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Background: Chronic obstructive pulmonary disease (COPD) is characterized by emphysema and/or obstructive
bronchiolitis. Deficiency in vitamin D3 (VD3), which regulates gene expression through binding to vitamin D re-
ceptor (VDR), is associated with high risks of COPD susceptibility. Alveolar macrophages (AM), which are gener-
ated during early ontogeny and maintained in alveoli by self-renewal in response to cytokine GM-CSF, are
positively correlatedwith severity of emphysema. However, whether and howVD3, VDR andAM interact to con-
tribute to COPD pathogenesis at the molecular and cellular levels are largely unknown.
Methods:Weused systems biology approaches to analyze gene expression inmousemacrophages fromdifferent
tissues to identify key transcription factors (TF) for AM and infer COPD disease genes. We used RNA-seq and
ChIP-seq to identify genes that are regulated by VD3 in AM.We used VDR-deficient (Vdr−/−) mice to investigate
the role of VD3-VDR axis in the pathogenesis of COPD and characterized the transcriptional and functional alter-
ations of Vdr−/− AM.
Findings:We find that VDR is a key TF for AM and a COPD disease gene. VDR is highly expressed in AM and in re-
sponse to VD3 inhibits GM-CSF-induced AM proliferation. In Vdr−/− AM, genes involved in proliferation and im-
mune response are upregulated. Consistently, Vdr−/− mice progressively accumulate AM and concomitantly
develop emphysema without apparent infiltration of immune cells into the lung tissue. Intratracheal transfer
of Vdr−/− AM into wildtype mice readily induces emphysema. The production of reactive oxygen species at
basal level and in response to heme or lipopolysaccharide is elevated in Vdr−/− AM and suppressed by VD3 in
wildtype AM.
Interpretation: These results show that the VD3-VDR axis is critical to counteract GM-CSF-induced AM prolifera-
tion and defect in this regulation leads to altered AM homeostasis and function. Our findings identify that VD3
deficiency contributes to emphysema by altering AM functionwithout contributing to bronchiolitis. Our findings
also suggest possibilities of modulating the VD3-VDR axis for inhibiting emphysema in COPD patients.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Chronic obstructive pulmonary disease (COPD) is a complex and
progressive lung disease, characterized by poor airflow and breathing
problems [1]. The main pathological features of COPD are emphysema
due to destruction of alveolar walls and enlargement of alveoli, and ob-
structive bronchiolitis (or small airway disease) due to chronic inflam-
mation of peripheral airways and lung parenchyma. Although some
COPD patients predominantly have emphysema or obstructive bronchi-
olitis, patients with severe COPD often exhibit overlapping pathologies.
Evidence suggests that the different pathologies may have different
du (J. Chen).

. This is an open access article under
underlying mechanisms and possibly different causes [1]. For example,
obstructive bronchiolitis is predominant in COPD patients associated
with inhaling householdwood smokewhereas obstructive bronchiolitis
and emphysema coexist in COPD patients associated with deeply in-
haled cigarette smoke. Globally, the most common cause of COPD is to-
bacco smoke, but only about 20–50% of smokers ever develop COPD
[2–4], suggesting contribution of genetic, epigenetic and environmental
factors in the development and progression of COPD. Supporting a crit-
ical role of environmental factors, most COPD exacerbations are trig-
gered by respiratory infections [5]. However, how different factors
interact and contribute to the different COPD pathologies at the molec-
ular and cellular levels is largely unknown.

The lung tissue contains two types of macrophages. Alveolar macro-
phages (AM), which reside in alveoli and function to clear apoptotic
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context
Evidence before this study

Both VD3 and AM have been implicated in COPD pathogenesis.
However, it is not known whether and how they interact to con-
tribute to COPD pathogenesis.

Added value of this study

We find that VDR is a key transcription factor for AM and a COPD
disease gene. We identify that VD3-VDR axis regulates AM ho-
meostasis and function and defect in this regulation results in grad-
ual accumulation of AM, leading to emphysema without overt
bronchiolitis.

Implications of all the available evidence

Our findings identify the molecular mechanisms by which VD3-
VDR regulates AM homeostasis and function, and how the defect
in this regulation contributes to specific COPD pathogenesis. Our
findings suggest possibilities of inhibiting emphysema inCOPDpa-
tients by modulating the VD3-VDR axis.
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cells and inhaled substance and particles, are derived from erythro-
myeloid progenitors in the yolk sac and maintained by self-renewal in
response to cytokineGM-CSF [6]. During lung inflammation,monocytes
are also recruited into the lung tissue to generate inflammatory macro-
phages,which contribute to immune responses and tissue repair and re-
modeling [7]. Macrophages, especially AM, are known to play important
roles in COPDpathogenesis [8,9].Macrophage numbers are increased by
5-10-fold in bronchoalveolar lavage (BAL) fluid as well as in the air-
ways, parenchyma, and sputum of patients with COPD [10,11]. Macro-
phages are often found at the sites of alveolar wall destruction in
patients with emphysema, and macrophage numbers in the paren-
chyma are positively correlated with the severity of emphysema [12],
raising the possibility that dysfunction of AM is responsible for emphy-
sema. Consistent with this possibility, AM are activated by cigarette
smoke, pollutants, and microbes to secrete matrix metalloproteinases
(MMPs) 2, 9 and 12, and cathepsins K, L and S, which are directly in-
volved in the destruction of alveolar walls [13]. Transcriptional analysis
showed that AM in COPD patients are abnormally polarized to express
genes involved in tissue remodeling [14,15]. Following stimulation,
AM also secrete cytokines and chemokines, which in turn induce im-
mune cell recruitment, inflammation, mucus hypersecretion, lung tis-
sue damages and remodeling. Furthermore, both AM and monocyte-
derived macrophages from COPD patients show reduced phagocytosis
of bacteria [16]. The impaired elimination of bacteria by AM likely con-
tributes to chronic colonization of low airways by bacteria and therefore
increased frequencies of acute exacerbation [17]. Despite these observa-
tions, the precise role of AM and how their dysfunction contributes to
COPD pathogenesis are not fully understood.

