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During mitosis, chromosomes are compacted in length by
more than 100-fold into rod-shaped forms. In yeast, this pro-
cess depends on the presence of a centromere, which promotes
condensation in cis by recruiting mitotic kinases such as
Aurora B kinase. This licensing mechanism enables the cell to
discriminate chromosomal from noncentromeric DNA and to
prohibit the propagation of the latter. Aurora B kinase elicits a
cascade of events starting with phosphorylation of histone H3
serine 10 (H3S10ph), which signals the recruitment of lysine
deacetylase Hst2 and the removal of lysine 16 acetylation in
histone 4. The unmasked histone 4 tails interact with the acidic
patch of neighboring nucleosomes to drive short-range
compaction of chromatin, but the mechanistic details sur-
rounding the Hst2 activity remain unclear. Using in vitro and
in vivo assays, we demonstrate that the interaction of Hst2 with
H3S10ph is mediated by the yeast 14-3-3 protein Bmh1. As a
homodimer, Bmh1 binds simultaneously to H3S10ph and
the phosphorylated C-terminus of Hst2. Our pull-down
experiments with extracts of synchronized cells show that the
Hst2–Bmh1 interaction is cell cycle dependent, peaking in the
M phase. Furthermore, we show that phosphorylation of
C-terminal residues of Hst2, introduced by genetic code
expansion, stimulates its deacetylase activity. Hence, the data
presented here identify Bmh1 as a key player in the mechanism
of licensing of chromosome compaction in mitosis.

In mitosis, cells condense their chromosomes into compact,
cylindrical bodies to ensure their faithful mechanical transport
during cell division (1). Therefore, ring-shaped protein com-
plexes, the condensins, compact mitotic chromosomes into
helical arrays of chromatin loops (2). Condensins are believed
to act by loop extrusion (3), fueled by hydrolysis of ATP by
their ATPase domains. Loop extrusion has been observed in
single-molecule experiments (4, 5) and is supported by
structural analysis of DNA-bound condensin subunits (6).

Depletion of condensins has dramatic consequences for
mitotic chromosome architecture and mechanical stability
(7–11). However, additional forces and factors must contribute
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to chromosome condensation because even in the absence of
condensins, chromatin still aggregates in mitosis (11, 12).
Among the many factors that may contribute to this phe-
nomenon, posttranslational modifications (PTMs) of histones
are particularly attractive (13, 14). Histone PTMs may
contribute to chromosome condensation in various ways: they
could signal the recruitment of effector proteins by serving as
recognition marks, might influence the activity of enzymes
involved in condensation, or directly control an inherent
tendency of chromatin to condense.

The most intensely studied mitotic PTM is phosphorylation
of histone H3S10 (15). This hallmark of mitotic chromatin is
initially deposited at centromeres by Aurora B kinase as part of
the chromosomal passenger complex (16). In budding yeast,
phosphorylation of histone H3 serine 10 (H3S10ph) signals the
recruitment of lysine deacetylase (KDAC) Hst2 to chromatin in
mitosis (17). Hst2 in turn removes acetyl groups from lysine-16
of nearby H4 tails, thereby enabling them to engage with the
acidic patch of neighboring nucleosomes. This inter-
nucleosomal interaction provides a driving force of chromatin
compaction in mitosis, mediating hypercondensation of chro-
matid arms in late anaphase (17, 18). This short-range
compaction acts independently of the axial contraction by
condensins (17, 18). Mechanistically, compaction by inter-
nucleosomal interactions is initiated by activation of Aurora B
kinase at kinetochores. The signal subsequently propagates
along chromosome arms in a Shugoshin-dependent process,
thereby coupling the ability of chromatin to condense to the
presence of a centromere (19). This licensing of condensation
by centromeres is a potential mechanism by which yeasts
discriminate nonchromosomal DNA from chromosomes, pro-
tecting its progeny from infectious genetic material (19).

The spreading mechanism of short-range compaction is
essential to create a chromosome-autonomous process. Little
is presently known about the molecular mechanism of
spreading. Here, we explore how Hst2 recognizes H3S10ph
and how this interaction is controlled by the cell cycle.

