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Abstract: The MYB transcription factors (TFs) are evolving as critical role in the regulation of the
phenylpropanoid and tanshinones biosynthetic pathway. MYB TFs relate to a very important gene
family, which are involved in the regulation of primary and secondary metabolisms, terpenoids,
bioactive compounds, plant defense against various stresses and cell morphology. R2R3 MYB TFs con-
tained a conserved N-terminal domain, but the domain at C-terminal sorts them different regarding
their structures and functions. MYB TFs suppressors generally possess particular repressive motifs,
such as pdLNLD/ELxiG/S and TLLLFR, which contribute to their suppression role through a diver-
sity of complex regulatory mechanisms. A novel flower specific “NF/YWSV/MEDF/LW” conserved
motif has a great potential to understand the mechanisms of flower development. In the current
review, we summarize recent advanced progress of MYB TFs on transcription regulation, posttran-
scriptional, microRNA, conserved motif and propose directions to future prospective research. We
further suggest there should be more focus on the investigation for the role of MYB TFs in microalgae,
which has great potential for heterologous protein expression system for future perspectives.

Keywords: tanshinones; phenolic acid; plant defense; pdLNLD/ELxiG/S motif; flavonoids; repressor
MYB; bioactive compounds

1. Introduction

The compounds derived from phenylpropanoid denote a different class of secondary
metabolites, which start from key enzyme phenylalanine. Phenylpropanoid derived
metabolites play an important function in plant resistance mechanisms against biotic
and abiotic stress, regulate plant growth and development [1,2] and male fertility [3]. Sev-
eral of these phenylpropanoid derived compounds are considered to be valuable to human
welfare and health. MYB protein associated with a big class of transcription factors, which
are responsible for the regulation of the biosynthetic pathway of phenylpropanoid result-
ing compounds [4]. In plants, phenylpropanoid derived secondary metabolites mainly
consist of flavonoid, monolignol, stilbenes, terpenoids and different phenolic acid. Many
of these compounds play a key role in identified plants, including as UV light protectants,
phytoalexins, carotenoids, strengthen the cell wall and signaling molecules [5].

The pigments that provide the different colors to vegetables, fruits, ornamental foliage,
leaves, ornamental flowers and seeds are called flavonoids, which provide health benefits
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to the human and animals [6]. Flavonoids are the secondary metabolites that are broadly
distributed in the plant kingdom, which play key roles in plant defense and development.
These secondary metabolites can be divided into different groups based on differences
in their structure, such as anthocyanin, proanthocyanin, chalcones, flavones, flavonols,
flavandiols, isoflavonoids and phlobaphenes [7]. Flavonoids are the most common oc-
curring pigment in plants. Anthocyanins are commonly known as flavonoid compounds
providing blues, pink hues, orange, yellow and red colors to flowers, fruits and vegetables.
Anthocyanins play very significant physiological and ecological roles in plants. Antho-
cyanin is most noticeable in young leaves where they defend developing tissues from light
stress. Anthocyanins play a key role in seed dispersal and pollination by attracting the
pollinator agent in mature fruits and flowers. Proanthocyanin (also known as tannins)
provides as significantly roles, such as strengthening the seed coat and stress tolerance in
plants [8]. Furthermore, these compounds are concerned in the regulation signaling, when
legume are in nodulation process, transportation of auxin and male fertility determination.
Moreover, these compounds are involved in plant defense in opposition to stress (biotic and
abiotic). These compounds have very imperative values as nutritional and pharmaceutical
compounds [9].

Phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), and p-coumaroyl
coenzyme A ligase (4CL) are very important key enzymes, which jointly catalyzed stages
(First three stages) involved in biosynthesis of compounds, which are derived from phenyl-
propanoid, as shown in (Figure 1).
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through MYB TFs and MBW complex activation, is constructed based on the recent remarkable research advancement.

Various transcription factors (TFs), including R2R3 MYB, WD40 repeat (WDR) proteins
and basic helix-loop-helix (bHLH) and control the biosynthesis of flavonoid compounds [10].
A complex of MYB-bHLH-WDR (MBW) shows action, in order to trigger the structural
genes responsible for the process of flavonoid biosynthesis. In several plants, including
Helianthus annuus L., Arabodopsis thialana, Mimulus guttatus, Camellia sinensis, Narcissus



Int. J. Mol. Sci. 2021, 22, 9544 3 of 22

tazetta. L. Narcissus tazetta, Zea mays, Glycine max, Medicago truncatula, Fragaria × ananassa,
populous, Petunia x hybrida, Malus domestica, and Vitis vinifera L., these transcription fac-
tors have been functionally characterized well [11–19]. This analysis encapsulates the
recent understanding of MYB proteins and their function in controlling phenylpropanoid
metabolisms in plants, as well as further studies to understand the complexity of their
network of regulatory mechanisms.

2. Mechanisms of MYB Gene Family as a Transcription Factor

Cellular processes are regulated by transcription factors (TFs), which can modify
complex or intricate traits in plants and could play a prominent part in next-generation
biotechnology. There are limitations in genomic diversity in traditional breeding. However,
transgenic methodologies surpass genetic obstacles by improving the regulatory pathways
of one crop by integrating TFs of other crop or plant species [20]. Genes that encode TFs
containing DNA binding motifs, e.g., MYB, ERF/AP2, Zinc fingers and bZIP are signal-
induced. These TFs further regulate many functional genes during different conditions of
stress or morphogenesis. Therefore, identifying novel TF genes responsible for regulating
particular gene expression will improve our understating of signaling pathways related
to the development and growth of innovative transgenic crops. MYB is a functionally
diverse and large protein family present in all eukaryotic organisms [21]. Many MYB
acts as TFs having a different number of MYB domains that are able to bind DNA. They
interact with other TFs and are also involved in ABA response, which represents their
wide distribution among plants. Detailed functional characterization of these proteins in
Arabidopsis thaliana depicts their variety of roles in plant-specific mechanisms. The cell
cycle of eukaryotes is controlled by ‘classical’ MYB factors that are linked with c-Myb.
First, MYB gene identification was form avian virus myeloblastosis, which was ‘oncogene’
v-MYB [22].