1,25-dihydroxyvitamin D3 (VD3) is the active ligand of vitamin D re-
ceptor (VDR). Upon binding of VD3 to VDR in the cytosol, the heterodi-
mer further interacts with the retinoid X receptor (RXR). The trimeric
complex is then translocated into the nucleus to regulate gene tran-
scription through vitamin D response elements (VDRE) present in the
enhancers and promoters of responsive genes [18]. The VD3-VDR axis
has been shown to regulate both innate and adaptive immune re-
sponses [19] and exert a significant impact on COPD pathogenesis
[20,21]. VD3 deficiency causes impairment of lung structure and func-
tion and increased severity of COPD-like diseases in the cigarette
smoke-exposed mice whereas VD3 supplementation readily attenuates
the disease symptoms and pulmonary inflammation [22–24]. In human,
VD3-deficiency is also associated with higher risks of COPD
susceptibility andmore severe impairment of lung function in COPD pa-
tients [25–28]. Although conflicting results have been reported on the
efficacy of VD3 supplements for treating COPD, large cross-sectional
and prospective studies have shown that VD3 deficiency is prevalent
in patients with COPD and VD3 supplementation improves lung func-
tion and prevents exacerbation of COPD [29,30]. A possible confounding
factor is that COPD is a complex disease with different pathologies and
possible underlying mechanisms, but most large population-based
studies and clinical cohort studies of VD3 supplements on COPD did
not make these distinctions. A mechanistic understanding of how VD3
deficiency contributes to COPD pathogenesis is urgently needed for ra-
tionale use of VD3 supplements for managing COPD.

Vdr is highly expressed in AM comparing to other tissue macro-
phages [31]. Macrophages are particularly responsive to VD3 to down-
regulate expression of inflammatory cytokines and chemokines. VDR-
deficient (Vdr−/−) mice are viable but exhibit severe bone defects and
die prematurely around 16 weeks of age, which could be extended by
giving mice calcium and phosphorus supplements [32–34]. Although
Vdr−/− mice have no obvious alterations in the immune system in lym-
phoid organs and peripheral blood [34], VDR-deficient macrophages
display defects in cellular function and immunity both in vitro and
in vivo [34–36]. More recently, Vdr−/−mice at 16-weeks of age were re-
ported to exhibit premature emphysema with increased secretion of
MMPs [37], suggesting a role of VDR deficiency in the pathogenesis of
emphysema. However, because the mice were deficient in VDR in
germline (every cell type) andwere given calciumand phosphorus sup-
plements, the cellular andmolecularmechanisms underlying the devel-
opment of emphysema in Vdr−/− mice are not fully understood.

In this study, we have investigated the mechanisms by which VD3,
VDR and AM interact to contribute to COPD pathogenesis. We show:
i) VDR is a key transcriptional factor (TF) for AM and a COPD disease
gene; ii) VD3-VDR axis inhibits AM proliferation and inflammatory re-
sponses; iii) Vdr−/− mice exhibit a progressive accumulation of AM
and concomitant lung emphysema, without gross immune cell infiltra-
tion into the lung; iv) intratracheal transfer of Vdr−/− AM into wildtype
mice is sufficient to induce lung emphysema; and v) VD3 inhibits in-
flammatory responses and oxidative stress of AM induced by heme
and LPS. These results show that VD3-VDR axis regulates AMhomeosta-
sis and function and defect in this pathway results in emphysema. Thus,
our findings identify the molecular and cellular mechanisms by which
VD3, VDR, andAM interact to contribute to specific aspect of COPDpath-
ogenesis and provide new insights into the use of vitamin D supple-
ments for treating emphysema.

2. Material and methods

2.1. Systems biology approaches to identify key transcription factors and
key disease genes

The methodological framework to identify key TFs for a particular
gene set have been established in our previous studies [38]. A
genome-wide regulatory network of mouse macrophage was assem-
bled based on 1378 gene expression profiles of tissue macrophages,
bone marrow-derived macrophages and macrophage cell lines col-
lected from 124 independent GEO data sets (Table 1S) using a
reverse-engineering algorithm CLR [39]. Microarray datasets from the
same platform were uniformly normalized using Robust Multichip Av-
eraging (RMA) and samples from different platforms were integrated
and normalized with total intensity. The signature gene sets of different
tissue macrophages (Tables S2) were extracted based on a previous
study [31]. The adipose macrophage signature was extracted from the
expression profiles of adipose macrophages from WT and obesity mice
[40]. Master regulator analysis (MRA) is applied to identify TFs to regu-
late expression of signature genes of particular tissue macrophages by
computing the statistical significance of overlaps of all interactions of
each TF (inferred by CLR) with each set of signature or a background
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gene set by a binomial test. The set of 314 background genes (Tables S2)
was identified from the 1378 gene expression profiles based on high
levels of gene expression (RMA value N8.5) with minimal variation
among all samples (variation from mean b 1).

To explore the key disease genes in macrophages for COPD, a high-
confident gene functional network of macrophages was assembled
using the Bayesian likelihood integration method based on four differ-
ent whole-genome datasets: 1889 gene expression profiles, protein-
protein interaction data (PPI) downloaded from eight databases
(Biogrid, BIND, DIP, Complex, HPRD, InAct, MINT, MPPI), protein phylo-
genetic profiling based on all mouse proteins blastn scores to all other
59 ENSEMBL genomes (http://ensemblgenomes.org/) and gene pheno-
typic data from MGI (http://www.informatics.jax.org/phenotypes.
shtml). For each gene pair, Pearson correlation coefficient (PCC) based
on gene expression profiles, number of interaction observations in 8
PPI datasets, mutual information scores based on phylogenetic profiles,
phenotypic similarity based on gene phenotypic data. The likelihood ra-
tios for any gene pairs of each dataset were computed based on the
overlapwith positive and negative gold standard of the 8th grade GO bi-
ology process as previously described [41]. 10-fold cross validation was
used to determine the cutoff of an integrated likelihood ratio with 90%
network confidence (Fig. S1 and Table S3). The training COPD disease
genes were extracted from OMINI database and curated from previous
publications (Table S4). Network-based multiple algorithms including
Random Walk [42], flow-based propagation [43], Nearest Neighbor
[44], Short Path [45] and Markov chain clustering (MCL) [46] were
used to prioritize the disease genes based on the functional network
and known disease genes. The performance of the predictionswas eval-
uated by plotting precision against recall over various thresholds as de-
scribed [41]. A community-based method by combining multiple
algorithms had higher sensitivity and specificity to identify disease
genes than any single algorithms.

2.2. Mice, antibodies and flow cytometry

Vdr−/− mice, CD45.2 and CD45.1 B6 mice were purchased from the
Jackson Laboratory and maintained in the animal facility at the Massa-
chusetts Institute of Technology. All animal studies and procedures
were approved by theMassachusetts Institute of Technology's Commit-
tee for Animal Care. Antibodies specific for CD11c (N418), CD11b (M1/
70), F4/80 (BM8), MHC-II (M5/114.15.2), CD45.2 (104), CD45.1 (A20),
CD4 (HK1.4), CD8 (53–6.7), CD19 (1D3) for flow cytometry were from
Biolegend. Antibody for Irf4 (3E4) was from eBioscience. Anti-VDR
(D2K6W) for immunochemistry staining was from Cell Signaling Tech-
nology. Single cell preparation from different organs, staining of cells
with fluorophore-conjugated antibodies and analysis of the stained
cells using flow cytometry are as described [38]. Briefly, cells in single
cell suspension were incubated with specific antibodies at 4 °C for
20 min, washed twice, and re-suspended in FACS buffer containing
DAPI. Cells were run on BD-LSRII, collecting 20,000 to 100,000 live
cells per sample. The data were analyzed by FlowJo.

