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Simple Summary: Antibodies with their high specificity to antigens have been widely used in
cancer immunotherapy. Natural killer (NK) cells are a group of innate immune cells which have
strong cytotoxicity against cancerous cells, virus infected cells, or transformed cells. NK cells express
abundant Fc receptors that can bind tumor-specific antibodies, thus allowing them to precisely
redirect and eliminate cancer cells. In this study, we demonstrated that NK cells cytotoxicity toward
MUC1-positive hematologic and solid tumor can be further enhanced by a humanized 5E5 anti-
MUC1 antibody. Furthermore, Fc defucosylation of the antibodies further boosted the kill capacity of
NK cells. We believe that our humanized anti-MUC1 antibody is a promising therapeutic candidate
for clinical cancer treatment.

Abstract: Antibodies are commonly used in cancer immunotherapy because of their high specificity
for tumor-associated antigens. The binding of antibodies can have direct effects on tumor cells but
also engages natural killer (NK) cells via their Fc receptor. Mucin 1 (MUC1) is a highly glycosylated
protein expressed in normal epithelial cells, while the under-glycosylated MUC1 epitope (MUC1-
Tn/STn) is only expressed on malignant cells, making it an interesting diagnostic and therapeutic
target. Several anti-MUC1 antibodies have been tested for therapeutic applications in solid tumors
thus far without clinical success. Herein, we describe the generation of fully humanized antibodies
based on the murine 5E5 antibody, targeting the tumor-specific MUC1-Tn/STn epitope. We confirmed
that these antibodies specifically recognize tumor-associated MUC1 epitopes and can activate human
NK cells in vitro. Defucosylation of these newly developed anti-MUC1 antibodies further enhanced
antigen-dependent cellular cytotoxicity (ADCC) mediated by NK cells. We show that endocytosis
inhibitors augment the availability of MUC1-Tn/STn epitopes on tumor cells but do not further
enhance ADCC in NK cells. Collectively, this study describes novel fully humanized anti-MUC1
antibodies that, especially after defucosylation, are promising therapeutic candidates for cellular
immunotherapy.

Keywords: antibody therapy; natural killer cells; MUC1; antibody-dependent cellular cytotoxicity;
breast cancer
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1. Introduction

Cancer is still one of the leading causes of death around the globe. One hallmark of this
neoplastic disease is avoidance of immune destruction. In hematologic malignancies, the
tumor cells are dispersed in the blood, bone marrow, and lymph nodes, which in principle
facilitates access to tumors by immune cells to conduct eradication [1]. However, both in
solid and hematological tumors, malignant cells aggregate and cultivate in a suppressive
micro-environment, including hypoxia, low pH and inhibitory cytokines, and molecules,
which is detrimental to the function of immune cells [2]. Furthermore, malignant cells
induce immune dysregulation by down-regulation of ligands that are natural activators
of immune cells [3]. Therefore, tumor immunotherapy comprises various techniques that
aim to enhance intrinsic immune mechanisms to promote eradication of tumor cells. Given
the remarkable progress made with tumor immunotherapy, it was recently identified as a
major breakthrough in clinical cancer treatment [2].

One of the most common forms of immunotherapy is the use of monoclonal antibodies
(mAbs), designed to precisely influence the host response to tumor cells [4]. This treatment
has a high specificity for tumor cells and thus has little or no side effects on the normal
tissue [5]. The functional part of mAbs includes the antigen-binding F(ab)2′ part and an Fc
region. The antigen-binding fragment determines the specificity of mAb. The Fc portion of
the mAb bind on the Fc receptor expressed on the effector immune cells, including natural
killer (NK) cells, macrophages, and dendritic cells [6].

NK cells belong to a group of innate immune cells that make up around 10% of the
peripheral blood mononuclear cells (PBMC). NK cells are sentinels for “missing-self” cells
and are able to distinguish virally infected cells and tumor cells from healthy counterparts
via germline-encoded activating and inhibitory receptors. The activating receptors ex-
pressed on NK cells can identify appropriate ligands on virally infected, tumor, senescent,
and stressed cells [7]. These ligands will deliver an activating signal to NK cells, thereby
initiating cytotoxic processes [8]. In contrast, the inhibitory receptors suppress NK cell
activation and subsequently prevent killing of normal, healthy cells through recognition
of self-proteins such as the widely-expressed major histocompatibility complex class I
molecules (MHC-I) [9]. Moreover, human NK cells express the FcγRIIIa receptor (also
known as CD16a), which recognizes the Fc fragment of IgG. This induces NK cell-mediated
eradication of IgG-opsonized abnormal cells via the secretion of their cytotoxic granules
in a process called antibody-dependent cellular cytotoxicity (ADCC) [6]. Modulation of
glycosylation of the antibody’s Fc tail influences the interaction with the FcγRIIIa receptor
and can modulate this NK cell effector function. [10] More specifically, removal of fucose
on the N-glycan of the Fc tail has been shown to increase Fc-binding affinity to the FcγRIIIa,
leading to enhanced ADCC [11,12].

