H&E staining) during short-term
stimulation (n = 15); (a) sham stimulation, (b) low-intensity stimulation (2.5 mA/cm2), and (c) high-
intensity stimulation (4.5 mA/cm2).
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2.3.2. Long-Term Stimulation Staining

During long-term stimulation, no obvious change was observed in H&E staining,
except for a mild decrease in the number of neuron cells in high current density intervention.
There was no clear difference from sham intervention, and no edema, shrinkage, or necrosis
was observed (Figure 8a–d).
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Figure 8. Effect of tDCS-iTBS on cortical tissue morphology (H&E staining) during long-term
stimulation (n = 16); (a) sham and (b) high-intensity stimulation (4.5 mA/cm2) subgroups 40 µm
coronal tissue section, while (c) sham and (d) high-intensity stimulation (4.5 mA/cm2) magnified
tissue section to represent stimulation efffect.

3. Discussion

In the present study, we report the effects of the special waveform of tDCS, i.e., iTBS,
which is electrically powered as opposed to conventional magnetic stimulation. For the
two groups including short- and long-term stimulations, we did not find any significant
effect of the low and high current density on the rat cortex and scalp skin tissues. Based
on the biomarker analysis and histological staining, it is thus confirmed that tDCS-iTBS
in the range of 2.5 to 4.5 mA/cm2 did not induce any brain and skin damage because the
current density is below the lesion threshold of 14.2 mA/cm2 [49], ensuring the safety of
tDCS-iTBS waveform for use in animals to induce neuroplasticity.

The safety of the tDCS-iTBS waveform was evaluated after short- and long-term
stimulations. The caspase-3 activity of the rat cortex was not significantly changed in
either group. For short-term stimulation, caspase-3 activity did not obviously increase
(sham = 0.39 ± 0.10, low = 0.47 ± 0.11, and high = 0.48 ± 0.08), and the same effect was
noted for long-term stimulation (sham = 0.47 ± 0.14 and high = 0.51 ± 0.21). One previous
study reported the effect of tDCS on caspase-3 activity after middle cerebral artery occlusion
in ischemic stroke rats. They observed that cathodal tDCS can significantly reduce caspase-
3 expression (p = 0.000 *), which is raised after ischemic injury, and inhibit apoptosis at the
injury site [54]. Based on our study results, after applying the different intensity tDCS-iTBS
stimulations, the protein caspase-3 activity did not significantly differ from the sham.
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The cortical MBP level was slightly increased for low (2.62 ± 0.44) and high (2.71 ± 0.27)
current density compared to sham (2.57 ± 0.57) in the short-term stimulation group, and also
slightly increased for high (2.87 ± 0.25) current density compared to sham (2.71 ± 0.27) in
the long-term stimulation, without a significant difference. The serum MBP level slightly
increased for only low (0.02 ± 0.02) current density compared to sham (0.01 ± 0.02) in the
short-term stimulation, but a decreasing trend was noted for high (0.02 ± 0.01) current
density compared to sham (0.03 ± 0.01) in the long-term stimulation. The NSE expression
slightly decreased for low current density (5.86 ± 1.16) and increased for high current
density (6.26 ± 0.80) compared to sham (5.96 ± 0.69) in the short-term stimulation, while
it decreased for high current density (6.33 ± 1.21) compared to sham (6.48 ± 0.72) in the
long-term stimulation. The cortical IL-6 level was increased for low (1871.44 ± 332.47) and
high (1985.92 ± 511.68) current density compared to sham (1748.81 ± 122.30) in the short-
term stimulation group but slightly decreased for high (1930.00 ± 263.71) current density
compared to sham (2046.38 ± 175.93) in the long-term stimulation, without a significant
change. The serum IL-6 level slightly decreased for low current density (830.49 ± 263.27)
and increased for high current density (888.29± 347.84) compared to sham (848.71± 368.95)
in the short-term stimulation, but an increase was noted for high (865.75 ± 502.56) current
density compared to sham (801.63 ± 213.89) in the long-term stimulation. The histology
of brain tissues of both groups reported no significant difference from sham in terms of
edema, cell shrinkage, and necrosis, confirming the safety of the tDCS-iTBS waveform in
the present study.