Results and discussion

H3 peptides phosphorylated at Ser-10 efficiently recovered
Hst2 from yeast whole-cell extracts, demonstrating the sig-
nificance of H3S10 phosphorylation in recruiting Hst2 to
J. Biol. Chem. (2021) 296 100078 1
Biochemistry and Molecular Biology. This is an open access article under the CC

https://doi.org/10.1074/jbc.AC120.014758
https://orcid.org/0000-0001-9657-1913
https://www.jbc.org/cgi/content/full/AC120.014758/DC1
mailto:heinz.neumann@h-da.de
http://crossmark.crossref.org/dialog/?doi=10.1074/jbc.AC120.014758&domain=pdf
http://creativecommons.org/licenses/by/4.0/


0 5 10 15 20 25 30 35 40 45 50

mitotic DNA replication
DNA unwinding involved in DNA replication

secondary metabolite biosynthetic process
nuclear cell cycle DNA replication initiation

cell cycle DNA replication initiation
toxin biosynthetic process

hydrogen sul de metabolic process
acetate biosynthetic process

mitotic DNA replication initiation

nucleocytoplasmic carrier activity
3'-5' DNA helicase activity

nuclear import signal receptor activity
monooxygenase activity

oxidoreductase activity
single-stranded DNA helicase activity

aldehyde dehydrogenase [NAD(P)+] activity
four-way junction helicase activity

aldehyde dehydrogenase (NAD+) activity
Glyceraldehyde-P-dehydrogenase (NAD+) activity

CMG complex
MCM complex

tubulin complex

Fold enrichment

Gene Ontology Analysis

55

70

100

40

130

180

35

– +

Hst2

316

350

320
324

340

N-terminus C-terminusDeacetylase domain
Helical
module

  Zn +

module
NAD+

binding
NES

SLDQSEHESADKKDKKLQRLNGHDSDEDGASNSSSSQKAAKE

357
357

3161

A B
Hst2-Flag

IP: anti-Flag

C

Cellular component

Molecular function

Biological process

D

Position Phospho (STY) Probabilities

Localization

probability

Posterior error

probability

S46 S(0.998)PGT(0.002)GLYHNLAR 0.998 1.5E-06
T114 VYT(1)QNIDTLER 1 6.3E-06
T251 VLCNLET(1)VGDFK 1 1.0E-09
S316 EQLLEIVHDLENLS(1)LDQS(0.999)EHES(0.001)ADKK 1 1.3E-10
S320 EQLLEIVHDLENLSLDQS(1)EHESADKK 0.999 1.1E-18
S324 EQLLEIVHDLENLSLDQSEHES(1)ADKK 0.999 4.4E-12

S340
LNGHDS(1)DEDGAS(0.001)NS(0.005)S(0.356)S(0.552)S(0.087)
QKAAKE 0.999 8.1E-06

Figure 1. Identification of Hst2 interaction partners and PTMs by mass-spectrometric analysis. A, immunoprecipitation of Flag-tagged Hst2. Yeast cells
expressing Flag-Hst2 were isolated using anti-FLAG M2 beads, analyzed by 10% SDS-PAGE, and stained with InstantBlue. Cells expressing untagged Hst2
served as control. B, gene ontology analysis of differentially associated proteins identified in panel A. Analysis was performed using the online tool “The
Gene Ontology Resource”. C, phosphorylation sites identified on Hst2 by MS/MS analysis. For detailed information on HST2 peptide assignments, see
Table S4. D, the schematic representation of Hst2 C-terminal phosphorylation sites. NES, nuclear export sequence (amino acids 306–317); PTMs, post-
translational modifications.
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mitotic chromatin (17). However, recombinant Hst2 purified
from Escherichia coli did not interact with H3S10ph peptides
(Fig. S1), indicating that additional factors or PTMs on Hst2
are needed to mediate the interaction.