2.3. Histopathology and immunochemical staining

Micewere euthanized and lungs tissueswere inflated andfixedwith
10% neutral-buffered formalin solution (Sigma-Aldrich) for 24 h. The
tissues were processed with Tissue Processor (Leica Microsystems)
and embedded in paraffin. Sections were cut at 5 μm thickness,
mounted on polylysine-coated slides (Thermo Fisher Scientific), de-
waxed, rehydrated, and processed for hematoxylin and eosin (H&E)
staining according to standard protocol. For immunochemical staining,
antigen retrieval was carried out by either microwaving the slides in
0.01 M sodium citric acid buffer (pH 6.0) for 30 min. Sections were
then immersed for 1 h in blocking buffer (3% BSA, 0.2% Triton X-100
in PBS), then incubated in primary antibody (made up in blocking
buffer) at 4 °C overnight, followed by incubation with secondary
antibody conjugated HRP at 4 °C for 1 h. All lung stained sections were
scanned with a high-resolution Leica Aperio Slide Scanner. Images
were analyzed by WebScope software.

2.4. Alveolar macrophage isolation, culture and adoptive transfer

GM-CSF is known to promote proliferation and maintain the global
gene transcription and function of AM in vitro and in vivo [47–49]. In
our study, AM were isolated from mice as described [50]. To expand
AM numbers, freshly isolated AM were cultured in complete RPMI
(RPMI 1640 supplemented with 10% FBS, 5 mM HEPES, 2 mM gluta-
mine, 100 U/mL penicillin and 100 μg/mL streptomycin (Invitrogen))
supplemented with 25 ng/mL murine GM-CSF (Peprotech). Detailed
culture and treatment conditions of AM with or without 50 nM VD3
for other assays were described in the text. For adoptive transfer exper-
iment, 5 × 105 Vdr−/− AM (CD45.2+) after expansion in vitro for one
week were adoptively transferred into 8-week-old CD45.1+ C57BL/6
(B6) mice intratracheally every week for a consecutive four weeks.
Mice were analyzed at the sixth weeks following transfer. Unless spec-
ified, AM refers to mouse alveolar macrophages throughout the text.

2.5. Human alveolar macrophage isolation

Human alveolar macrophages were isolated by bronchoalveolar la-
vage (BAL) from normal volunteers with a lifetime non-smoking his-
tory, no acute or chronic illness, and no current medications. The
lavage procedure used two or three 20-ml aliquots of sterile, warmed
saline in right middle or left lingular lobe of the lung. The lavage fluid
was filtered through two layers of gauze and centrifuged at 500 g for
5 min. The cell pellet was washed twice in PBS and suspended in com-
plete RPMI. Cells were seeded on cell culture plates for 20 min and
non-adherent cells were collected with purity of alveolar macrophages
ranging from 90 to close to 100% based on Giemsa staining and flow cy-
tometry. All protocols were approved by the Ethics Committee of The
First Affiliated Hospital, Jilin University. All experiments were per-
formed in accordance with the relevant guidelines and regulations. In
addition, written informed consent was obtained from each subject.

2.6. Heme measurement and cellular ROS

Heme concentration in BAL was quantified using a fluorescence
assay as previously described [51]. Briefly, BAL was collected by one-
time washing with 1 mL PBS supplement with 2 mM EDTA for one
mouse lung. BAL was cleaned by centrifuge at 1500 g for 5 min. 50 μl
of BAL fluid was mixed with 200 μL 2 M oxalic acid. Samples as well as
heme standards (0 to 100 nM) were heated at 95 °C for 30 min to re-
move iron from heme. The resultant protoporphyrin was detected
using a fluorescence microplate reader (Tecan Infinite M200 Pro).
Heme concentration in each sample was calculated based on the
heme standards. Intracellular total ROS were quantified directly by
flow cytometry using the broad free radical probe CM-H2DCFDA (Mo-
lecular Probes). Cells were incubated with 5 mMH2DCFDA in complete
RPMI at 37 °C for 30 min.

2.7. RNA isolation, RNA sequencing and data analysis

AM were isolated from Vdr−/− mice and wild type littermates.
Freshly isolated wildtype AM were treated with or without 50 nM
VD3 for 24 h in the complete RPMI medium supplemented with
25 ng/mL murine GM-CSF (Peprotech). RNAs were extracted with
RNeasy MiniElute kit (Qiagen), converted into cDNA and sequenced
using Next-Generation Sequencing (Illumina). Raw sequences are de-
posited in the database of Gene Expression Omnibus (GEO) with acces-
sion ID: GSE124725. RNAseq data was aligned to the mouse genome
(version mm10) and raw counts of each gene of each sample were cal-
culated with bowtie2 2.2.3 [52] and RSEM 1.2.15 [53]. Differential
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expression analysis was performed using the program edgeR at P b .05
with a 2 fold-change [54]. The gene expression level across different
samples was normalized and quantified using the function of cpm. Dif-
ferentially expressed genes were annotated using online functional en-
richment analysis tool DAVID (http://david.ncifcrf.gov/) [55]. Gene set
enrichment analysis were performed with GSEA [56] with FDR q-
valueb0.05. The heatmap was visualized with MeV [57]. To validate
and quantify the levels of RNA transcripts, total RNA was extracted
from various cells and reverse transcribed by TaqManÂ® Reverse Tran-
scription Reagents Kit (ABI Catalog No. N8080234), followed by ampli-
fication with Sybr Green Master Mix (Roche Catalog No.
04707516001) with specific primers (Table S5) and detected by Roche
LightCycler 480. The Ct values were normalized with housekeeping
gene GAPDH for comparison.

2.8. ChIP, sequencing and analysis

Freshly isolated AM (1 × 106) were cultured and expanded in com-
plete RPMI supplemented with 25 ng/mL murine GM-CSF (Peprotech)
for 2 weeks. Chromatin immunoprecipitation (ChIP) was performed
using the SimpleChIP (Cell Signaling Technology) following the
manufacture's manual. Briefly, 20 × 106 AM were treated with formal-
dehyde at a final concentration of 1% to cross-link DNA-protein com-
plexes. Cells were lysed and DNA-protein complexes were sheared by
micrococcal nuclease, followed by precipitation with nonspecific rabbit
anti-IgG or Anti-VDR (D2K6W) (Cell Signaling Technology. Eluted and
purified ChIP DNA was used to prepare the DNA-sequencing libraries
with the NEBnext ChIPSeq library Prep kit (NEB) for Next-Generation
Sequencing (Illumina). Raw sequencing data was deposited in GEO
with accession ID: GSE124725. ChIP-seq were analyzed with the soft-
ware package HOMER [58].