Based on recent research, tDCS protocols can be tolerable and safe if well-defined
electrodes, stimulus durations, and intensities are employed [10]. The tDCS application
is determined by its tolerability and safety. Tolerability means the presence of unpleasant
and unexpected effects (such as tingling and itching sensation below the electrodes), while
safety implies harmful effects. Overall, the presently used tDCS profiles are tolerable [55,56].
tDCS may cause erythema under the electrodes due to vasodilation, which is not a safety
concern [57]. The safety is determined strictly by structural brain tissue damage, as reported
by previous research [15,58]. Skin damage is occasionally reported in other studies [59]
but mostly occurs due to the drying of contact media under the electrodes. The use of tap
water which can induce skin burns or electrode gel is not appropriate, so electrode cream is
recommended between the skin and electrode surface [60,61].

The stimulation current density used in this study ranged from 2.5 to 4.5 mA/cm2

(tDCS: 1–3 mA; iTBS: 1.5 mA) applied for 1 h during short-term stimulations and 30 min
during long-term stimulations. Previously, a study by Bikson et al. (2016) reported the safety
of tDCS for 33,000 sessions on 1000 patients who received tDCS. Their report mentioned that
there was no serious adverse effect on the brain by using conventional tDCS in clinical trials
(≤40 min, ≤4 mA, and ≤7.2 C) [41]. The parameters for stimulation in our study spanned
were 30 min–1 h, 1–3 mA tDCS combined with 1.5 mA iTBS for each subgroup, charge of
8.1–16.2 C, and current density of 2.5–4.5 mA/cm2. Three research groups mentioned the
brain injury threshold for tDCS application: (1) Liebetanz et al., 14.2 mA/cm2 (used 500 µA
current with 3.5 × 3.5 mm electrodes for 10 min) [49]; (2) Fritsch, applied 600 µA through
4 mm diameter electrode for 20 min; and (3) Jankord, through 500 µA using 5 × 5 mm
electrodes for 60 min [41].

To assess the safety of the tDCS-iTBS waveform, there are only a few studies available.
One study utilized anodal tDCS-iTBS waveform on rat cortex and found significant neuro-
plastic effects (35% and 100% increase in MEP amplitude to induce LTP-like effects) than
traditional tDCS waveform. They used iTBS in the range of 0 to 1.5 mA (0.25 mA/step)
combined with tDCS of 0.25 mA for 190 s and did not report any adverse effects [7]. An-
other study applied 1 mA tDCS combined with 1.5 mA iTBS for 20 min on the primary
motor cortex of stroke patients and found a significant improvement in upper limb recovery
without adverse events [45]. Based on the available research, one study reported a scaling
factor to determine the threshold damage of tDCS current application from rats to humans
as 173 mA from Fritsch, 120 mA from Liebetanz, and 67 mA from Jankord [41].
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Regarding the limitations of this study, (1) the safety of the tDCS-iTBS waveform was
tested on only animals. Future studies should be conducted to test the safety of the tDCS-
iTBS waveform on humans to start the clinical application to treat neurological disorders
such as depression, stroke, spinal cord injury, or Alzheimer’s disease. (2) A limited number
of animals were tested in the present study; a large sample size in different subgroups
should be considered for the reproducibility of results in future research. (3) Safety on the
brain and scalp should be determined through EEG or MRI-based studies using the same
waveform in future research.

4. Materials and Methods
4.1. Animal Handling and Tissue Extraction
4.1.1. Selection and Care of Animals

The study included 31 (n = 31) adult male Sprague Dawley rats with weights ranging
from 200 to 260 g from BioLASCO Taiwan, Yilan, Taiwan. According to ethical guidelines,
all of the rats were kept in a well-equipped animal facility in a sterile, temperature- and
humidity-controlled setting. All of the rats were housed on a 12:12 h light:dark cycle with
unlimited access to pellet nutrition and water ad libitum. The animals were accustomed for
7 to 10 days before being used in the study, and the experimental procedures and animal
use/methods were authorized by Taipei Medical University’s Institutional Animal Care
and Use Committee (IACUC-TMU approval no. LAC 2016-0316, 2017-01-01).