To identify such factors that recruit Hst2 to the phosphor-
ylated Histone H3 tail, we purified FLAG-tagged Hst2 from
yeast extracts (Fig. 1A) and analyzed the copurifying proteins
by mass spectrometry. We identified several novel interactors
of Hst2 with a high fold difference compared with the negative
control (untagged Hst2) (Fig. S2 and Table S3). Gene ontology
analysis revealed a strong overrepresentation of proteins
involved in chromatin related processes, such as replication
(Fig. 1B). We confirmed the interaction of Hst2 with mini-
chromosome maintenance2, a component of the mini-
chromosome maintenance helicase complex by Western
blot (Fig. S3). However, because the association of mini-
chromosome maintenance helicase with chromatin is regu-
lated by other mechanisms than H3 phosphorylation (20), this
complex is unlikely to recruit Hst2 to phosphorylated H3 tails.

If the Hst2–H3 interaction requires the presence of PTMs
on Hst2, the abundance of the bridging factors in the pull-
down might be very low because of the usually low stoichi-
ometry of PTMs. Therefore, we analyzed Hst2 for the presence
of phosphorylated residues by MS/MS (Fig. S4) and identified
2 J. Biol. Chem. (2021) 296 100078
five serine and two threonine phosphorylation sites (Fig. 1C).
Most sites reside in the unstructured C-terminus of the pro-
tein. One of the residues, S340, had been reported previously
as being phosphorylated (21). Three serine phosphorylation
sites (S316, S320, and S324) cluster downstream of the nuclear
export sequence in the C-terminus (Fig. 1D) and may therefore
be involved in regulating nuclear export.

We hypothesized that phosphorylation of Hst2 is essential for
its recruitment to H3S10ph. Typical mediators of interactions
between two phosphorylated proteins are 14-3-3 proteins
(22–24). The 14-3-3 proteins are involved in numerous impor-
tant cellular processes such as transcription (25) and cell-cycle
control (26) and are consequently associated with diseases
including neurodegenerative disorders and cancer (27).

The interaction of 14-3-3 proteins with H3S10ph is well
established across different organisms (28–30). Conversely,
several KDACs are known to interact with 14-3-3 proteins in a
phosphorylation-dependent manner (31). For example, SirT2
interacts with 14-3-3β/γ in humans (32) and the homologous
Sir2.1 and PAR-5/FTT-2 interact in nematodes (33, 34).
Therefore, we tested whether deletion of the budding yeast 14-
3-3 proteins, Bmh1 and Bmh2, interferes with deacetylation of
H4K16 by Hst2 in mitosis, an established hallmark of short-
range chromatin compaction (17). Yeast cells lacking BMH1
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Western blot with the indicated antibodies. B, interaction of Bmh1 with Hst2 in vivo depends on phosphorylation of Hst2 S320 or S324. Flag-Hst2 proteins
were immunopurified from overexpressing yeast cells and proteins analyzed by Western blot with the indicated antibodies. C, Bmh1 interacts with Hst2
in vivo at endogenous levels. Bmh1-GFP was isolated from yeast cells with or without genomically Flag-tagged Hst2 using GFP-nanobody beads. Bound
proteins were eluted with SUMO protease (releasing the nanobody) and analyzed by Western blot. D, Bmh1 interacts with Hst2 in vivo at endogenous levels
only in the G2/M phase of mitosis. Yeast cells with genomically Flag-tagged Hst2 and GFP-tagged Bmh1 either asynchronous or arrested with α-factor (G1),
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lysates analyzed by Western blot with the indicated antibodies. See Figs. S5–S7 for uncropped images.
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that were metaphase-blocked with nocodazole indeed showed
elevated H4K16ac levels similar to cells without HST2
(Fig. 2A). Deletion of BMH2 had the same effect to a lesser
extent, suggesting that both isoforms contribute to the
recruitment of Hst2. Because Bmh1 is more abundant than
Bmh2 (35), deletion of BMH1 is expected to cause a more
severe defect. Truncating Hst2 after residue 295 was sufficient
to prevent H4K16 deacetylation, supporting our hypothesis
that the unstructured C-terminus of Hst2 (which contains
most of the phosphorylation sites) is necessary for its
recruitment to H3S10ph.