3. Evolution of MYB Transcription Factors

The protein of MYB family contains DNA binding domain. There are two particular
conserved regions present in MYB protein, C-terminal of R2R3 MYB protein, which show
structural and functional diversity in their amino acid sequence, which are responsible for
various regulation activities in plants. While, N-terminal show binding domain of MYB
DNA are conserved. Generally, the domain of MYB protein comprises sequences with four
imperfect amino acid repeats of approximately 52 amino acids, each establishing three α–
helices. Ogata, et al. [23] described that Helix-turn-helix structure, which are built through
each repeat of second and third helices with regularly spaced three tryptophan residues,
resulting in hydrophobic central in HTH structure (3D). Interestingly, first tryptophan
in R3 domain is replaced with isoleucine or phenylalanine in plants. MYB family could
be separated into four group based on MYB domain number [2,24]. In plants (monocots
and dicots), plentiful kind of R2R3-MYB TFs are specific [25]. The plant taxon represents
the highest diversity, with the presence of all four classes of MYB proteins. The group
of 4R-MYB indicates the smallest class and its members have four R1/R2-type repeats.
Several plant genomes contain single 4R-MYB encoded protein. However, the second class
retains 3R-MYB protein of R1R2R3 type, which is composed of higher plant genomes, is
particularly encoded by five genes. R2R3-MYB domain is more conserved as compared to
its other region, which shows more divergence. The division of R2R3-MYB proteins into
subgroups is based on amino acid motifs, which are present at C terminal [2].

MYB domain sequence-based evolutionary studies from various organisms represent
that plant ancestor initially had three repeats and out of which the first repeat was lost
during the course of time. Lipsick [21] has described an evolutionary model of MYB
proteins. This model reveals that R1R2R3-MYBs resulted due to consecutive intragenic
duplications and triplications among the primeval eukaryotes, and they produced two
repeat and three repeat (R1R2R3-MYB, R2R3-MYB) proteins in animals and plants, respec-
tively. During plant evolution through selective subgroup expansion and amplification,
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numerous subgroups genes harboring R2R3MYB proteins were made due to the loss of
R1 [26]. The consecutive gain of repeat units generated MYB genes. The detailed study of
MYB genes regarding their classification, structure, characteristics, mechanism of combina-
tional control, multi-functionality, functional redundancy and gain model for evolution
have been reviewed comprehensively by Du, et al. [27] and Dubos, Stracke, Grotewold,
Weisshaar, Martin and Lepiniec [24]. It is very interesting that the heterogeneous class
consists of proteins with partial or single MYB repeat, jointly known as “MYB-related”,
which is further divided into many subclasses [28]. The loss of sequence regarding R1
repeat and successive extension of gene family resulted in R2R3-MYB class after evolution
from R1R2-MYB gene predecessor [28].

Moreover, it has also been proposed that ancient intragenic duplication by gaining
the sequence encoding R1 repeat from R2R3-MYB genes resulted in the evolution of 3R-
MYB [29]. Arabidopsis AtMYB48 and AtMYB59 and their rice homologs (OsMYBAS2 and
OsMYBAS1), the two R2R3-MYB genes experience alternative splicing in the same way
and result in three diverse merged transcripts in rice, and four in Arabidopsis. Therefore,
a deep-rooted understanding of another splicing of MYB protein will further enlighten
us regarding gene evolution in dicots and monocots, as well as development-related
regulation by transcription factor genes [29].

4. Recent Transcriptomic and Genome-Wide Analysis and Expression of MYB
Transcription Factors

In sugarcane, 202 MYB TFs are explored, some of them are expressed mainly in
stem and are actively responded to drought stress resistance and mosaic diseases [30].
In Arabidopsis 198 MYBs have been identified; among them, 126 are encoded for R2R3-
MYB proteins [31]. Recently, 223 MYB (112 R2R3-MYB, 2 R1R2R3-MYB and 119 R1-
MYB) transcription factors were recognized in the potato genome [32]. Recently, there are
69 GbMYB transcription factors are identified in Ginkgo biloba, out of which 19 R2R3 MYB are
responsive to hormonal and abiotic stresses [33]. In maize, a genome-wide survey indicated
that they consist of 157 R2R3-MYB proteins [34]. R2R3-MYB (185) transcription factors are
reported in the genome of Mangrove, 34 MYB gene are mainly expressed in different tissues
(root, leaves), which are related to various stresses (salinity and drought) [35]. Hippophae
rhamnoides is the rich source of secondary metabolites, which has economic importance
regarding medicinal and nutritional values, 161 R2R3–MYB TFs were obtained through
its genome-wide analysis [36]. In a recent study, 111 StR2R3-MYB transcription factors
are reported in potato [37]. In the genome of flax, 167 R2R3-MYB, 7 R3-MYB, and 1R4-
MYB transcription factors have been identified [38]. However, in soybean, 252 total MYBs
were identified and account for about 4% of all transcription factors. They consist of two
(4R-MYB) genes, six (3R-MYB) proteins and 244 encodings for R2R3-MYB proteins [39].
Genome-wide analysis of apples revealed that they contained 229 MYB transcription factors.
Another recent study has explored 251 and 305 MYB TFs from Musa balbisiana and Musa
acuminata, respectively by [40].