4.1.2. Grouping and Experiment Schedule of Animals

All the study animals were categorized into two groups: (1) short-term stimulation
(n = 15) and (2) long-term stimulation (n = 16). The animals in the short-term stimulation
group were divided into three subgroups, each containing 5 animals: sham, low, and
high current intensity tDCS-iTBS. The animals in the long-term stimulation group were
divided into two subgroups, with each having 8 animals: sham and high current intensity
tDCS-iTBS. By applying tDCS-iTBS stimulation, the rat brain and scalp skin tissues were
extracted after 24 h for group 1 and after 4 weeks for group 2.

4.1.3. tDCS-iTBS Brain Stimulation Protocol

The tDCS-iTBS intervention was applied through an electrostimulation device which
produces varied current intensity ranging from 0 to 3 mA tDCS and from 0 to 1.5 mA iTBS
(0.25 mA/step) [7]. Before stimulation, each rat was given urethane anesthesia (1.2 g/kg).
The two disposable electrodes (Medihightec Medical Company, Keelung, Taiwan) were
placed at the same location for both groups [62]: an active anode (1 cm × 1 cm) over the
right skull area on the primary motor cortex of the right forelimb concerning functional
brain mapping already carried out in rat model [63], and a reference electrode (5 cm × 3 cm)
over an abdomen.

The applied iTBS waveform output from tDCS (electric power) consisted of a 2 s train
repeated after 10 s for 20 cycles (190 s, total 600 pulses). The frequency of each burst was
50 Hz, with three pulses of each 5 Hz repeated every 200 ms [9,64]. For the short-term
stimulation, subgroups received (1) sham 0 mA tDCS-iTBS, (2) low 1 mA tDCS + 1.5 mA
iTBS (2.5 mA/cm2), and (3) high 3 mA tDCS + 1.5 mA iTBS (4.5 mA/cm2) for 1 h for a
single session. Long-term stimulation subgroups received (1) sham 0 mA tDCS-iTBS and
(2) high 3 mA tDCS + 1.5 mA iTBS (4.5 mA/cm2) for 30 min per day, 3 days a week for a
total of 4 weeks (Table 2).
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Table 2. Stimulation parameters for short- and long-term stimulations (tDCS-iTBS) (n = 31).

Parameters
Short-Term Stimulation (n = 15) Long-Term Stimulation (n = 16)

Sham Low High Sham High

Current (mA) 0 2.5 4.5 0 4.5

Current density (mA/cm2) 0 2.5 4.5 0 4.5

Charge (C) 0 9 16.2 0 8.1

Charge density (C/m2) 0 90,000 162,000 0 81,000

Duration 1 h 1 h 1 h 30 min 30 min

Number of sessions 1 session 1 session 1 session 12 sessions 12 sessions

Short-term (n = 15: sham = 5, low = 5, high = 5) and long-term (n = 16: sham = 8, high = 8) stimulation consisted of
iTBS output from tDCS; iTBS, 1.5 mA; tDCS, 1–3 mA (low =1 mA, high =3 mA); n, number of animals; 12 sessions,
3 sessions/week for 4 total weeks.

4.1.4. Sacrifice, Removal of Brain Samples, and Brain and Skin Tissue Collection

Animals were sacrificed using an overdose of urethane (4 g/kg) by cardiac puncture
to extract the brain tissue. After being sacrificed, animals were beheaded using a scissor,
and their brains were gently extracted. Then, the brain and skin tissues were rinsed in cold
isotonic saline before being blotted on filter paper [65]. The brain tissue from the cortex
and skin tissue were collected and rinsed again with saline. Excess saline was dried with
absorbent paper, and the brain and skin tissues were frozen at −80 ◦C. The tissues were
then homogenized in saline (10% w/v) at 4 ◦C. The homogenous specimens were spun at
3000 rpm for 10 min in a refrigerating centrifuge, and the supernatant was collected for
examination [52]. Cortical apoptotic activity through caspase-3, cortical and serum MBP
expression, cortical NSE, and cortical and serum IL-6 levels were analyzed.

4.2. Biochemical Analysis
4.2.1. Evaluation of Caspase-3 Activity

A caspase-3 colorimetric assay kit (Biovisiom, Milpitas, CA, USA) was utilized to
measure caspase-3 activity. First, 50 µL of brain tissue specimen was added to a 96-well
plate, followed by 50 µL of 2× reaction buffer (containing 10 mM DTT) and 5 µL of the
4 mM DEVD-pNA substrate. The plates were then put into an incubator at 37 ◦C for 1–2 h,
and the absorbance was determined in an ELISA reader at 405 nm [52].