Mucin1 (MUC1) is a highly glycosylated transmembrane protein expressed on the
apical side of the cell membrane, which plays a paramount role in the protection and
lubrication of normal epithelial cells [13]. In normal cells, the peptide core in heavily gly-
cosylated MUC1 is masked by the O-glycan moieties that protect MUC1 from proteolytic
cleavage enzymes. In addition, the glycosylation of MUC1 also stabilizes mucins on the api-
cal side of the membrane by interfering with clathrin-mediated endocytosis. Cancer-related
MUC1 proteins have shorter and less dense O-glycan side chains, resulting in exposure of
the core domains of the protein on the cell surface. The MUC1 under-glycosylation results
in exposure of the epitopes MUC1-Tn and MUC1-STn to the immune system. This feature
allows for the design of antibodies that can distinguish between tumor and normal cells [14].
Therefore, MUC1 has been investigated as a promising target toward solid tumors and
even placed second as most favorable targets in immunotherapy [15]. Numerous groups
have developed monoclonal antibodies against MUC1 both for diagnostic and therapeutic
applications [16]. One example is the murine 5E5 antibody that recognizes MUC1-Tn
and MUC1-STn epitopes [17]. Several groups have also successfully generated promising
chimeric antigen receptor T cells (CAR-T) based on the various murine mAb antibodies
sequences [18]. Furthermore, MUC1 conserved peptide vaccine or mRNA-pulsed dendritic
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cells have also been used to induce immune responses against MUC1-positive tumors [19].
However, clinical studies using MUC1 antibodies have so far not resulted in the identifica-
tion of a potent anti-MUC1 antibody that can be used for cancer treatment. Therefore, we
hypothesized that a humanized version of a cancer-specific murine anti-MUC1 antibody
can be used to activate NK cells for cancer immunotherapy. We also asked if defucosylation
of the Fc tail of this antibody further enhanced anti-tumor responses.

In this study, we explored the function of the humanized 5E5 mAb in its natural
IgG configuration and compared it to the defucosylated IgG, aiming to increase antibody-
dependent cellular cytotoxicity by NK cells. We found that humanized anti-MUC1 anti-
bodies indeed promoted ADCC and that defucosylated antibodies performed better. As
the murine 5E5 antibody has been demonstrated as an attractive mAb candidate [20], hu-
manized, defucosylated 5E5 could become a potential therapeutic mAb in many epithelial
cancers.

2. Materials and Methods
2.1. Antibodies

The original murine anti-MUC1 monoclonal antibody 5E5 (murine IgG1, binding
MUC1 Tn/STn epitopes) was kindly provided by Professor Henrik Clausen (University of
Copenhagen, Denmark). In addition, 214D4 (murine IgG1; binding pan-MUC1 epitopes)
was kindly provided by Dr. John Hilkens (The Netherlands Cancer Institute, Amsterdam,
The Netherlands).

CIM301-1 mAb is a recombinant fully human IgG1 comprising the 5E5 humanized
VH and VL amino acid sequence. These human sequences were determined by investiga-
tors affiliated to the Cancer Research Technology Ltd. (London, UK) and were obtained
under a research license by CiMaas. The whole corresponding coding sequence was first
designed in silico; subsequent DNA was synthesized by Eurogentec (Liège, Belgium); and
the cloning of the appropriate expression vectors was performed at GeneArt (Thermo
Fisher Scientific, Regensburg, Germany). CIM301-4 (anti-HIV gp120) is a recombinant
human IgG1 recognizing an epitope overlapping the CD4-binding site of gp120. CIM301-1
and CIM301-4 mAb were produced in CHO-K1 (GeneArt). CIM301-8 is a recombinant
human IgG1 comprising the same 5E5 humanized VH and VL amino acid sequence as
CIM301-1 but with an ADCC optimized non-core-fucosylated Fc-domain based on Lonza
Potelligent® technology produced transiently in CHO-K1SV (Lonza, Basel, Switzerland)
on a research license under the Biowa technology to CiMaas. Antibodies used in this study
are summarized in Table 1, and their structures are depicted in Figure 1A.

Table 1. Properties of anti-MUC1 antibodies.