5. Biological Functions Regulated through MYB Transcription Factors

MYB TFs control many plant-specific processes. By using molecular and genetic
analysis the function of MYB proteins have been greatly described among various plant
species, like petunia (Petunia hybrida), apple (Malus domestica), poplar (Populus tremuloides),
snapdragon (Antirrhinum majus), grapevine (Vitis vinifera L.), maize (Zea mays) and Ara-
bidopsis thaliana [41]. R2R3-MYB TFs have been widely investigated during last decade
and their involvement in several processes have been revealed, such as abiotic and biotic
stress [42,43], cold tolerance [41], phenylpropanoid metabolism [44,45], trichomes develop-
ment [46], flower shape [47], cell shape [48], plant defense mechanisms [49–52], cell wall
development [53] and stomatal closure [54].
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6. MYB Transcription Factors and Plant Defense Mechanisms

The growth and development of plants are strongly affected by different stresses,
including extreme temperature, drought, salinity and cold stress. Several transcriptions
factors facilitate stress responses in plants, such as NAC, WRKY, bZIP and MYB. MYB
family among them is considered the largest families of transcription factors. MYB protein
link to various cis-acting motifs, such as MBSI (T/C)AAC(G/T)G(A/C/T)(A/C/T), MBSII
(A/G)(G/T)T(A/T)GGT(A/G), MBSIIG ACC(A/T)ACC(A/C/T), which are associated to
resistance to low temperature and cell cycle control, secondary cell wall biosynthesis and
flavonoid biosynthesis respectively. MYBCORE, CTGTTG, CAGTTA, which are involved
in drought tolerance. MYBs in plants regulate abiotic responses, for example, BplMYB46,
improve osmatic and salt tolerance in Betula platyphylla by influencing the SOD and POD
genes, to improve both proline levels and reactive oxygen species scavenging, and reduced
water loss by regulating stomatal aperture [55]. GhMYB4, transcription factors induce
resistance against verticillium dahlia in cotton. It provide a great potential for the improve-
ment in breeding of cotton plants [56]. High temperature induces the MYB transcriptional
factor and positive regulator of thermotolerance [54]. MdMYB308L positively regulate
anthocyanin accumulation and cold tolerance in apple by interacting with MdbHLH33 [41].
StMYB030, which is the homology of AtMYB44, increased the salt stress tolerance in trans-
genic plants of Arabidopsis upon its overexpression [32]. VdMYB1 from Chinese wild
grape stimulates defense response against pathogen attack [52]. GhMYB108-like plays a
key regulating role in response to salt and drought stresses [57,58]. The over-expression of
GmMYB81 in Arabidopsis thaliana increases the rates of seed germination under drought
and salts stress [59]. EaMYB18, was isolated from sugarcane, encoding a single R3 repeat
MYB DNA binding domain, showed the highest potential for cold and drought stress
tolerance [58]. The overexpression of OsMYB-R1 in transgenic rice increased tolerance
under Cr(V1) and drought exposure [60]. OsMYB30 regulates the expression of OsPAL6
and OsPAL, which play an important role in providing resistance in rice against brown
planthopper [61] (see Table 1).

Table 1. MYB TFs involved in plant defense mechanisms.

Plant Transcriptional Factors Plant Defense References

Saccharum Spontaneum MYB36, MYB48, MYB 54,
MYB61 Drought stress resistance [30]

Arabidopsis thaliana MYB 28, MYB29 ammonium stress [62]

Plant roots MYB41, MYB53, MYB93,
MYB92 Forming protective barrier against biotic and abiotic [63]

Saccharum Spontaneum MYBs resistance against mosaic diseases [30]

Solanum lycopersicum SlMYB52 enhancing the tolerance against spider mites by
regulating trichome formation [64]

Vitis vinifera L. VvMYB1, VvMYBA3 salt stress resistance and drought resistance [65]

Oryza sativa OsMYB30 resistance in rice against brown planthopper [61]

Lilium longiflorum LlMYB305 positive regulator of thermotolerance [1]

7. Regulation Mechanism of Flavonoid Biosynthesis Pathway through MYB
Transcription Factors

The flavonoid biosynthetic pathway associated genes are controlled by the collabo-
ration of various families of TFs. The genes responsible for anthocyanin biosynthesis are
differentially controlled in monocot and dicots by the MBW complex, which is formed by
the physical interaction of R2R3-MYB, bHLH, and WD40 Proteins. This MBW complex
stimulates the temporal and spatial expression of structural genes encoding for the biosyn-
thesis of anthocyanin. Anthocyanin biosynthesis controlling in monocot differs from dicots
species. MYB and bHLH protein in maize are determined by Pl/C1 and B/R families,
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each member of these families has tissues specific pattern. A WD40 transcriptional factor,
PAC1 is needed by either B1 or R1 proteins to stimulate the biosynthesis of anthocyanin
genes in different tissues (seeds and roots) [66]. In Arabidopsis thaliana, TT2, TT8 and TTG1
activate PA biosynthesis in seeds growth. Whereas TTG1, a WD40 protein, various bHLH
and PAP1, PAP2 (MYB) physically interact each other to motivate anthocyanin biosynthesis
in vegetative section [67,68].