2.9. Co-immunoprecipitation

Plasmids of pCDNA3.1 with murine Vdr-HA, Pu.1-FLAG, Fra1-6xHis,
Cebpa-Myc and Pparg-FLAG were purchased from GeneScript (USA).
For the co-immunoprecipitation, Pu.1-FLAG, Fra1-6xHis, Cebpa-Myc
and Pparg-FLAG were co-transfected with HA-tagged Vdr into 293 T
cells using TransIT®-LT1 Transfection Reagent (Mirus). 48 h after trans-
fection, the cells were lysed with cold Lysis Buffer containing 20 mM
Tris-HCl (PH7.4), 150mMNaCl, 0.1%NP-40, 10% glycerol, proteinase in-
hibitor (Roche Catalog No. 11836153001), and phosphatase inhibitors
(Roche Catalog No. 04906845001). The clear supernatants from the ly-
sate were incubated with anti-HA magnetic beads (Thermo Fisher,
#88836) at room temperature for 30 min in the presence or absence
of VD3. Then the beadswerewashed four times and elutedwith loading
buffer for Western blotting. Eluted proteins were detected by anti-HA
(CST, #2999S), anti-FLAG (Sigma, #M8823), anti-His (CST, #2365) and
anti-Myc (Genetex, GT0002).

2.10. Statistic methods

Statistical significancewas determinedwith the two-tailed unpaired
or paired Student's t-test. The FDRswere computedwith q= p*n/i, (p=
P value, n = total number of tests, i = sorted rank of P value).

3. Results

3.1. Systems biology analyses predict vitamin D receptor as a key transcrip-
tional factor for alveolar macrophages and a COPD disease gene

We have previously developed a network approach to identify key
TFs for a particular cell state [38] andused the same approach to identify
key TFs for macrophages in different tissues. A genome-wide regulatory
network of mouse macrophages was assembled based on 1378 tran-
scription profiles of 124 independent macrophage GEO data sets
(Table S1) using a reverse-engineering algorithm CLR [39]. We identi-
fied lineage-specific key TFs for macrophages from seven different tis-
sues using the regulatory network and the signature gene sets from
public data (Fig. 1a, Table S2). Vdr, Spic, Nr4a3, Gata6, Foxm1, Sox4 and
Nfib were identified as the top key TFs for alveolar macrophages (AM),
spleen red-pulp macrophages (RPM), small intestine macrophages
(SIM), peritoneal cavity macrophages (PCM), bone marrow macro-
phages (BMM), microglia, and adipose tissue macrophages (ATM), re-
spectively (Fig. 1b, see Table S6 for a complete list). Spic and Gata6 are
known lineage-specific key TFs for the development and function of
RPM and PCM, respectively [59–62]. We confirmed the expression of
Vdr, Spic, Gata6, and Foxm1 in freshly purified AM, RPM, PCM and
BMM, respectively, by quantitative RT-PCR (qPCR) (Fig. 1c and
Fig. S2). VDR protein was also highly expressed in AM comparing to
other cell types in the lung (Fig. S3). Mafb and Pparg were identified
as top key TFs for the macrophage consensus signature (Fig. 1b),
which is either required for the terminal differentiation of monocytic
progenitors to macrophages [63,64] or a master regulator to maintain
the anti-inflammatory phenotype of tissue macrophages [65,66]. To-
gether, these findings support our network approach to identify key
TFs for tissue-resident macrophages.

Because AM play critical roles in the pathogenesis of COPD [1,8,9],
we investigated whether the key TFs for AM are potential COPD disease
genes using a systems biology approach. We constructed a high-
confident gene functional network of macrophages by a Bayesian inte-
gration method [41] using mouse macrophage expression data,
protein-protein interaction (PPI) data, gene phenotype data and phylo-
genetic data (Fig. 1S and Table S3). The functional networkwas then ap-
plied to prioritize potential novel COPD disease genes using a
community method by integrating five different algorithms with 19
known COPD disease genes curated from OMINI database and previous
publications (Fig. 1a and Table S4). This method had a significantly
higher precision than other widely used algorithms (Fig. 1d). Seven of
the top 10 genes identified are known COPD disease genes (Fig. 1e,
see Table S7 for a complete list), supporting the validity of our approach.
Vdr, the key TF for AM, is inferred as one of novel COPD disease genes.

3.2. VD3-VDR regulates diverse sets of gene expression in AM

We determined the effect of VD3 on AM at transcription level by
RNA-seq. AM were purified from C57BL/6 (B6) mice and cultured for
24 h in thepresence or absence of 50 nMVD3, followed by RNA isolation
and sequencing. Differential expression analysis revealed that 332
genes were up-regulated and 306 genes were down-regulated (Fig. 2a
and Table S8), including known VD3-induced genes Vdr, Cyp24a1 and
Spp1. The up-regulated genes were enriched with phosphorylation
(73 genes, P = 1.7e-11), signal transduction (77 genes, P = 3.4e-10),
tissue remodeling (15 genes, P = 1.1e-6) and cell death (57 genes, P
= 8.7e-6), while the down-regulated genes were enriched with im-
mune pathways, including immune response (54 genes, P = 1.2e-13),
defense response (57 genes, P = 1.5e-12), and cytokine production
(30 genes, P = 6.7e-9) (Fig. 2b). Gene set enrichment analysis (GSEA)
revealed that up-regulated genes were enriched in E2F targets and oxi-
dative phosphorylation and down-regulated genes were enriched in
TNFα and IFNγ signaling pathways (Fig. 2c). VD3-induced transcription
changes of selected genes, including Vdr, Irf4, Hmox1, Muc5b and Vegfa,
were verified by qPCR (Fig. 2d).