Name Description Isotype Target

5E5 Mouse antibody
anti-MUC1-Tn epitope Murine IgG1 Muc1-Tn/STn

214D4 Mouse antibody
anti-pan-MUC1 epitope Murine IgG Pan-Muc1

CIM301-4 Anti-HIV-gp120 control
antibody Human IgG1 gp120

CIM301-1 Humanized 5E5
anti-MUC1 Human IgG1 Muc1-(S)Tn

CIM301-8 Defucosylated humanized
5E5 anti-MUC1 Human IgG1 Muc1-(S)Tn



Cancers 2021, 13, 2579 4 of 19Cancers 2021, 13, x  4 of 19 
 

 

 
Figure 1. Fully humanized anti-MUC1 antibodies specifically recognize tumor-associated MUC1 
epitopes. (A) Illustration outlining the design of the antibodies recognizing MUC1 or an irrelevant 
epitope (control) used in this study. Red triangles indicate glycosylation with fucose of the N-gly-
cans in the antibody Fc tail. (B) Overlay histograms of MUC1 expression on CHO cell lines de-
tected using murine antibodies. CHO cells expressed no MUC1 (CHO ldlD), glycosylated MUC1 
(CHO ldlD MUC1), or MUC1-Tn/STn with tumor-associated glyco-epitopes (CHO ldlD MUC1 + 
GalNAc). (C) Overlay histograms of MUC1 expression on CHO cell lines detected by humanized 
antibodies. CHO cell lines as described in B. (D) Expression levels of MUC1 or under-glycosylated 
MUC1 on cancer cell lines detected using 214D4 and 5E5 murine antibodies, respectively. (E) His-
tograms showing binding of humanized anti-MUC1 antibodies to various cancer cell lines. 

  

Figure 1. Fully humanized anti-MUC1 antibodies specifically recognize tumor-associated MUC1
epitopes. (A) Illustration outlining the design of the antibodies recognizing MUC1 or an irrelevant
epitope (control) used in this study. Red triangles indicate glycosylation with fucose of the N-glycans
in the antibody Fc tail. (B) Overlay histograms of MUC1 expression on CHO cell lines detected
using murine antibodies. CHO cells expressed no MUC1 (CHO ldlD), glycosylated MUC1 (CHO
ldlD MUC1), or MUC1-Tn/STn with tumor-associated glyco-epitopes (CHO ldlD MUC1 + GalNAc).
(C) Overlay histograms of MUC1 expression on CHO cell lines detected by humanized antibodies.
CHO cell lines as described in (B). (D) Expression levels of MUC1 or under-glycosylated MUC1
on cancer cell lines detected using 214D4 and 5E5 murine antibodies, respectively. (E) Histograms
showing binding of humanized anti-MUC1 antibodies to various cancer cell lines.

2.2. Cell Lines and Cell Cultures

CHO ldlD cells were transfected with the coding sequence of MUC1 protein to produce
CHO ldlD MUC1 cells. Cells were maintained in IMDM medium (Thermo Fisher Scientific,
Waltham, MA, USA) with 10% FCS supplement with Gentamicin 418 (Thermo Fisher
Scientific) at a concentration of 0.5 mg/mL. To induce the MUC1-Tn epitope on CHO-ldlD-
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MUC1 cells, 1 µM of N-acetylgalactosamine (GalNAc) (Sigma-Aldrich, Munich, Germany)
was added to the medium, as described previously [21]. T-47D cells (HTB-133, ATCC,
Manassas, VA, USA) were maintained in RPMI1640 (Thermo Fisher Scientific, Waltham,
MA, USA) supplemented with 10% FCS (Greiner Bio-One, Frickenhausen, Germany), 1%
penicillin-streptomycin (Thermo Fisher Scientific, Waltham, MA, USA), and 0.2 U/mL
bovine insulin (Sigma, Munich, Germany). MCF7 cells (HTB-22, ATCC, Manassas, VA,
USA) were cultured in EMEM (ATCC, Manassas, VA, USA) with 10% FCS, 1% penicillin-
streptomycin and 10 µg/mL human recombinant insulin (Sigma, Munich, Germany).
SK-BR-3 (ACC 736, DSMZ, Braunschweig, Germany) cells were cultured in McCoy’s 5A
(Thermo Fisher Scientific, Waltham, MA, USA) culture medium (Invitrogen, Carlsbad, CA,
USA), supplemented with 20% FCS and 1% penicillin-streptomycin. K-562 cells (CCL-243,
ATCC, Manassas, VA, USA) were maintained in IMDM medium (Thermo Fisher Scientific,
Waltham, MA, USA) with 10% FCS and 1% penicillin-streptomycin. Jurkat cells (ACC 282,
DSMZ, Braunschweig, Germany) were cultured in RPMI 1640 medium with Glutamax
(Thermo Fisher Scientific, Waltham, MA, USA), 10% FCS and 1% penicillin-streptomycin.
All these cell lines were purchased as indicated between parenthesis followed by the
generation of master cell and working cell banks. Cells were used from the working cell
banks up to passage 10.