Various R2R3 MYB (TFs) were recognized from many model plants, including Ara-
bidopsis thaliana and Zea mays are take part in the control of the flavonoid and phenyl-
propanoid biosynthetic pathway [2,66,69]. Recently plant genome-wide surveys provide
the opportunities for the identification and isolation of many MYB TFs responsible for
the regulation of flavonoid biosynthesis form different plant species, including straw-
berry, apple, potato, pear, bayberry, grapevine, pear, poplar, purple kale, soybean and
cauliflower (Figure 2) [70]. Most of these MYB genes have been functionally characterized
by overexpression in host species.
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The anthocyanins exhibited high levels of biological function in plants. It acts as
a visual signal to pollinators and provides defense against stresses (biotic and abiotic),
including cold tolerance, infection by pathogen, high intensity of light and oxidative dam-
age in plant cells [71–73]. Dietary consumption of anthocyanin has been connected with
protection against a broad spectrum of human diseases [74]. Therefore, a high level of
anthocyanin accumulation and control are needed for economic as well as scientific signifi-
cance. R2R3-MYB, bHLH and WD-repeat protein act together to form MBW complex. This
transcriptional complex is responsible for anthocyanin biosynthesis regulation. In Eudicots,
this development starting in stressed leaves and developing flowers by R2R3 MYB proteins
activation. Anthocyanins biosynthesis pathway is a branch of flavonoid pathway that has
been extensively studied in petunia (Petunia hybrida) [17], Lily (Asiatic hybrid lilies) [75],
Chinese narcissus [12], monkey flower (Mimulus) [76], Anthurium andraeanum [77] and
Cymbidium hybrid [78]. In fruits and vegetables, MYB TFs are also well-described in an-
thocyanin biosynthesis, such as apple and potato [41,79]. The anthocyanin biosynthetic
pathway includes structural as well as regulatory genes. Several recent studies indicated
that MBW complex activate the expression of structural genes, which are responsible for the
accumulation of anthocyanin pathway. R2R3-MYB proteins in the MBW complex generally
take part in the accumulation of anthocyanin [80]. In our previous study, NtMYB3 and
NtMYB2 are isolated from Chinese narcissus, which are responsible for the regulation of
anthocyanin biosynthesis. Heterologous overexpression of NtMYB2 and NtMYB3 reduced
the anthocyanin contents and down-regulate the expression level of genes, including UFGT,
ANS and DFR in the transgenic flowers of tobacco [11,12].

8. The Role of Condensed Tannins in Plants and MYB

Condensed tannins (proanthocyanidins) are well-known polyphenols with different
ecological functions. It is the polymers of flavan-3-ols and the resultant product of flavonoid
pathway [81]. PA is the most extensively spread secondary metabolites and is mainly
prominent in forest trees and woody plants [82]. In trees, proanthocyanidins are general
constituents of vegetative parts which consist of flowers, leaves, bark, seed and roots [83],
and provide protection to plants from various abiotic and biotic stressors. The occurrence
of proanthocyanidins (PAs) in herbaceous plants is more limited, while they are found in
lotus corniculatus and Onobrychis viciifolia [84,85]. The accumulations of PAs were observed
in seed coat or testa in Glycine max and Arabidopsis thaliana. In Brassica napus, PAs are
down-regulated in yellow seed [86]. PAs are also found to be accumulate in monocot
species such Chinese narcissus [87,88]. PAs have diverse biological functions; they are
functionally defined by their capacity to attach and precipitate proteins in solutions, act as
antioxidants and as pro-oxidants and provide tolerance to environmental stresses [89,90].
In our previous study, NtMYB3 and NtMYB2 are isolated from Chinese narcissus are
involved in the regulation of proanthocyanin biosynthesis. The ectopic overexpression
of NtMYB2 reduced the PA in transgenic flowers of tobacco by regulating the main key
genes LAR and ANR. NtMYB3 positively regulates the transcript level of ANR and LAR
in transgenic tobacco. The PA contents were higher in NtMYB3 overexpression tobacco
flowers as compared to wild [11,12]. In vertebrate herbivores with the naturally acidic
stomach, PA attaches nutritional protein and show anti-nutritive effects when found in
high concentrations. The forage legumes with balance PAs concentration reduced the
risk of rumen foaming and bloating diseases in grazing cattle [91]. FhMYB5 belong to
VvMYB5b subclade accumulate proanthocyanidin and anthocyanin in Freesia hybrida by
up-regulating the DFR gene [92]. In ruminants, methane emissions and nematode burden
can be minimized by the action of proanthocyanin [93]. Furthermore, the induction of
proanthocyanin biosynthesis plays a key role in plant defense [94].
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9. Physiological and Metabolic Regulation of Phenolic Acid and Terpenoids through
MYB Transcription Factors

Phenolic acids are universal secondary metabolites in plants, which play a very
important physiological and metabolic role in the entire plant life cycle [95]. Phenolics
regulate the various physiological process, which is associated with plant development
and growth, cell division, seed germination and photosynthetic pigmentation [96]. Plant
shows increased biosynthesis of phenolic and flavonoids under the conditions of abiotic
stress, which support the plant to cope with environmental constraints. Phenylpropanoid
biosynthetic pathway is stimulated under the condition of abiotic stress, which facilitates
the accumulation of different phenolic compounds that have the capacity to scavenge
harmful reactive oxygen species. Depending on their carbon skeleton, it can be divided into
two main groups, such as the hydroxycinnamic acid group and the hydroxybenzoic acid
group. Such compounds are of great medicinal significance; several of them are effective
antioxidants, and many others are recognized as anti-inflammatory, anticarcinogenic,
antiviral and antibacterial functions [97,98]. MYB TFs are the most significant gene family,
which regulate the phenolic biosynthetic pathway as previously identified in various
species. PAL, C4H and 4CL are very important enzymatic genes, which participate in
the polyphenolic biosynthetic pathway (Figure 1). Ding, et al. [99] described that when
SmMYB36 overexpressed in Salvia miltiorrhiza (hairy roots), it stimulated the accumulation
of tanshinones, but repressed the flavonoid and phenolic acid biosynthesis. A novel gene
SnMYB2 increased the biosynthesis of salvianolic acid in the roots of salvia, which is
the potential medicinal herb [100]. SmMYB1, which are responsive to methyl jasmonate,
enhance the biosynthesis of phenolic acid [101]. SmMYB2 is another novel gene that
regulates the salvianolic acid in Salvia miltiorrhiza, and enhanced its biosynthesis [100].
When AtPAP1 overexpressed in Brassica napus increases the antioxidant and sinapic acid
content of the leaves. Furthermore, the expression level of genes participated in flavonoid
and a phenolic acid biosynthetic pathway were stimulated [102]. ZmMYB-IF35, from
maize, increase chlorogenic and ferulic acid accumulation [103]. AtMYB4, identified from
Arabidopsis thaliana, belongs to repressor R2R3-MYB subgroup 4, increased the expression
level of C4H leads to accumulation of sinapate ester in Atmyb4 mutants [104]. Heterologous
expression of ROSEA1(snapdragon) and PAP1(Arabidopsis thaliana) increases the level of
salvianolic acid and rosmarinic acid [105,106]. The overexpression of SmMYB39 (subgroup
4) dramatically reduced the total phenolics and contents of rosmarinic acid, salvianolic acid
and 4-coumaric acid, in transgenic lines of Salvia miltiorrhiza by down-regulating the C4H
gene. Furthermore, all of these compounds were rescued, when SmMYB39 was silenced by
RNAi [107]. In a recent study, SmMYB2 improved salvianolic acid biosynthesis in Salvia
miltiorrhiza, which is a very potential medicinal herb [100].