Next, we tested whether Bmh1 and Hst2 interact physically.
Indeed, when we immune-precipitated Hst2 (overexpressed
with N-terminal FLAG-tag), Bmh1 efficiently copurified only
in the presence of phosphatase inhibitors, indicating a
phosphorylation-dependent interaction between both proteins
(Fig. 2B). The interaction further depended on the presence of
serine residues 320 and 324, which we had shown to be
phosphorylated in Hst2 (Fig. 1C). Mutating the other phos-
phorylation sites did not affect the interaction with Bmh1.
Interestingly, mutation of either Ser-320 or Ser-324 to alanine
alone was sufficient to completely abolish Bmh1 binding.
Because optimal sequence motifs for 14-3-3 proteins are R-X2-

3-(pS/pT)-X-P (36), we consider it unlikely that Bmh1 requires
the presence of both phosphorylations for binding. It seems
more likely that the two phosphorylation sites interact func-
tionally, for example, that phosphorylation of one site depends
on the presence of a serine residue at the other site.

Because overexpression of Hst2 might artificially induce the
interaction with Bmh1, we repeated the pull-down experi-
ments at endogenous protein levels. Therefore, we precipitated
Bmh1-GFP from yeast lysates with genomically FLAG-tagged
Hst2 (Fig. 2C). Hst2-FLAG specifically co-eluted with Bmh1
depending on the GFP-tag on the latter, confirming that the
J. Biol. Chem. (2021) 296 100078 3
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Hst2–Bmh1 interaction also occurs at endogenous protein
concentrations.

Next, we asked whether the Hst2–Bmh1 interaction is
influenced by the cell-cycle stage. Therefore, we repeated the
pull-down experiments at endogenous protein levels with cell
cycle–synchronized yeast cultures (Fig. 2D). Pull-down ex-
periments with lysates from yeasts blocked in the G1 phase
with α-factor or the S phase with hydroxyurea showed very
little interaction of Hst2 with Bmh1. In contrast, we observed
efficient interaction of Hst2 with Bmh1 when cells were
blocked in the metaphase with nocodazole. This result agrees
with our model that Bmh1 recruits Hst2 to chromatin in
mitosis when it is needed for short-range chromosome
compaction.

Finally, we tested the requirement of individual phospho-
sites in Hst2 for H4K16 deacetylation in mitosis. Therefore, we
created point mutants of Hst2 in which S316, S320, or S324 is
replaced with alanine using CRISPR/Cas9. In this case, the
S320A and S324A mutants were defective in deacetylating
H4K16ac in mitosis, whereas the S316A mutant was functional
(Fig. 2E). Hence, mutations that interfere with the phosphor-
ylation dependent interaction of Hst2 with Bmh1 also abrogate
H4K16ac removal in mitosis.

To test the Hst2–Bmh1 interaction under defined condi-
tions, we prepared singly phosphorylated Hst2 proteins in
E. coli using genetic code expansion (37). Thereby, phospho-
serine is encoded in response to amber (UAG) stop codons by
an archaeal phosphoseryl-tRNA synthetase–tRNACUA pair
introduced in an E. coli strain lacking phosphoserine phos-
phatase SerB. Suppression of amber codons replacing the
codon for phosphorylated serine residues in Hst2 results in the
production of site-specifically phosphorylated protein. We
produced Hst2 S320ph and Hst2 S324ph and compared their
ability to bind to Strep-tagged Bmh1 with unphosphorylated
Hst2 (Fig. 3A). Both phosphorylated forms of Hst2 were effi-
ciently recovered in these pull-down experiments, whereas
unmodified Hst2 did not associate with Bmh1. Hence, both
serine residues mutually required for the Hst2–Bmh1 inter-
action in vivo are individually sufficient to mediate the inter-
action in vitro.

Next, we investigated whether Bmh1 is required to bridge
the interaction between phosphorylated Hst2 and H3 tails.
Therefore, we immobilized H3 peptides with or without
phosphorylation on S10 on agarose beads and performed pull-
down experiments in the presence of Bmh1 and Hst2 (Fig. 3B).
Bmh1 bound to the beads in the presence of the phosphory-
lation on H3 (lane 8) but was unable to bind in the presence of
calf-intestinal phosphatase (CIP), which dephosphorylates the
peptide (lane 9). Hst2 bound phosphorylated H3 peptides in
the presence of Bmh1 when either S320 or S324 was phos-
phorylated (lanes 11 and 12). In the absence of H3 phos-
phorylation (lanes 13–15), Bmh1 (lanes 5–7), or Hst2
phosphorylation (lane 10), Hst2 was not recovered with the
concentration in the presence or absence of Bmh1. E, kinetic parameters of H
squares approach from a double-reciprocal plot. F, equal amounts of Hst2 prote
C–D. CIP, calf-intestinal phosphatase; FLuc, firefly luciferase; H3S10ph, phosph
beads. Hence, Bmh1 is indeed necessary and sufficient to
mediate the interaction of phospho-Hst2 with phosphorylated
H3 tails.