2.3. Human NK Cell Isolation and Activation

Primary human NK cells were isolated from anonymous buffy coats (Sanquin, Maas-
tricht, The Netherlands). The use of buffy coats, being a by-product of a required Medical
Ethical Review Committee (METC) procedure, does not need ethical approval in The
Netherlands under the Dutch Code for Proper Secondary Use of Human Tissue. NK
cells were isolated by negative selection with an NK cell isolation kit (Miltenyi Biotec,
Bergisch Gladbach, Germany) using MACS beads, as previously described [22]. Average
purities were >95%. NK cells were cultured in RPMI-1640 medium (Thermo Fisher Scien-
tific, Waltham, MA, USA) supplemented with 10% FCS, 1% penicillin-streptomycin, and
1000 IU/mL recombinant human IL-2 (Proleukin, Novartis, Basel, Switzerland).

2.4. Flow Cytometry

For flow cytometric analysis, cells were harvested, washed with PBS (Sigma, Munich,
Germany), and first stained with Live/Dead Fixable Aqua Dead Cell Stain Kit (Thermo
Fisher Scientific, Waltham, MA, USA) in PBS on ice for 30 min. Then, 0.5 × 106 CHO
cells and tumor cells were resuspended in 100 µL PBS and stained with 1 µg/mL murine
mAb (5E5 or 214D4) or 1 µg/mL (or other concentrations, as indicated) humanized mAb
(CIM301-4, CIM301-1 and CIM301-8). After washing twice with PBS, cells were stained
with secondary antibodies. For murine mAb, primary antibodies were detected with
0.5 µg/mL AlexaFluor 647-conjugated goat anti-mouse IgG (H + L) (Jackson Immuno
Research, Cambridgeshire, UK). CIM301-4, CIM301-1, and CIM301-8 mAbs were detected
with 0.5 µg/mL AlexaFluor 647-conjugated goat anti-human IgG (H + L) (Jackson Immuno
Research, Cambridgeshire, UK). Cells were washed twice with PBS after a 15 min incuba-
tion with secondary mAb. Cell pellets were resuspended in 200 µL PBS for flow cytometric
analysis. Fluorescence was read on a CantoII flow cytometer (BD Biosciences, San Jose,
CA, USA). Data were analyzed with FlowJo version 10.7 (TreeStar, Ashland, OR, USA)
software.

2.5. NK Cell Degranulation Assay

To evaluate NK cell activation by tumor cells or mAbs, CD107a expression on NK
cells was analyzed using flow cytometry as previously described [22]. VioBlue-labeled anti-
CD107a (clone H4A3, Miltenyi Biotec, Bergisch Gladbach, Germany) or the corresponding
isotype was added to the wells immediately after combining 105 NK cells with 105 cancer
cells with or without the various humanized anti-MUC1 mAbs in a 96-well plate. After 1 h
of incubation at 37 ◦C in humidified air containing 5% CO2, 10 µg/mL Brefeldin A (BFA,
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BD Bioscience, San Jose, CA, USA) was added to each well. After 3 h of further incubation,
plates were put on ice and washed with PBS. After centrifugation, the supernatant was
discarded, and 50 µL of antibody mix was added to each well: anti-CD3-FITC (SK7, Miltenyi
Biotec, Bergisch Gladbach, Germany), anti-CD56-PerCP-Vio770 (REA196, Miltenyi Biotec,
Bergisch Gladbach, Germany), and anti-CD16-APC-H7 (3G8, BD, San Jose, CA, USA).

2.6. NK Cell Cytotoxicity (ADCC) Assay

NK cells isolated using negative selection as described above were used in cytotoxicity
assays. T-47D and Jurkat cells were used as targets to investigate NK cell killing capacity.
The antibodies CIM301-1 and CIM301-8 were added to evaluate their ability to enhance NK
cell-mediated target-cell killing. Target cells were labeled with Cell Tracker Deep Red Dye
according to the manufacturer’s protocol (Thermo Fisher Scientific, Waltham, MA, USA)
the night before the cytotoxicity assay. Tumor cells were harvested using trypsinization and
washing and were seeded at 2 × 104 cells per well in round-bottom 96-well plates. Then,
NK cells were added at various effector: target (E:T) ratios. At the same time, different
dilutions of anti-MUC1 antibodies were added. The total culture volume was 200 µL per
well. After 30 min preincubation with mAb, NK cells were added at various effector: target
(E:T) ratios. After 4 h of incubation, cells were put on ice and stained with Live/Dead
Fixable Aqua (LDA) Dead Cell Stain Kit (Thermo Fisher Scientific, Waltham, CA, USA).
The percentage of specific killing was calculated using the following formula:

% speci f ic killing =
% LDA positive target cells−%spontaneus LDA positive target cells

% vital cells
× 100 (1)

2.7. Endocytosis Inhibitors in Degranulation and Cytotoxicity Assays

Prochlorperazine (PCZ, Sigma, Munich, Germany) and Dyngo4A (Abcam, Cambridge,
UK) were resuspended in 0.1% (v/v) DMSO (Sigma, Munich, Germany), which was also
used as a solvent control. Degranulation and cytotoxicity assays were performed as
described above, with addition of endocytosis inhibitors to the co-culture during the last
hour of the assays in concentrations of 5 µM PCZ and 30 µM Dyngo4A.

2.8. Statistical Analysis

All statistical tests used in this study were completed with GraphPad Prism 8 software
(Graphpad Software, San Diego, CA, USA). The specific statistical tests used for each
comparison are specifically annotated in the figure legends, respectively.

3. Results
3.1. Fully Humanized Anti-MUC1 Antibodies Specifically Recognize Tumor-Associated MUC1
Glyco-Epitopes

To further explore the therapeutic potential of anti-MUC1 antibodies for cancer im-
munotherapy, we generated fully humanized anti-MUC1 antibodies based on the 5E5
murine antibody (Figure 1A). The 5E5 antibody was previously shown to specifically recog-
nize cancer-specific MUC1 epitopes (MUC1-Tn/STn) and elicits strong immune responses
in mice [17]. In addition to a fully humanized 5E5 antibody (designated CIM301-1), we
generated CIM301-8, a defucosylated variant of the antibody with the aim of optimizing
antibody-dependent cellular cytotoxicity (ADCC). Lastly, we generated a control antibody,
CIM301-4, directed against the non-relevant HIV-gp120 epitope (Table 1).

We first confirmed that, in agreement with our previous data, the murine anti-MUC1
antibodies 214D4 (pan-MUC1) and 5E5 (cancer-specific MUC1-Tn/STn) recognized the
relevant MUC1-Tn/STn epitopes on CHO cells expressing MUC1 epitopes [21], while no
binding was observed in the parental CHO ldlD cell line lacking MUC1 epitopes (Figure 1B).
Likewise, the newly generated humanized anti-MUC1 antibodies CIM301-1 and CIM301-8
specifically binded to CHO cell lines expressing MUC1-Tn/STn epitopes, while the control
antibody CIM301-4 showed no binding (Figure 1C). Moreover, CIM301-1 and CIM301-8
antibodies showed highly preferential binding to CHO cell lines expressing cancer-related
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MUC1-Tn/STn epitopes over CHO ldlD cell lines expressing non-modified MUC1. Next,
we analyzed whether the humanized anti-MUC1 antibodies also recognized MUC1 Tn
epitopes expressed on cancer cell lines. Previous studies have shown that the Jurkat cell
line strongly expresses MUC1 Tn antigens due to a mutation in the COSMC gene that
interferes with protein glycosylation [23]. Indeed, compared with the MUC1 Tn epitope-
negative K-562 cell line, murine (Figure 1D) and humanized (Figure 1E) anti-MUC1 Tn
antibodies displayed high binding affinity for Jurkat cells. Along the same line, the MUC1-
expressing breast cancer cell lines MCF7 and T-47D also showed strong staining with
anti-MUC1 Tn antibodies, while the MUC1 Tn-negative breast cancer cell line SK-BR-3
was only recognized by pan-MUC1 antibodies (Figure 1D). Together, these results confirm
that the humanized anti-MUC1 antibodies CIM301-1 and CIM301-8 specifically recognize
the cancer-associated MUC1 Tn epitope. Therefore, we explored the applicability of these
antibodies for immunotherapy in combination with NK cells.