Tanshinones are the liposoluble and major bioactive compounds usually present in
medicinal herb plants, such as salvia miltiorrhiza. Enhancing the production of Tanshinones
is critical because of its economic values in human medicine, anti-tumor properties and the
curing of cerebrovascular and cardiovascular diseases. Tanshinones has various biological
functions, including antiallergic effects, anti-inflammation, anti-cancer, antioxidant and
anti-microbial [108,109]. Tanshinones are the diterpenoids, which are synthesized via two
different pathways, such as the MEP pathway and MVA pathway, which are localized in
plastids and cytosol, respectively (Figure 3). SmMYB98, belong to subgroup 22, predomi-
nantly expressed in lateral roots of salvia miltiorrhiza improved the salvianolic acids and
tanshinones in their hairy roots [110]. In Danshen, SmMYB98b increased the production
of Tanshinones [111]. A significant increase in the production of Tanshinones upon the
overexpression of SmMYB9b in medicinal plants is observed in Figure 3 [112].
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10. The Flavonol Biosynthetic Pathway Is Regulated by MYB Transcription Factor

The flavonols are colorless and among the most plentiful flavonoids in plants, gener-
ally exist in mono-, di-, or triglycerides form [113]. Flavonol regulates several biological
functions in plants, such as auxin transport regulation [15,114], the process of fertilization
in higher plants, and it is a natural antioxidant [115]. The biosynthetic pathway of flavonol
is controlled by MYB protein alone, or acts on the MBW complex or establishment of an
MYB-bHLH dimer. A novel gene PbMYB12b, positively regulates the flavonol accumula-
tion in pear by up-regulating the PbFLS and PbCHSb genes [15]. R2R3-MYB transcriptional
factor CcMYB12 isolated from Cynaracardunculus var. scolymus and functionally charac-
terized in Arabidopsis. Ectopic overexpression of CcMYB12 activates the levels of gene
expression involved in flavonol biosynthesis, ultimately lead to flavonol accumulation in
Arabidopsis [116]. In Arabidopsis MYBTFs (AtMYB111, AtMYB11, and AtMYB12) indi-
vidually accomplished for motivating the genes encoding for flavonol synthase (FLS). The
expression of AtMYB12 and AtMYB111 is spatially differentiated in the emerging seedling.
The AtMYB12 regulates flavonol synthesis generally in the root. Whereas, it was found that
AtMYB111 is dynamic in the cotyledons [113]. Another R2R3-MYB transcriptional factor
denoted as PbMYB12b, which belongs to subgroup 7, positively regulates the flavonol
accumulation in pear fruits [15]. In grapevine, transient assay indicated that VvMYBF1
controls the expression of FLS1 and many other promoters of Arabidopsis and grapevine.
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In M. truncatula, R2R3-MYB134 positive regulator flavanol biosynthesis [117]. Ectopic
overexpression of LjaMYB12 from Lonicera japonica enhances the flavonol accumulation in
the model plant Arabidopsis [7]. Both GtMYBP3 and GtMYBP4 genes are isolated from the
Japanese gentian (Gentiana triflora). When these genes are over-expressed in model plants
Arabidopsis, the increase the transcript level of genes encoding for flavonol biosynthetic
pathway. Furthermore, flavonol contents were increased in the seedling of Arabidopsis
transgenic plants [118]. These previously functionally characterized R2R3-MYB TFs belong
to subgroup 7 containing [K/R][R/x][R/K]xGRT[S/x][R/G]xx[M/x]K and ([W/x][L/x]LS)
motifs at C-terminal (Figure 4B). StMTF1 (Solanum tuberosum) and VvMYB5a (grapevine)
belong to subgroup 6 and 27 respectively, involved in the accumulation of flavonol con-
tents [119,120]. MdMYB3 gene belong to subgroup 4 activate the flavonol biosynthesis [121].
In our previous study, NtMYB3 and NtMYB2 are isolated from Chinese narcissus are re-
sponsible for the regulation of flavonol biosynthesis. Ectopic overexpression of NtMYB2
and NtMYB3 reduced the flavonol contents by suppressing the FLS in the transgenic flow-
ers of tobacco [11,12]. In Maize C1 (R2R3 MYB TFs), that functions to accumulate flavonol
biosynthesis.
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11. Expression Pattern of MYB Transcription Factors in Specific Tissues