4.2.2. Enzyme-Linked Immunosorbent Assay (ELISA)

The levels of MBP, NSE, and IL-6 were calculated through ELISA kits (Duo-Set; R&D
Systems Inc., Minneapolis, MN, USA). The tissue specimens were placed into an incubator
for 2 h with a biotinylated rabbit antibody, followed by the addition of streptavidin-
conjugated horseradish peroxidase for 20 min. 3,3′,5,5′-tetramethylbenzidine/H2O2 (R&D
Systems Inc., Minneapolis, MN, USA) was added for 30 min, which started the peroxidase
reaction, and 0.5 M H2SO4 stopped it. The absorbance was recorded at 450 nm [52].

4.3. Histological Analysis

The 40 µm thick coronal section of brain tissues was processed for hematoxylin and
eosin (H&E) staining. The histology of tissues was assessed through light microscopy for
pathological changes such as edema, necrosis, and hematoma, as described in the literature
on electrical neurotrauma [49,66] (Figure 9).
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4.4. Statistical Analysis

The study data are reported using mean ± standard deviation (SD) and one-way
analysis of variance (ANOVA) for comparing inter-group intervention for cortical caspase-3
activity, cortical and serum MBP expression, cortical NSE expression, and cortical and
serum IL-6 levels. The level of significance was set to a p-value < 0.05. GraphPad Prism
6 software (GraphPad Software, San Diego, CA, USA) was used for statistical analysis.

5. Conclusions

The safety of tDCS-iTBS can be ensured using electrode placement (animal: active
electrode on brain and reference electrode on abdomen; human: active electrode on head
and reference on scalp), electrode size (animal: 1 cm × 1 cm; human: 5 cm × 5 cm), electric
current penetration into the brain (animal: 1.5 mm thick skull; human: 6–7 mm thick skull),
and current density (animal: cathodal tDCS = 142.9 A/m2, anodal tDCS = 20 A/m2 (our
study = 25–45 A/m2); human tDCS: 0.23–0.32 A/m2). Other factors for safety include
stimulation duration, polarity, and electrode shape.

In our current study, the non-significant results suggest no obvious difference from the
sham group and reflect that tDCS-iTBS waveform in the range of 2.5 to 4.5 mA/cm2 is safe
for use in animals. The rationale behind this study was to determine the safety of our newly
developed electrical current waveform for brain stimulation. We have reported the same
waveform neuroplastic effects in previous research in rats and stroke patients using MEP
recording and upper limb physical activity questionnaires, and time to expand tDCS-iTBS
waveform outcomes to animal and clinical populations. According to the FDA Medwatch
program database, tDCS caused no adverse effects in clinical trials. From this study, we
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report non-significant results after short- and long-term stimulations in an animal model.
These outcomes open new avenues for other researchers to know the safety parameters
and translate this stimulation protocol for large-scale animal testing and clinical settings by
adjusting dosing parameters without adverse effects.

Based on the results, we conclude that short-term and long-term stimulation did not
induce significant adverse effects on brain and skin tissues assessed through biomarkers
and histological analysis. The tDCS-iTBS waveform from 2.5 to 4.5 mA/cm2 can be used
safely for therapeutic purposes in animals to attain stronger neuroplastic effects. In the
present study, the current density was lower than the threshold reported in previous studies.
It is worth noting that in this study, with 2.5–4.5 mA/cm2 intensity, the effect on brain
tissue biomarkers and skin/serum markers did not show a significant change from the
sham, which proves that these stimulation interventions are safe to use for animal studies
without causing brain tissue injury. This stimulation waveform can have applications in
clinical use for various neurological diseases to generate neuroplastic effects without brain
and scalp tissue lesions.

Future Research Direction

In the current study, we tried to determine the safety of the tDCS-iTBS waveform in
an animal model and employed brain (caspase-3, MBP, and NSE) and scalp tissue injury
biomarkers (IL-6) and brain tissue morphology (H&E staining). The genetic biomarkers
of localized brain tissue stimulation, joule heating, and polarity of cathodal or anodal
stimulation should be researched in future studies.
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