3.2. Humanized Anti-MUC1 Antibodies Conjugate NK Cells and Induce Degranulation

Monoclonal antibodies recognizing tumor antigens can induce ADCC through the
binding of the antibody Fc tail to the FcγRIIIa (CD16) molecules on NK cells [6]. Therefore,
we asked whether the humanized CIM-301 anti-MUC1 antibodies can indeed bind to
NK cells (gating strategy in Figure S1A) by detecting labeled antibodies bound to the
Fc portion of the anti-MUC1 antibody (Figure 2A). As expected, the murine anti-MUC1
antibodies did not bind to human NK cells (Figure 2B), while the fully humanized CIM301-
1 and CIM301-8 antibodies showed robust binding to NK cells (Figure 2C). Notably, the
defucosylated CIM301-8 displayed significantly stronger binding to Fc receptors on NK
cells (Figure 2C,D), confirming that removal of oligosaccharides in the Fc region of the
antibody could be beneficial for ADCC in NK cells [6]. Activation of NK cells by cross-
linking CD16 with antibodies induces strong activation in NK cells without the need for
other activation signals [24]. NK cell activation leads to degranulation, which can be
measured as CD107a expression levels. Therefore, we determined whether incubation of
NK cells with humanized anti-MUC1 antibodies induced CD107a expression (Figure 2E,
with gating strategy in Figure S1B). Indeed, we found that incubation of primary NK
cells with humanized anti-MUC1 only (without tumor cells) could induce degranulation
(Figure 2F,G). Compared with the CIM301-4 control antibody, the defucosylated anti-MUC1
antibody CIM301-8 showed higher induction of NK cell activation. Thus, humanized
anti-MUC1 antibodies bind to the FcγRIIIa receptor on human NK cells and can induce
their activation, potentiating them to recognize and lyse MUC1-expressing tumor cells.

3.3. Increasing Concentrations of Humanized Anti-MUC1 Antibodies Enhance NK Cell Activation
and Induce CD16 Down-Regulation, but Do Not Further Enhance Tumor Cell Killing

Before comparing the standard humanized anti-MUC1 antibody to its defucosylated
counterpart, we first determined the optimal antibody concentration for in vitro use. Mon-
oclonal antibodies for cancer immunotherapy exert direct effects on the tumor cells, the
effector NK cells, and on NK cell-mediated cytotoxicity. Therefore, we tested the defuco-
sylated CIM301-8 antibody in all of these conditions. First, we incubated Jurkat tumor
cells alone with increasing concentrations of humanized anti-MUC1 (CIM301-8) antibody
and determined the level of saturation of the MUC1 epitopes and direct toxicity to tu-
mor cells (Figure S2A). We observed that binding of MUC1 epitopes (Figure S2B,C) and
direct cytotoxic effects on the tumor cells (Figure S2D) were both dose-dependent. We
then tested whether increasing antibody concentrations promoted antibody binding by
NK cells and their degranulation (Figure 3A). Antibody-mediated NK cell activation via
CD16 is a strong inducer of degranulation, but also induces down-modulation of CD16,
most likely to prevent overactivation of NK cells [24,25]. In line with these results, we
observed that increasing doses of anti-MUC1 antibodies resulted in an increased fraction
of degranulating NK cells (Figure 3B). In the presence of anti-MUC1 antibodies, the major
proportion of these NK cells were negative for CD16 (Figure 3B and Figure S3A) and the
overall CD16 levels decreased with increasing antibody concentrations (Figure 3C and
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Figure S3B). This suggested that the increase in degranulation of NK cells most likely
came from cells that were activated by interaction of the antibody with CD16 leading to
a loss in CD16 expression on these cells. Not surprisingly, these lower CD16 levels also
resulted in lower levels of MUC1 antibodies bound to NK cells (Figure 3D and Figure S3C).
Importantly, the observed enhanced NK cell degranulation came at the expense of higher
NK cell death, almost doubling from 15% at 1 µg/mL to 26.7% at the highest concentration
(Figure 3E).
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Figure 2. Humanized anti-MUC1 antibodies bind to CD16 on NK cells and induce degranulation. (A) Schematic overview
outlining the detection of mAb binding via their Fc tail to the FcγRIIIa receptor (CD16) expressed on NK cells. (B) Binding
of murine anti-MUC1 antibodies on primary human NK cells. Histograms show expression levels of the labeled anti-mouse
IgG secondary antibodies used to detect MUC1 antibody binding. (C) Binding of humanized anti-MUC1 antibodies
on primary NK cells. Experiment as in B, but using humanized anti-MUC1 antibodies, detected using anti-human IgG
secondary antibodies. (D) Quantification of anti-MUC1 antibody binding to primary human NK cells. (E) Scheme depicting
analysis of NK cell degranulation. (F) Flow cytometric analysis of NK cell degranulation following 4 h incubation of primary
human NK cells with anti-MUC1 antibodies. One representative sample is shown with numbers indicating frequencies of
cells within the indicated gate. (G) Quantification of the degranulation assay shown in (F). Bars in (D,G) show mean ± SD
with individual data points as dots. Pooled data from seven independent experiments with different donors performed
at different time points. Statistical analysis using one-way ANOVA plus Tukey’s multiple comparisons test. In (D), only
biologically relevant comparisons were made. Not significant (n.s.); p < 0.01 (**); p < 0.0001 (****).