To further confirm the transcriptional regulation by VD3-VDR in AM,
we assayed the genome-wide VDR binding sites in AM by ChIP-seq. AM
were purified from B6mice, expanded and then cultured for 24 h in the
presence or absence of 50 nM VD3. ChIP-seq identified a total of 6080
peaks associated with 3428 genes (peakscore N30 & P ≤1e-10,
Table S9). Functional enrichment analysis of 500 genes with top peak
scores showed that similar gene pathways, such as phosphorylation,
cell death, signal transduction, immune response were enriched
(Fig. 3a), consistent with GO enrichment analysis of differentially

http://david.ncifcrf.gov/
ncbi-geo:GSE124725


Fig. 1. VDR is predicted as a key TF in AM and COPD disease gene. a, schematic diagram depicting systems biology approaches to identify the key TFs in tissue-resident macrophages and
COPD-disease genes in AM.MRA:master regulatory analysis; PPI: protein-protein interaction; SG: signature genes. b, top-ranked key TFs for each of the seven tissuemacrophages and for
all seven tissue macrophages. #SG, number of signature genes; AM, alveolar macrophages; RPM, red pulp macrophages; PCM, peritoneal cavity macrophages; SIM, small intestine
macrophages; BMM, bone marrow macrophages; ATM, adipose tissue macrophages; Common to Mϕ, common TF for all seven types of tissue macrophages. c, Comparison of the
transcript levels of Vdr, Spic, Gata6 and Foxm1 in freshly purified AM, RPM, PCM, BMM, B cells (B) and CD8+ T cells (CD8) by qPCR. Data were average of 3 biological replicates per
group. d, Comparison of the precision rates of community algorithm versus other algorithms for identifying COPD-disease genes. e, Top ranked key COPD-disease genes in AM. Shaded
ones are known COPD disease genes and the others are newly identified in this study.
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Fig. 2. Transcriptional regulation by VD3 in AM. a, Heatmap of gene expression of 332 up-regulated and 306 down-regulated genes induced by VD3 in AM from two independent
experiments. Shown is centralized CPM (counts per million reads). b, GO enrichment analysis showing enrichment of certain pathways in the up-regulated and down-regulated genes.
GO sets of biological process, number of genes and P-value are shown. c, GSEA showing samples of enriched gene sets inVD3-treated and untreated AM(q-valueb0.05).d, Transcript levels
of Vdr, Irf4,Muc5b, Hmox1 and Vegfa in AMwith or without VD3 treatment for 24 h. Data were collected from two independent experiments with 4 biological replicates per group. Error
bars indicate standard deviation (SD). P value was calculated by t-test. * P b .05, ** P b .01.
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expressed genes (Fig. 2b). 70% of the VD3 up-regulated genes, including
Vdr, Cyp24a1 and Spp1, had a peak score larger than 30 (P ≤1e-10),
whereas only 22% of the VD3 down-regulated genes had a peak score
larger than 30 (Fig. 3b). De novo motif analysis showed that the VDR-
binding motif was the most abundant and significantly enriched bind-
ing motif and present in ~40% peaks (Fig. 3c). The second most signifi-
cantly enriched motif (based on P value) was for Rxra, a known TF
that forms complex with VDR [67]. Binding motifs for PU.1, Fra1 (com-
ponent of AP1 complex) and Cebpawere also found in high frequencies
(Fig. 3c). All the identified VDR, Rxra, Fra1, PU.1, and Cebpa bindingmo-
tifs weremapped to within 200 bp to each other (Fig. 3d). Similarly, the
VDR peaks overlappedwith published binding peaks [68] for PU.1, JunB
and Cebpa in macrophages (Fig. 3e).

PU.1 and AP-1 are known key TFs for maintainingmacrophage iden-
tity through controlling the globalmacrophage-specific enhancer reper-
toire [69–71]. Cebpa and its cofactor Cebpb bind to enhancers and are
key TFs required for regulating macrophage polarization [72,73]. Since
~40% of VDR binding peaks in AM resided in the intergenic regions,
but only ~6% in the promoter region (Fig. S4), we tested whether VDR
binding motifs are localized in the enhancer regions. We mapped VDR
peaks to the published epigenomic tracks of macrophages [49]. As
shown in Fig. 3f, VDR peaks were localized in open chromatins of mac-
rophages with high intensity of active transcription (H3K4me2 and
H3K27ac) but not in enriched promoter region (H3K4me1). Moreover,
VDR constitutively interacted with Pu.1, Fra1 and Cebpa; and the inter-
actions were enhanced by VD3 (Fig. 3g). Interestingly, VD3 also pro-
moted the interaction between VDR and Pparg (Fig. S5), which is Rxra
competitor but a key TF for the maturation and function of AM
[74–77]. Together, these results suggest that in response to VD3, VDR
regulates gene expression in AM, partly by forming complexes with
Rxra, Pu.1 and Cebpa in the transcription active enhancer regions.

3.3. Mice deficient of VDR develop lung emphysema

To investigate the physiological roles of VDR in AM, we analyzed AM
and lungpathology inVdr−/−mice. Hematoxylin and eosin (H&E) stain-
ing of lung sections revealed that Vdr−/− mice had significant enlarge-
ment of airspace (emphysema) as indicated by increase in the mean
linear intercept (MLI) as early as 4 weeks of age as compared to age-
matched wildtype and heterozygous littermates (Fig. 4a-b). However,
there was no obvious infiltration of immune cells in the lung (Fig. 4a)
and no significant difference in the frequency and CD44 expression of
CD4+ T cells, CD8+ T cells and B cells in the lung tissue between
wildtype and Vdr−/− mice (Fig. 4c and Fig. S6a). Similarly, expression
of F4/80, CD11b, CD11c and Siglec-F were similar on AM from both
wildtype and Vdr−/− mice (Fig. 4d and Fig. S6b), although MHCII ex-
pression was up-regulated on AM from Vdr−/− mice at 4 weeks of age
(Fig. S6b). The number of AM was similar 2 days after birth between
wildtype and Vdr−/− mice, but was significantly increased in Vdr−/−

mice by 4 weeks of age and kept on increasing until 7–10 weeks of
age (Fig. 4d-e). AMproliferated in response to GM-CSF and this prolifer-
ation was inhibited by addition of VD3 and abolished by Vdr deletion
(Fig. 4f). Remarkably, intratracheal transfer of CD45.2+ Vdr−/− AM
into wildtype mice (CD45.1+, once per week for four weeks) also led