The phosphorylation of Hst2 may have additional functions
in the regulation of Hst2 activity. For example, phosphoryla-
tion of S316 could regulate nuclear export of Hst2 because this
residue is part of the nuclear export sequence. Furthermore,
the C-terminal α-helix of Hst2 has been shown to interfere
with NAD+ binding (38). Therefore, we measured the activity
of recombinant Hst2 with or without phosphorylation of S320
or S324 in dependence of NAD+ concentration using acety-
lated firefly luciferase (FLuc) as substrate (39) (Fig. 3C). The
phosphorylated forms of Hst2 both showed a 3-fold increase in
Vmax and a 3-fold decrease in KM for NAD+, resulting in an
almost 10-fold higher catalytic efficiency. The enhanced cata-
lytic efficiency was reverted by preincubation of the phos-
phorylated proteins with CIP, confirming that the presence of
the phosphorylation is essential for the effect. The addition of
Bmh1 to the deacetylation reaction did not further enhance
the activity of phosphorylated Hst2 (Fig. 3D). Hence, phos-
phorylation is sufficient to fully activate Hst2 activity.

This indicates that the unphosphorylated Hst2 C-terminus
acts like a mixed noncompetitive inhibitor that is masked by
phosphorylation. This can be interpreted in the way that
binding of the C-terminus to the catalytic core reduces the
affinity for NAD+ (increasing KM) and also slows catalysis
(reducing Vmax). The regulation of the catalytic activity by
phosphorylation of C-terminal residues appears to be a
conserved mechanism that has also been observed for the
human Hst2 homologue, SirT2 (40, 41).

Conclusions

Chromosome condensation in mitosis is licensed by kinet-
ochores via the recruitment of Shugoshin and Hst2 (19).
Phosphorylation of H3S10 by Aurora B kinase is a central
event in this process that mediates deacetylation of H4K16ac
by Hst2 (17, 42). Here, we demonstrate that binding of Hst2 to
this mark is mediated by Bmh1, which simultaneously binds
the phosphorylated H3 tail and C-terminally phosphorylated
Hst2 (Fig. 4).

Our results show that phosphorylation of Hst2 S320 or S324
is necessary and sufficient to induce the interaction with
Bmh1. In contrast, mutation of either site to alanine is suffi-
cient to prevent co-immunoprecipitation of Hst2 and Bmh1
in vivo. This may be the result of a complex interplay between
these sites in vivo such that the phosphorylation of one site
depends on the presence of a serine residue at the other site.
Alternatively, the in vitro pull-down experiments may require
less-affine interactions because the interaction partners are
present at much higher concentrations in the assay. Interest-
ingly, recruitment of human SirT2 to chromatin is also regu-
lated by phosphorylation (40, 43), suggesting that a similar
mechanism might act in mammalian cells.
st2 and phospho-Hst2. Error values are calculated using a root mean least
ins analyzed by 10% SDS-PAGE as loading control for those shown in panels
orylation of histone H3 serine 10.
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An important open question is how compaction spreads from
kinetochores along chromosome arms. The multivalent nature
of the interaction of chromatin, Bmh1-dimers, and Hst2 (which
can form trimers in vitro (38)) may facilitate liquid-liquid phase
separation. This hypothesis is supported by the presence of
polyglutamine stretches at the C-terminus of Bmh1 and Bmh2.
These motifs are known to interact with nucleic acids and are
often involved in phase-separation processes (44).