Lastly, we also titrated the antibody concentration in NK cell–Jurkat tumor cell co-
culture experiments, using degranulation and specific cytotoxicity as readouts (Figure 4A).
The addition of the anti-MUC1 antibody increased both degranulation and cytotoxicity
against MUC1 Tn/STn+ Jurkat cells (Figure 4B,C; white bars versus red bars). However,
we did observe a dose-dependent effect of the antibody-induced degranulation of NK
cells (Figure 4B,C; shades of red), but this is not more than the increase that the direct
effect of the antibody induced on the NK cells (Figure 3). Instead, the addition of extra NK
cells (higher E:T ratios) was the main determinant of tumor cell killing (Figure 4C): in the
presence of anti-MUC1 antibodies, the average tumor kill increased with on average 12.8%
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with every doubling of the E:T ratio. At the lowest E:T ratio tested (0.25:1), on average,
21.1% of the tumor cells were killed, while at the highest E:T ratio (2:1), this was 59.6%.
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Figure 3. Increasing concentrations of humanized anti-MUC1 antibodies enhance degranulation and induce down-
regulation of CD16 expression on NK cells. (A) Experimental setup for the detection of anti-MUC1 antibody binding to NK
cells, inducing degranulation and down-modulation of CD16 on NK cells. Human NK cells were incubated with increasing
concentrations of anti-MUC1 (CIM301-8; defucosylated Fc-tail). Antibody binding to CD16 was analyzed using flow
cytometric analysis of anti-human IgG antibodies. (B) Stacked bars show the fraction of NK cell degranulation for CD16+

and CD16− NK populations in the presence of various antibody concentrations. (C) Quantification of CD16 expression
on NK cells. (D) Quantification of anti-MUC1 antibody binding to the Fc tail of NK cells, shown as median fluorescence
index (MFI) of anti-human IgG. (E) Quantification of NK cell death after 4 h incubation with increasing doses of anti-MUC1
antibody. Bars indicate mean ± SD, and dots are individual NK cell donors (n = 6 per experimental group). Statistical
analysis using one-way ANOVA plus Tukey’s multiple comparisons test. p < 0.05 (*); p < 0.01 (**).
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NK cells after 4 h of co-culture with different effector/tumor ratios and antibody concentrations. (C) Quantification of
antibody-dependent cellular cytotoxicity at different E:T ratios and antibody concentrations. Bars indicate mean ± SD, and
dots are individual NK cell donors from independent experiments (n = 6 per experimental group). Statistical analysis using
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In summary, the generated defucosylated humanized anti-MUC1 antibody dose-
dependently enhanced NK cell degranulation at the expense of CD16 downmodulation
and increased NK cell death. NK cell-mediated responses against MUC1+ Jurkat tumor
cells were importantly enhanced by the antibody, but antibody concentrations higher than
1 µg/mL showed no additional beneficial effects. Therefore, we concluded that 1 µg/mL is
the optimal concentration for further in vitro experiments.

3.4. Specific NK Cell-Mediated Anti-Tumor Responses Are Enhanced by Anti-MUC1 Antibodies,
Especially after Defucosylation

Next, we asked whether defucosylation of these humanized anti-MUC1 antibodies
show more potent anti-tumor responses. We compared the regular anti-MUC1 antibody
CIM301-1 to the defucosylated CIM301-8 antibody in degranulation and cytotoxicity assays
against two MUC1-Tn+ tumor cell lines (Figure 5A). First, we performed NK cell-tumor cell
co-culture experiments and determined whether both antibodies could enhance the activa-
tion of NK cells. Indeed, CIM301-1 and CIM301-8 both enhanced NK cell degranulation in
co-cultures with Jurkat cells and T-47D cells compared to the control antibody (CIM301-4)
(Figure 5B,C). In ADCC assays, both anti-MUC1 antibodies enhanced cytotoxicity against
Jurkat (Figure 5D and Figure S4A) and T-47D cells (Figure 5E and Figure S4B). Compared
to the control antibody, the regular antibody increased anti-Jurkat cell responses by 23%,
while the defucosylated antibody increased cytotoxicity 49% (Figure 5D). For T-47D, the
increases were 16% and 31%, respectively (Figure 5E). These effects were most pronounced
at higher E:T ratios and with CIM301-8 antibodies (Figure S4). In summary, these newly
generated humanized anti-MUC1 antibodies importantly enhance NK cell-mediated cyto-
toxicity against different MUC1-Tn/STn epitope-positive tumor cells. In line with results
obtained with other antibodies [20,26–28], defucosylation of anti-MUC1 antibodies further
enhanced anti-tumor responses.