Fig. 3. Transcriptional regulation byVDR inAM. a, GO enrichment analysis of 500 geneswith top-rankedpeak scores. GO sets of biological process, number of genes and P-value are shown.
b, Comparison of ChIP-seq peak scores of VDR-binding genes and the fold-changes of the same genes induced by VD3 in AM. Each dot represents one gene. Selected genes (solid dots) are
indicated. The number indicate the number of genes in the gated regions. c, Enriched sequencemotifs in VDR ChIP-seq peaks by de novomotif analysis. d, Comparison of relative positions
of VDR, Rxra, Fra1, PU.1 and Cebpa motifs from ChIP-seq. e, Comparison of DNA occupancies of VDR to those published for PU.1, JunB and Cebpa in AM. f, DNA occupancies of epigenetic
marks inmacrophages around VDR-binding peaks. g. Co-IP of VDR with Pu.1, Fra1 and Cebpa. 293FT cells were transiently transfected with HA-tagged VDR and FLAG-tagged Pu.1 (Spi1),
His-tagged Fra1 (Fosl2) or Myc-tagged Cebpa as indicated. Cell lysates were precipitatedwith anti-HA in the presence or absence of VD3, followed byWestern blotting with anti-HA, anti-
FLAG, anti-His or anti-Myc antibodies. Input is the total cell lysate. The pull-down levels were quantified densitometry and normalized to the input and then the pull-down blots without
VD3. Shown are representative gel image and average of pull-down level from three independent experiments.
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to significant enlargement of airspace (Fig. 4g-i and Fig. S7), although a
single adoptive transfer of Vdr−/− AM into wildtype mice failed to in-
duce emphysema probably due to low persistence of the transferred
AM (Fig. S7). Together, these results show that by regulating gene ex-
pression in AM, VD3-VDR axis plays a critical role inmaintaining the ho-
meostasis of AM and VDR-deficient AM are sufficient to induce
pulmonary emphysema in wildtype mice.
3.4. VDR deficiency alters AM function

To investigate the molecular basis underlying the deregulated AM
homeostasis in Vdr−/− mice, we assayed the gene expression of AM
from 4-week-old mice by RNA-seq. Differential expression analysis
identified 130 up-regulated and 159 down-regulated genes in Vdr−/−

AM as compared to wildtype AM at a cutoff of 2-fold change with P-
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value b.05 (Fig. 5a and Table S10). Functional enrichment analysis
showed that altered genes in Vdr−/− AMwere involved in cell prolifer-
ation, ROS production, heme response, and cell immunity (Fig. 5b), con-
sistent with the GESA results (Fig. 5c). The observation of up-regulation
of genes involved in cell proliferation was consistent with the increased
numbers of AM in Vdr−/− mice. Both upregulation and downregulation
of immune response genes were observed in Vdr−/− AM while the ex-
pression of genes involved in response to IFNγ pathwaywere downreg-
ulated (Fig. S8), consistentwith observations in AM from COPD patients
[78]. Several COPD disease genes were also altered, including Hmox1,
Muc5b, Sftpb and Ccl5 (Fig. 5a), which were further validated by qPCR
(Fig. 5d). Expression changes of several ECM-remodeling genes were
also observed, including Ctsk and Serpine1 (Fig. S9). Additional genes in-
volved in COPD, fibrosis and tissue-remodeling were up-regulated in
AM from 10 weeks old Vdr−/− mice (Fig. S10). These results are consis-
tent with a key role of AM in pulmonary emphysema in Vdr−/− mice.

3.5. VD3-VDR axis suppresses heme-induced ROS in AM

Oxidative stress is known to play a significant role in COPD patho-
genesis [79,80]. Heme and iron are strong ROS inducers and are signifi-
cantly elevated in BAL or serum of COPD patients and smokers [81,82].
Similarly, heme level was significantly higher in BAL of Vdr−/− mice
than WT mice (Fig. 5e). We found that half of the genes involved in
ROS and heme responsive pathways were directly bound by VDR in
AM based on ChIP-seq (Fig. 5f). Consistently, VD3 suppressed the
basal level as well as heme-induced ROS in AM and this effect was
abolished in Vdr−/− AM (Fig. 5g-h). Abundant ROS-induced DNA dam-
age was detected in the lung sections of Vdr−/− mice by anti-8OHdG
staining (Fig. S11). Moreover, VD3 similarly suppressed heme-induced
ROS in human AM (Fig. 5i). Taken together, these results suggest that
the VD3-VDR axis suppresses both the basal and heme-induced ROS
production in AM, consistent with the observed effect of VD3 in inhibi-
tion of COPD exacerbation.

3.6. VDR modulates LPS-induced gene expression in AM

Because of their anatomical location, AM are constantly exposed to
external stimuli. We therefore investigated the role of the VD3-VDR
axis in modulating gene expression in AM following LPS stimulation.
Purified AM from B6mice were stimulated with LPS for 4 h in the pres-
ence or absence of VD3, followed by RNA-seq. Differential expression
analysis revealed 1985 genes with 2-fold or more change following
LPS stimulation (LPS vs. control) and 516 genes with 2-fold or more
change following LPS + VD3 stimulation (LPS + VD3 vs. LPS) (Fig. 6a
and Table S11). Among the 516 genes, 276 genes were regulated by
VD3 alone whereas the remaining 240 were regulated by both LPS
and VD3 (Fig. 6b). To validate the regulation of LPS-induced genes by
VDR, freshly isolated AM were stimulated with LPS for 4 h in the pres-
ence or absence of VD3. Quantitative RT-PCR showed that the transcript
levels of pro-inflammatory genes, such as Tnfa, Il1b, Cxcl2 and Ccl5were
induced by LPS (Fig. 6c); but the inductionwas significantly inhibited by
VD3. In contrast, anti-inflammatory genes, such as Ccl2, Pdgfb and Irf4,
Fig. 4. Accumulation of AM and development of emphysema in Vdr−/− mice. a, Comparison
littermates. b, Quantification of mean linear intercept (MLI) of alveolar airspace in WT and Vd
B cells from the lung tissues of WT and Vdr−/− littermates at 4 weeks of age. Single cell susp
CD8, NK1.1 and CD44. Shown are representative CD19 versus CD3 staining profiles gating o
CD44 expression by CD4 T cells (left) and CD8 T cells (right) from WT (black) and Vdr−/− (g
shown in Fig. S6a. d, Cells from BAL were stained for CD45, F4/80, CD11c, CD11b, MHCII and S
WT and Vdr−/− littermates at different ages. Expression of F4/80, MHCII, CD11b, CD11c and S
Vdr−/− mice at different ages (n = 6 mice each per genotype and age group). f, Inhibition
eFluor®670 and cultured in the presence of GM-CSF for two days with or without VD3. Sh
decrease in eFluor®670 intensity indicates cell proliferation. g-i, Induction of pulmonary emp
AM (CD45.2+) were adoptively transferred into CD45.1+ B6 recipient mice every week for fou
tometry to confirm the presence of the transferred cells in BAL (g) or H&E staining of lung sec
a and h: 100 μm. The numbers in c, d and g indicate percentages of cells in the gated regions. Th
(SD). P value was calculated by t-test. * P b .05, ** P b .01, *** P b .001.
were up-regulated by VD3. Upregulation of Irf4 by VD3was further con-
firmed by flow cytometry and ChiP-seq in wildtype AM, whereas the
upregulation was abolished in Vdr−/− AM (Fig. 6d-e). VD3 also sup-
pressed LPS-induced ROS in AM and this effect was abolished in
Vdr−/− AM (Fig. S12). Furthermore, we analyzed whether LPS-
induced genes had VDR binding peaks in ChIP-seq data. Notably, ~35%
(683 of 1985) of LPS-induced genes (P b .05 plus N2-fold change) in
AM had VDR-binding peaks (P b 1e-10 and peak score N 30, Fig. 6f), in-
cluding typical LPS-response genes, such as Il1b and Ccl2 (Fig. 6a, g). To-
gether, these data show that the VD3-VDR axis modulates AM response
to LPS, by suppressing the expression of pro-inflammatory genes and
up-regulating the expression of anti-inflammatory genes.