Experimental procedures

Plasmids and strains

Overexpression of Hst2 proteins was from 2-μ plasmids
under the control of the HST2 promoter and terminator. For
expression in E. coli, ORFs of HST2 and BMH1 were cloned in
pCDF-DUET with purification tags. Mutations were intro-
duced by QuikChange mutagenesis. Details can be found in
Supplementary Materials. Yeast strains were constructed in
the S288C background according to standard procedures. The
strains used in this study are listed in Table S1.

Cell-cycle arrests

To synchronize cells in G1, the mating pheromone α-factor
(GenScript) was added to log-phase cultures grown to absor-
bance at 600 nm of 0.4 to 0.6 (MATa yeast strain BY4741) to a
6 J. Biol. Chem. (2021) 296 100078
final concentration of 15 μg/ml. Cells were incubated for 1 h at
30 �C at which time an additional dose of 7.5 μg/ml α-factor was
added and cells incubated for one more hour. Cells were
monitored periodically by microscopy. Cells were collected by
centrifugation at 4000 rpm for 2 min and processed for further
experiments. To synchronize cells in themetaphase, one dose of
nocodazole (15 μg/ml, Sigma Aldrich) was added to log-phase
cultures (absorbance at 600 nm = 0.5) for 2 h. The cells were
monitored by microscopy and collected as above. To synchro-
nize cells in the S phase, 100-mM hydroxyurea (Sigma Aldrich)
was added to exponentially growing cells in yeast extract,
peptone, dextrose medium (absorbance at 600 nm ≈ 0.3) and
incubated for 2 h at 30 �C, after which they were monitored by
microscopy and collected as above.

Protein purifications

Hst2

E. coli BL21 (DE3) transformed with pCDF-His6-yHst2 were
grown overnight at 37 �C in the LB containing 50 μg/ml
spectinomycin. Next day, the preculture was used 1:50 to
inoculate 4-L LB medium and protein expression induced with
0.5-mM IPTG at absorbance at 600 nm = 0.5, and incubation
continued overnight at 15 �C. Cells were harvested, suspended
in 20-mM Hepes, pH 7.5, 200-mM NaCl, 20-mM imidazole, 3-
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mM β-mercaptoethanol, and 1-mM PMSF supplemented with
lysozyme (�0.5 mg/ml), DNase (1 mg), protease inhibitor
cocktail (Roche), and disrupted with a pneumatic cell disin-
tegrator. Soluble His-yHst2 was purified by Ni-NTA affinity
chromatography using 20-mM Hepes, pH 7.5, 200-mM NaCl,
20-mM imidazole, 3-mM β-mercaptoethanol for binding and
washing and additional 200-mM imidazole for elution. The
eluatewas concentrated and separatedby gelfiltration in20-mM
Hepes, pH 7.5, 100-mM NaCl, 0.5-mM Tris(2-carboxyethyl)
phosphin (TCEP) on a 16/60 Superdex 75 column (GE health-
care, UK). Hst2-containing fractions were pooled, concentrated
in a microfiltrator, and stored in aliquots at −80 �C.

Bmh1

Protein expression conditions were the same as for Hst2.
Cells were lysed in 50-mM Tris, pH 8, 300-mM NaCl, 3-mM
β-mercaptoethanol, and 10% glycerol. The supernatant was
incubated with Pierce High Capacity Streptavidin Agarose,
washed with the same buffer, and Strep-Bmh1 was eluted with
additional 10-mM desthiobiotin. Strep-Bmh1 was further pu-
rified on a Superdex 200 column (GE Healthcare) in 20-mM
Tris, pH 8, 100-mM NaCl, 0.5-mM TCEP, and 10% glycerol.

Hst2 S320ph and S324ph

BL21 ΔserB (DE3) cells containing pKW2-EF-Sep (a
chloramphenicol-resistant plasmid containing SepRS2, pSer-
tRNAB4CUA, and EF-Sep (37)) were transformed with pCDF-
His-yHst2 S320TAG or S324TAG. Cells were grown at 37
�C in the LB medium containing 50 μg/ml spectinomycin and
34 μg/ml chloramphenicol and used next day to inoculate 4 L
LB-SC 1:50. Protein expression was induced at absorbance at
600 nm = 0.5 with 1-mM IPTG, and cells were harvested after
4 h at 37 �C. Purification followed the same protocol as for
unmodified Hst2. All proteins were stored at −80 �C.