MYB TFs are constitutively expressed in vegetative and reproductive parts of the
plant. Several MYB TFs, which show various expression patterns in specific tissues, are
functionally characterized. Some of these MYB TFs, expressed in many tissues and some are
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involved in the tissue-specific expression. AtMYB21 and AtMYB24, PsMYB26, AmMYB308,
AmMYB340 are mainly expressed in flowers (Figure 4A). The expression level of GbMYBF2
was higher in roots as compared to the stem, fruits and leaves [122]. StMYB12A mainly
expressed in flowers [123]. The highest expression of GbMYBR1 in Ginkgo was detected
in leaves [124]. Maximum expression levels of NtMYB5 were detected in perianth and
corona of Chinese narcissus [125]. The expression level of SmMYB86 were observed in peel,
stem and leaves [126]. The transcript level of VvMYB4-like gene was observed in various
parts, such as flower, skin, leaves and roots in grapevine [127]. CsMYB1 from Crocus
sativus is involved in stigma development and showed expression in stigma tissues [128].
The MYB genes, including AtMYB26, AtMYB57 and AtMYB103, are identified [129,130].
In poplar, the existence of PtrMYB57 was found in all tissues, but not in roots [131].
In Arabidopsis thaliana, the down-regulation of AtMYB103 resulted in aberrant pollens
and early tapetal degeneration. In the same way, AtMYB32 has also been vigorously
expressed in papillae, stigma, lateral root primordial and tapetum [130,132]. NtMYB2
from Chinese narcissus has been involved in the suppression of flavonoid biosynthesis,
especially anthocyanin. Our recent study indicated that NtMYB2 and NtMYB3 are mainly
expressed in the flowers [11,12].

Tissue-specific regulation has also been reported in other plants, HbMYB1 detected in
latex, bark, and leaves of rubber tree while in trapping panel dryness trees, its expression
reduced greatly [133]. The expression of AtMYB101 was limited only to hypocotyls hook
and subapical cells of plant. However, in many tissues, AtMYB65 and AtMYB33 were
co-expressed. The expression pattern of the R2R3-MYB gene is quite unique as indicated by
AtMYB102 in Arabidopsis was down-regulated in stem and up-regulated in young flowers,
leaf, and root on treating with ABA [134,135]. GhMYB9 and GhMYB7 have been detected
in fibers and flowers, and the expression of these gene are developmentally regulated in
fibers [136]. Moreover, previous investigations have proposed the involvement of GaMYB
in seed development, another development, floral initiation and stem elongation [137],
it showed a high-level of expression in grass L. temulentum in the stamen primordia and
floral meristem. In our recent study, we found that NtMYB4 is involved in development
and mainly expressed in flowers (data unpublished). In soybean, GmMYBJ7 and GmMYBJ6
were only expressed in stem and leaf, which shows that MYB TF’s common characteristic
may represent different pattern among higher plants [138].

12. Regulation of Flavonoid Biosynthesis

Recently, we investigated NtMYB2 and NtMYB3, which are isolated from Chinese
narcissus and belong to subgroup 4. Ectopic overexpression of these genes in tobacco
reduces flavonoid biosynthetic pathway genes that are controlled through the interaction of
various families of TFs. The genes which are responsible for anthocyanin biosynthesis are
differentially controlled in monocot, as well as dicots species by MBW complex. This MBW
complex activates the temporal and spatial transcript of genes (structural), encoding for
anthocyanin accumulation. Anthocyanin biosynthesis regulation in monocot differs from
dicots species. Several R2R3 MYB (TFs) were recognized in many plants, including Petunia
hybrida, Arabidopsis thaliana and Zea mays, which are responsible for flavonoid biosynthesis
regulation. Recently plant genome-wide survey provide the opportunities for the identifi-
cation and isolation of many MYB TFs responsible for regulation of flavonoid biosynthesis
form various plant species, including eggplant, strawberry, apple, potato, pear, bayberry,
grapevine, pear, poplar, purple kale, soybean, cauliflower and Chinese narcissus [12]. Most
of these MYB genes have been functionally characterized by overexpression in host species.