4. Discussion

COPD is a complex diseasewith overlapping clinical phenotypes and
pathologies, and poorly understoodmolecular and cellularmechanisms.
In this study, we have examined the role of AM in COPD pathogenesis
and the underlying molecular mechanisms. We show that VD3-VDR
axis is critical for maintaining AM homeostasis and function and defect
in this axis results in emphysema. First, VDR is highly expressed in AM
(Fig. S3) andAM accumulate in Vdr−/−mice (Fig. 4e). The accumulation
is likely driven by GM-CSF induced proliferation because VD3 inhibited
GM-CSF induced proliferation of wildtype but not Vdr−/− AM (Fig. 4f).
At molecular level, VD3 stimulated AM to express E2F-related cell
cycle genes (Fig. 2b-c), which are known to inhibit cell proliferation.
Thus, our finding identifies VD3 as a natural antagonist of GM-CSF for
controlling AM homeostasis. Second, concomitant with the accumula-
tion of AM, Vdr−/− mice develop emphysema as early as 4 weeks of
age. The critical role of Vdr−/− AM in the observed pathogenesis was di-
rectly tested by intratracheal transfer of AM from Vdr−/− mice into
wildtype mice. The induction of emphysema in the recipient mice
after 4 weeks suggests that dysfunctional macrophages alone are suffi-
cient to induce the observed pathology. Notably, the development of
emphysema in Vdr−/− mice or recipient wildtype mice was not accom-
panied by apparent infiltration of immune cells into the lung tissue
(Fig. 4), suggesting that the two key COPD pathologies - emphysema
and bronchiolitis – can be separated from each other. Our findings are
consistent with observations that patients with emphysema and COPD
exhibit dramatic increases in AM as compared to healthy individuals
[9–11]. Development of emphysema has also been reported in old
Vdr−/−mice [37], which survived for N16weeks because of supplemen-
tation with calcium and phosphorus. What distinguish our study from
theprevious studies is thatwe delineated the causal effect between dys-
functional AM and development of emphysema.

Our comprehensive analyses of gene expression in wildtype and
Vdr−/− AMwith or without VD3 treatment further reveal possible mo-
lecular mechanisms by which Vdr−/− AM cause emphysema. VD3-VDR
axis regulates the expression of over six hundred genes, including sev-
eral COPD biomarkers such as Hmox1 [83],Muc5b [84] and Clec5a [85].
Deficiency in VD3-VDR axis results in dramatic changes in gene expres-
sion. For example, extracellularmatrix (ECM) remodeling enzymes play
important roles in alveolar wall destruction during the pathogenesis of
of H&E staining of lung sections from 4- and 10-weeks old wildtype (WT) and Vdr−/−

r−/− littermates. n = 3 per genotype and age group. c, Flow cytometry analysis of T and
ension was prepared by digesting the lung tissue and stained for CD45, CD19, CD3, CD4,
n CD45+ cells, CD4 versus CD8 staining profiles gating on CD3+ cells. Histograms show
rey) mice. The results from the same staining of 10-week-old WT and Vdr−/− mice are
iglecF. Shown are representative CD11c versus F4/80 staining profiles of CD45+ cells from
iglecF by AM are shown in Fig. S6b. e, Comparison of AM numbers in the BAL of WT and
of GM-CSF-induced AM proliferation by VD3. WT and Vdr−/− AM were labeled with
own are representative eFluor®670 histograms from one of the three experiments. A
hysema by intratracheal transfer of Vdr−/− AM into WT B6 mice. 5 × 105 WT or Vdr−/−

r weeks (n = 4 per group). At the 6th week, recipient mice were euthanized for flow cy-
tions (h) to quantify the mean linear intercept (MLI) of alveolar airspace (i). Scale bars in
e arrows in a and h indicate enlarged alveolar space. Error bars indicate standard deviation
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Fig. 5. VD3-VDR suppresses the basal and heme-dependent ROS in AM. a, Heatmap showing gene expression of 130 up-regulated and 159 down-regulated genes in Vdr−/− AM as
compared to WT AM from 4 weeks old mice. Shown is centralized CPM. b, GO enrichment analysis showing enrichment of certain pathways in the up-regulated and down-regulated
genes. GO sets of biological process, number of genes and P-value are shown. c, GSEA showing enriched gene sets in Vdr−/− AM (q-value b0.05). d, Comparison of the transcript levels
of Hmox1, Muc5b, Sftpb, Ccl5 and Irf4 in WT and Vdr−/− AM by qPCR. e, Heme level in BAL of WT and Vdr−/− mice at 5–7 weeks of age. n = 6–8 mice per group. f, Plot of VDR-binding
scores of ROS-related genes and their expression change in Vdr−/− AM. g-h, Comparison of ROS levels in WT and Vdr−/− AM. WT and Vdr−/− AM were cultured for 1 h in the absence
or presence of heme and/or VD3. Intracellular ROS level was detected by CM-H2DCFDA and flow cytometry. Shown are representative histograms (g) of basal (left) and heme-induced
(right) ROS level and summarized data (h) from three independent experiments. i, Comparison of ROS levels in human AM. AM from healthy individuals (n = 10) were cultured for
1 h in the absence or presence of heme and/or VD3. ROS level was assayed as in g. Statistical significance is calculated by t-test. * P b .05, **P b .01.