Coprecipitation experiments

BY4741 cells were transformed with plasmid pRS423-Flag-
Hst2 and grown to absorbance at 600 nm = 1.7 to 3.0. Cells from
1 L were resuspended in PBS supplemented with protease in-
hibitors (1-mM phenylmethanesulfonyl fluoride and each 5 μg/
ml chymostatin, leupeptin, aprotinin, and pepstatin A) and
(where indicated) a phosphatase inhibitor cocktail (PhosSTOP
Sigma Aldrich). Subsequently, flash-frozen cell nuggets were
lysed by milling (RETSCH ZM 200 Ultra Centrifugal Mill),
thawed, and centrifuged (20,000 rpm, 4 �C for 15 min). The
supernatant (total protein concentration �3 mg/ml) was incu-
bated with ANTI-FLAG M2 agarose beads (Sigma Aldrich) at
4 �C for 1 h with agitation. Beads were washed six times with
500-μl PBS containing 0.2% Triton X-100 and finally eluted by
boiling in an SDS sample buffer. Proteins were analyzed by SDS-
PAGE and the Western blot (antibodies are listed in Table S2).

In vitro pull-downs

Purified, recombinant Bmh1 and Hst2 isoforms (0.3 mg
each) were mixed with 20-μl 50:50 slurry of Avidin Agarose
Resin (Fisher Scientific) in 80 μl of Bmh1 size exclusion
chromatography buffer (20-mMTris, pH 8, 100-mMNaCl, 0.5-
mM TCEP, 10% glycerol), incubated for 1 h at RT with shaking
(300 rpm) and subsequently washed three times with PBS.
Proteins were eluted by boiling in the SDS-PAGE sample buffer,
analyzed by 10% SDS-PAGE, and stained with InstantBlue.

For H3 peptide pull-down reactions, 5-mg peptide was coupled
toN-hydroxysuccinimide-activated Sepharose 4B (GEHealthcare
Life Sciences). To prepare unphosphorylated H3S10 peptide for
control reactions, beads were incubated with CIP at 37 �C for 1 h.

Purified, recombinant Bmh1 and unmodified or phosphor-
ylated Hst2 isoforms (0.3 mg each) were mixed with 20-μl
peptide-coupled beads in 80 μl of Bmh1 size exclusion chro-
matography buffer (20-mM Tris, pH 8, 100-mM NaCl, 0.5-
mM TCEP, 10% glycerol), incubated for 1 h at RT with
shaking (300 rpm) and subsequently washed three times with
PBS. Proteins were eluted by boiling in the SDS-PAGE sample
buffer, analyzed by 4 to 15% Criterion TGX Stain-Free Protein
Gel (Bio-Rad) and stained with InstantBlue.

Luciferase-based KDAC assay

TheKDAC activity wasmeasured in a continuous assay format
using FLuc K529ac (39). Reactions contained 200-nM Hst2
(unmodified or phosphorylated), NAD+ at concentrations from
0 to 4 mM, and FLuc K529ac (suitably diluted to match the
sensitivity of the luminometer) in 50-μl KDAC buffer (25-mM
Tris/HCl, pH 8.0, 137-mM NaCl, 2.7-mM KCl, 1-mM MgCl2,
1-mMGSH). To assay luciferase activity, an equal volume of 40-
mM tricine, pH 7.8, 200-μM EDTA, 7.4-mM MgSO4, 2-mM
NaHCO3, 34-mM DTT, 0.5-mM ATP, and 0.5-mM luciferin
was added and luminescence recorded for 30 min at 30 �C in a
FLUOStar Omega Microplate Reader (BMG LABTECH). All
experiments were executed in triplicate and averaged, and re-
actions without the enzyme were used for background subtrac-
tion. Initial rates were determined from the linear phase of the
reactions. The kinetic parameters (apparent KM and kcat) were
obtained byfitting the data to the nonlinear regressionMichaelis-
Menten model in GraphPad Prism 8 software.

Data availability

Mass spectrometry raw data and MaxQuant results are
available in MassIVE: (https://massive.ucsd.edu/ProteoSAFe/
static/massive.jsp; project ID MSV000086283). All other data
are included in the article.
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