13. MYB Transcription Factors Act as Repressors through C2/ERF/TLLFR Motif

MYB suppressor has conserved the R2R3 region at the end of N-terminal, which also
contained the conserved signature of [D/E]Lx2[R/K]x3Lx6Lx3R inside the R3-domain,
which interact with bHLH cofactor and performed specific functions [139]. For exam-
ple, MdMYB15L could not perform its functional activities without bHLH cofactors [140].
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MYB TFs show highly divergence at C-terminal domain, which determines the particular
functions. Based on diverge protein sequence at C-terminal, they have been divided into
subgroups about 22. The proteins of Subgroup 4 function as transcriptional repressors of the
phenylpropanoid pathway, and also suppress the key enzymes involved in their metabolic
activities. Phylogenetic tree analysis (Figure 5) indicated that R2R3-MYB transcription
factor could be divided into three clades, including FaMYB1-Like, MYB4-Like and CPC-like
clades (Figure 5). NtMYB3 and NtMYB2 anthocyanin repressors are more closely related
to the MYB4-Like clade [12]. PtrMYB182 is closely related to the FaMYB1-like clade. The
MYB repressor belong to MYB4-Like clade contain C1 (LlsrGIDPxT /sHRxI /L), also called
GIDP motif, which is also found in subgroup 8, 9 and 11 possess activator activities and
C2 (LxLxL) or (pdLNLD/ELxiG/S) motif (Figure 2), which is also called EAR motif, and
some have C1, C2, C3(CX1-2CX7-12CX2C) and C4 (FLGLx4-7V/LLD/GF/YR/Sx1LMK)
motifs depend upon the length of amino acids, but these motifs are absent in FaMYB1 like
Clade, which usually possess TLLLFR motif at their C-terminus (Figure 2). For example,
a similar motif was found in VvMYB4-like protein [127]. Another difference in the signa-
ture of conserved sequence between AtMYB4-like clade FaMYB1-like clade is the DNEI
and DNEV, respectively, which are usually present in R3 domain. The potential and the
importance of DENI or DNEV conserved signature in R2R3-MYB repressor proteins are
needed for further investigation. The C-terminus of MYB TFs show divergent. They are
considered to be accountable for various regulatory functions. Moreover, MYB repressors
belong to AtMYB4-like clade directly binds on the promoters of targets genes for example
MdMYB16, while MYB repressor members of FaMYB-like clade need MBW complexes for
their function, for example PhMYB27 [141,142]. SmMYB86 gene was isolate from eggplant
and its overexpression reduced the anthocyanin. SmMYB86 directly binds on promoters
and repress the activities of ANS, F3H and CHS [126].
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From Antirrhinum majus, AmMYB308 and AmMYB330, adversely affected lignin and
phenolic acids biosynthesis through its overexpression in tobacco. Furthermore, key en-
zymes, including 4CL, C4H and CAD encoding for the phenylpropanoid pathway, were
downregulate [143]. Overexpression of ZmMYB42 and ZmMYB31 in Arabidopsis thaliana
reduced lignin contents [144]. In Arabidopsis, AtMYB32 and AtMYB4 knockout mutant
enhanced the yield of lignin and sinapate esters by increasing the expression level of the
C4H gene. In addition, MYB4 acts as a repressor of phenylpropanoid metabolisms by
downregulating the expression of genes encoding arogenate Dehydratase 6, which cat-
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alyzes the final step in phenylalanine biosynthesis [132,145]. MdMYB6 isolated from apple,
reduced the anthocyanin accumulation upon its overexpression in Arabidopsis thaliana.
Overexpression of AtMYB60 in lettuce repress the anthocyanin accumulation by strongly
down-regulate the dihydroflavonol 4-reductase (DFR) gene [146]. A dramatic reduction
of anthocyanin and flavonols accumulation were observed in transgenic tobacco when
FaMYB1 was overexpressed in tobacco. Proanthocyanidins were also reduced in the leaves
of lotus [147]. Albert et al. (2014) described when FcMYB1 was suppressed in strawberry
fruits, the accumulation of anthocyanin to increase in strawberry fruits. When PhMYB27 re-
pressed by RNA interference increased the anthocyanin accumulation in vegetative tissues
and flowers of Petunia. Furthermore, the suppressive action of PhMYB27 decreased by cut
of DLNxxP –type EAR motif. In grapevine, VvMYBC2-L1 is a novel locus, down-regulate
the expression of proanthocyanidins pathway-related gene and decreased the amount of
PA by overexpressing in hairy root [148]. AtMYB7, reduce the biosynthesis of flavonol
though directly targeting genes, such as UGT and DFR, and negatively regulate the seed
germination [149,150]. CmMYB1, from Chrysanthemum, recognized as repressor candidate,
negatively regulate the lignin and flavonoid pathway, reduced the flavonoid and lignin con-
tents in Arabidopsis thaliana [151]. Overexpression of SmMYB39 in Salvia strongly reduced
the total phenolics, salvianolic acid A and B, 4-coumaric acid and 4-coumaric acid through
downregulation of tyrosine aminotransfersase (TAT) and 4-hydroxylase (C4H) genes [107].
In poplar plants, PtrMYB57 suppress the anthocyanin and proanthocyanidin accumula-
tion [152]. TaMYB4 (from wheat) reduced the expression of cinnnamoyl-CoA reductase
(CCR) and cinnamyl alcohol dehydrogenase(CAD) in transgenic tobacco [153]. In addition,
microRNA 858 and microRNA156 have negative effect on anthocyanin biosynthesis by
expressing their target MYB gene [154] (Table 2).

Table 2. MYB TFs involved in plant general flavonoid pathway and act as repression functions.

Species Group Protein/Gene Target Gene Functions References

Chrysanthemum R2R3-MYB CmMYB8
PAL, C4H, 4CL1,

HCT, CCR1,
AOMT1, COMT

Reducing the contents of Lignin
and flavonoids [155]

Petunia hybrida R2R3-MYB PhPH4 F3H, F3′H, F3, F3′,
5′H Anthocyanin Repressor [69]

Citrus R2R3-MYB CsMYB3 CsRuby1/CsbHLH1 Reduced the anthocyanin [156]

Pear R2R3-MYB PbMYB120 UFGT Negative regulator of
anthocyanin biosynthesis [157]

Arabidopsis R2R3-MYB MYB4 ADT6 Phenylpropanoid metabolisms [145]

Vitis vinifera R2R3-MYB VvMYB4-like ANS, DFR, UFGT Anthocyanin repressor [127]

Vitis vinifera R2R3-MYB VvMYBC2L2 DFR, UDP, UFGT,
AN1a, AN1b

Negative regulator of
anthocyanin biosynthesis [158]

Glycine max R2R3-MYB GmMYB100 CHS, CHI, F3H,
ANS

Negatively regulate flavonoid
biosynthesis [159]

Ginkgo biloba MYB GmMYBR1 GL1 Anthocyanin, Lignin, Flavonol
and Proanthocyanin reduced [124]

Banana R2R3-MYB MaMYB4 CHS, DFR, ANS Anthocyanin repressor [160]

Malus domestica R2R3-MYB MdMYB6,
MdMYB16 ANS, UFGT Reduce the contents

anthocyanin [141,161]

Populus tremuloides R2R3-MYB PtrMYB57 CHS, 4CL, DFR,
ANS, ANR, LAR

Reduction of anthocyanin and
Proanthocyanidin [152]

Populus tremuloides R2R3-MYB PtrMYB182 ANR1, CHS1, DFR
Down-regulation of

anthocyanin and
Proanthocyanidin

[132]

Arabidopsis R2R3-MYB AtMYB3 C4H Phenylpropanoid repressor [162]
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Table 2. Cont.