Fig. 6. VD3-VDR axismodulates gene expression in AM following LPS stimulation. a-b, Genome-wide transcriptional analysis of AM stimulatedwith LPS or LPS plus VD3 for 4 h. Heatmap
(a) and overlap (b) of LPS-induced genes and VD3-induced genes in the presence LPS. LPS-induced genes were identified by comparison of LPS stimulation to control. VD3-induced genes
were identified by comparison of LPS plus VD3 to LPS. c, Comparison of Tnfa, Il1b, Cxcl2, Ccl5, Ccl2, Pdgfb and Irf4 transcript levels by qPCR in AMwithout any stimulation, with LPS or LPS
plus VD3 stimulation for 4 h. d. Flow cytometry analysis of Irf4 intracellular staining inwildtype (WT) and Vdr−/− AMwith orwithout VD3 treatment for 24 h. e, Genome-browse of VDR-
binding peaks in Irf4 by IGV. f, Comparison of ChIP-seq peak scores of VDR-binding genes and LPS-induced genes (N2-fold changes) in AM. g, Genome-browse of VDR-binding peaks in Il1b
and Ccl2 by IGV.
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COPD [13]. Several of these enzymes are regulated by the VD3-VDR axis
(Fig. S9). PAI-1 (Serpine1) and cathepsins K (Ctsk) were up-regulated in
Vdr−/− AM but down-regulated by VD3 in wildtype AM. PAI-1 is ele-
vated in COPD patients and its polymorphism is associatedwith suscep-
tibility to COPD [86,87]. The cysteine protease cathepsins K, which is
potent elastase and collagenase and capable to degrade ECM, is also
up-regulated in emphysema patients and animal models [88]. Interest-
ingly, another elastase MMP-12 was downregulated in Vdr−/− AM but
up-regulated by VD3 treatment of wildtype AM. MMP-12 is up-
regulated in COPD patients [15,89] and essential for the development
of emphysema in mice following exposure to cigarette smoke [90].
However, MMP-12 is also involved in inflammation either directly or
through the activation of TNFα and IFNα or inactivation of IFNγ
[91–94]. Oxidative stress is another major factor in the pathogenesis
of COPD [80]. Vdr−/− AM produced higher levels of ROS at the basal
level or in response to heme or LPS and Vdr−/− mice had higher levels
of heme in BAL and ROS-induced lung damage, while VD3 treatment
suppressed the ROS production of AM (Fig. 6 and Fig. S12). The in-
creased level of heme in BAL of Vdr−/− mice is likely due to leakage
and lysis of red blood cells in the lung due to tissue damage. Heme re-
leased from red blood cells could stimulate inflammatory response, in-
cluding ROS production by AMs. The feedback between heme and ROS
release could positively enforce each other in lung tissue damage. In ad-
dition, Vdr−/− AM showed down-regulation of genes involved in path-
ways of immune response and response to IFNγ (Fig. 5b and Fig. S8),
similar to alternatively activated AM from COPD patients [78]. Previous
studies have also shown that the immune response pathways in human
AM are modulated by VD3 in vivo and in vitro in the context of bacterial
infection [95,96], including some of validated genes (CCL2 and TNF) in
mouse AM. Together, the increased numbers and dysfunction of AM
could mediate the development of emphysema in Vdr−/− mice.

Our study sheds light on the conflicting results from longitudinal
and cohort studies of VD3 supplements in COPD patients. Although
the large population-based studies of VD3 supplements on COPD mea-
sured the levels of vitamin D3 in the serum, none of the studies made
the fine distinction between COPD patients with emphysema, obstruc-
tive bronchiolitis or both. Based on our finding that deficiency in the
VD3-VDR axis leads to development of emphysema but not bronchioli-
tis, VD3 supplements would be expected to exert most benefit in COPD
patients with VD3 deficiency and emphysema, whereas VD3 supple-
ments may not have much effect on obstructive bronchiolitis. Lumping
different patients with different COPD pathologies together may have
masked the efficacy of VD3 supplements on emphysema.While our pre-
diction needs to be verified, our study suggests new direction for longi-
tudinal and cohort studies.

Our systems biology analyses identify key transcription factors (TF)
for tissue-resident macrophages and disease genes. We developed reg-
ulatory network-based approaches to identify key TFs to understand
tissue-specific programming of gene expression for seven different tis-
sue macrophages, and functional network-based approaches to priori-
tize key disease genes associated with particular tissue macrophages.
Vdr was predicted as top-1 key TF for AM and a key COPD disease
gene (ranked 10th, Fig. 1e). Our follow-up studies confirmed that Vdr
is required for AM homeostasis and function and dysregulation of this
pathway specifically results in emphysema. Besides heterodimerization
with RXR, VDR also interacts with Pu.1, Fra1 and Cebpa, and VD3
strongly promotes these interactions (Fig. 3g). Pu.1 and Fra1 are essen-
tial coactivators to maintain macrophage identity and phenotype
[6,69,73], our results would suggest VDR recruits macrophage-specific
coactivators to regulate AM homeostasis and function. Pparg, top 5th
predicted key TF for AM, is induced by GM-CSF in fetal monocytes for
their differentiation to AM, but not inmature AM [75,97]. Previous stud-
ies have shown Pparg plays important roles in maintaining the pheno-
type and function of AM [76,77] and activation of PPARG in AM
inhibits inflammation in the cigarette-smoke exposedmice [98]. Similar
to VDR, PPARG also forms a complex with RXR and binds to different
DNA motifs to regulate gene expression in response to different li-
gands [99]. Interestingly, VD3 promotes the interaction between
VDR and PPARG as shown by co-immunoprecipitation (Fig. S5).
These findings suggest that VDR and PPARG may regulate the pheno-
type and function of AM in different stages through competing for
their heterodimer RXR in the presence of different ligands. In addi-
tion, studies have shown that Irf4 is an essential regulator required
for maintaining M2 phenotype of tissue macrophages [100]. The ex-
pression of Irf4 was significantly induced by VD3 through VDR bind-
ing to the Irf4 promoter. Consistently, Irf4 was down-regulated in
Vdr−/− AM as compared to wildtype AM (Fig. 2-5). Thus, VD3-VDR
axis also maintains the M2 phenotype and function of AM partly
through up-regulating expression of Irf4 directly.

Our studies also identify the top-1 key TFs Spic for red pulp macro-
phages and Gata6 for peritoneal macrophages. Both are known as the
lineage-specific key TFs for the respective macrophage development
and function [59–62]. Sox4was predicted as top-1 key TF for microglia
in our study. Sox4 is a target of TGF-β signaling [101] and TGF-β plays
a critical role in microglia development as its deletion leads to the ab-
sence of microglia in mice [102]. Interestingly, microglia are present in
Csf1op/op mice but absent from Csf1r−/− mice [103]. Deficiency of IL-
34, another ligandof CSF1R, reducesmicroglia numbers [104]. These ob-
servations suggest Sox4 is likely a key regulator for microglia and it
would be interesting to investigate the roles of Sox4 in development
and function of microglia and how it interacts with signals from TGF-β
and IL-34. Tissue macrophages play critical roles in homeostasis and
exert diverse functions. Abnormal functional changes of tissue macro-
phages contribute to the development and progression of autoimmune
disease, fibrosis and cancer [105,106]. Identification of key TFs for tissue
macrophages would help to understand themechanisms bywhich they
contribute to health and diseases.
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