Species Group Protein/Gene Target Gene Functions References

Arabidopsis R2R3-MYB AtMYB60 DFR Anthocyanin repressor [146]

Arabidopsis R2R3-MYB AtMYB7 UGT, DFR Suppression of flavonol [149]

Arabidopsis R3-MYB CPC DFR, LDOX Down regulation of
anthocyanin [163]

Arabidopsis R3-MYB AtMYBL2 DFR, LDOX Anthocyanin Repressor [164]

Fragaria ananassa R2R3-MYB FaMYB1 DFR, ANS, ANR Reduce the anthocyanin and
Flavonol, Proanthocyanidins [147,165]

Fragaria chiloensis R2R3-MYB FcMYB1 LAR, ANS, ANR Anthocyanin repressor [166]

Petunia hybrida R2R3-MYB PhMYB27 ANS, F3′5′H, DFR Anthocyanin repressor [142]

Freesia hybrida R3-MYB FhMYBx Anthocyanin repressor [167]

Vitis vinifera R2R3-MYB VvMYBC2-L1 Proanthocyanidins [168]

Chrysanthemum
morifolium R2R3-MYB CmMYB1 CHS, CHI, FLS,

DFR
Repressor of lignin and

flavonoid [151]

Salvia miltiorrhiza R2R3-MYB SmMYB39 C4H, TAT Reduce the total phenolics [107]

Grape hyacinth R3-MYB MaMYBx DFR, ANS Anthocyanin repressor [169]

Narcissus tazetta R2R3-
MYB NtMYB2 ANS, UFGT It reduced the anthocyanin

contents and flower pigments [11]

Narcissus tazetta R2R3-
MYB NtMYB3 DFR, UFGT, ANS

It reduced the anthocyanin and
flavonol contents. It strongly

decreased the flower pigments
[12]

Populus trichocarpa R3-MYB PtrRML1 DFR, UF3GT Anthocyanin reduced [170]

Chinese Narcissus R2R3-MYB NtMYB5 DFR, UFGT Suppressor of Anthocyanin [125]

Iochroma R3-MYB MYBL1 DFR, ANS,
CHS, F3H Losses of floral pigmentation [171]

The members of CPC-like clade contain only single R3 repeat, belong to one of
12 different subgroups, which is determined on the base of the conserved motif. The
phylogenetic tree divided the R3-MYB repressor into two further subclades, including
CPC-like and AtMYBL2-like, and showed evolutionary derivation from each other (Figure 4).
The members of R3-MYB belong to CPC–like clade included in a single clade, showed clear
divergence from AtMYBL2 clade and R2R3-MYB repressors clade. The at MYBL2-like clade
is closely related to the R2R3-MYB repressor, possesses TLLLFR repressive motif at the C-
terminus, but repress transcriptional mechanisms are different from CPC-like clade. WxM
motif, involved in cell movement, is present in CPC-like clade but absent in AtMYBL2-like
clade. The CPC-like repressors do not contain repressive motif and considered to be act as
repressors through competing for bHLH cofactor with MYB activators. They interact with
bHLH cofactors in competitive way to inhibit the creation of MBW complex. Therefore,
they negatively control anthocyanin biosynthesis [71]. The evidence from the recent studies
showed that R3-MYB suppressors negatively control the anthocyanin biosynthesis like
R2R3 MYB suppressors. IlMYBL1, is a novel R3-MYB transcriptional repressor, which
reduced floral pigmentation in Iochroma [171]. In Arabidopsis, ETC1 was concerned with
the down regulation of anthocyanin [163,172]. In tomato, AtMYBL2 encodes an R3-MYB
protein that regulates the flavonoid biosynthesis. It comprises of a single repeat and shows
resemblance with the R2R3-MYBs, which contrasts with other members of R3-MYBs. In
the mutant seedling of Arabidopsis thaliana, anthocyanin accumulation was improved due
to the loss of MYBL2 activity. Moreover, overexpression of AtMYBL2 in seeds led to the
suppression of proanthocyanidin accumulation [173]. AtMYBL2 showed the C-terminal
TLLLFR motif in their protein, which contributes to suppressive activities [173,174]. MYBx
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and PhMYB27, from Petunia encode a R3-MYB protein suppress the anthocyanin accumu-
lation [163] (Table 2).

14. Conclusions and Future Perspective

The MYB transcription factor family is significant in the regulation of bioactive com-
pounds through phenylpropanoid and flavonoid biosynthetic pathway in plants. Generally,
it seems that the MYB repressors have more extensive effects than the corresponding MYB
activators. Several studies of MYB suppressors exploiting overexpression in heterologous
model plant systems, but it is important to authenticate effects using more direct analyses.
To date, the role of the conserved motif of repression in MYB TFs is little known. Theses
motifs bind and recruits co-repressors or other regulatory proteins for proper functions.
Further studies need to emphasis testing the promoters and bHLH binding capacity of more
diversity of MYB repressors. Recognizing suppressor binding targets on a whole-genome
scale using ChIP-sequence offers further facts on targets. Eventually, a comprehensive
understanding of MYB repressors will assist us to better understand the fine transcrip-
tional regulation of the phenylpropanoid pathway and how they facilitate responses to
environmental stress. The regulatory system of transcriptional repressors and activators
regulating anthocyanin biosynthesis is conserved within monocot species. R3-MYB looks a
potentially valuable target for floral color modification in horticulture plants. S. miltiorrhiza
is a potential medicinal plant, and in order to increase its clinical demand, we need to
apply recent advanced metabolic engineering approaches to improve and enhance the
biosynthesis of bioactive medicinal compounds.

Several studies on the role of MYB TFs in the regulation of secondary metabolites and
bioactive compounds have been done in plants. There is no study in its role in microorgan-
isms (bacteria and yeast) and microalgae. Microalgae has great potential as an expression
platform for recombinant proteins. Photosynthetic Microalgae, especially Chlamydomonas
reinhardtii, is considered as the model host organisms for heterologous protein produc-
tion, including pharmaceutical products, vaccines, fuels alternative, cosmetics, terpenoids
and secondary metabolites. We suggest that there should be more focus on investigat-
ing the role of MYB TFs in microalgae for future perspectives, especially regarding the
pharmaceutical and food industries. Furthermore, the role of micro-RNA and post transla-
tional modification still concern questions to comprehensively understand MYB repressors
regulation mechanisms.
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