3.5. The Endocytosis Inhibitor PCZ Promotes Tumor Antigen Expression but Does Not Enhance
Anti-Tumor Responses in NK Cells

Bioavailability of target antigens is an important determinant of the efficacy of
antibody-mediated cancer therapy. MUC1 antigen expression on tumor cells is known to be
dynamic, due to the internalization of the protein through clathrin- and dynamic-mediated
endocytosis [29]. This mechanism may facilitate the escape of tumor cells from NK cell-
induced cell death by avoiding antibody opsonization [30]. Endocytosis inhibitors have
been demonstrated to augment the ability of immune cells to eradicate EGFR-positive cells
in both ex vivo and in vivo models [31]. Therefore, we hypothesized that the endocytosis
inhibitors PCZ and Dyngo 4A could be used to increase the bioavailability of MUC1 anti-
gens, thereby further promoting ADCC by NK cells. To test this, we investigated whether
the addition of endocytosis inhibitors to tumor cell cultures promoted the expression of
tumor-associated MUC1 epitopes (Figure 6A–C). We found that, in the presence of PCZ,
MUC1-Tn/STn epitope expression increased two-fold on T-47D cells (Figure 6B) but not on
Jurkat cells (Figure S5A). However, Dyngo 4A [31], another endocytosis inhibitor, did not al-
ter the expression of MUC1 (Figure 6C and Figure S5B). Addition of endocytosis inhibitors
to tumor cells in the presence of humanized anti-MUC1 antibodies had no negative effect
on tumor cell viability (Figure 6D and Figure S5C). However, in co-culture experiments of
NK cells and tumor cells (Figure 6E), endocytosis inhibitors neither enhanced NK cell de-
granulation (Figure 6F and Figure S5D) nor ADCC (Figure 6G and Figure S5E). Endocytosis
inhibitors can thus promote the expression of tumor-associated MUC1 epitopes, but do not
have beneficial effects on NK cell-mediated tumor elimination using anti-MUC1 antibodies.
Importantly, we observed no negative effects of endocytosis inhibitors on NK cell viability,
and we did not observe negative effects of endocytosis inhibitors on cytotoxic capabilities
of NK cells (Figure 6G). Alternatively, it is possible that in previous experiments we already
attained the maximal stimulation with humanized anti-MUC1 antibodies.
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Figure 5. Defucosylation of humanized anti-MUC1 antibodies further enhances specific anti-tumor responses mediated by
primary NK cells. (A) Scheme outlining the analysis of NK cell degranulation and cytotoxicity in co-cultures of primary
human NK cells and MUC1 (S)Tn+ tumor cells in the presence of humanized anti-MUC1 antibodies. (B) Flow cytometric
analysis of NK cell degranulation after 4 h co-culture in the presence of anti-MUC1 antibodies (regular CIM301-1 and
defucosylated CIM301-8) or control antibodies (CIM301-4) at 1 µg/mL. Per condition, one representative sample of CD56+

NK cells is shown, with gates and numbers indicating the fraction of degranulation NK cells. (C) Quantification of the
degranulation assays described in (B). Pooled data from five independent experiments performed with different NK cells
donors at different time points. Differences between groups were tested using repeated measures one-way ANOVA with
Šídák’s multiple comparisons test. (D) Antibody-dependent cell-mediated cytotoxicity (ADCC) assay using human NK cells
co-cultured with Jurkat tumor cells with or without 1 µg/mL regular (CIM301-1) or defucosylated (CIM301-8) antibodies.
Dots represent individual data points from six independent experiments with four different effectors: target ratios after
normalization to the CIM301-4 control antibody. Dotted line indicates the CIM301-4 baseline level (100%). (E) as (D),
but using T-47D tumor cells as target cells. Differences in ADCC (panels (D,E)) were calculated using repeated measures
one-way ANOVA with Tukey’s multiple comparisons test. p-values for comparisons to the control antibody for both
antibodies using both tumor cells lines were <0.0001. p < 0.05 (*); Not significant (n.s.); p < 0.001 (***); p < 0.0001 (****).



Cancers 2021, 13, 2579 12 of 19

Cancers 2021, 13, x  12 of 19 
 

 

experiments of NK cells and tumor cells (Figure 6E), endocytosis inhibitors neither en-
hanced NK cell degranulation (Figures 6F and S5D) nor ADCC (Figures 6G and S5E). En-
docytosis inhibitors can thus promote the expression of tumor-associated MUC1 epitopes, 
but do not have beneficial effects on NK cell-mediated tumor elimination using anti-
MUC1 antibodies. Importantly, we observed no negative effects of endocytosis inhibitors 
on NK cell viability, and we did not observe negative effects of endocytosis inhibitors on 
cytotoxic capabilities of NK cells (Figure 6G). Alternatively, it is possible that in previous 
experiments we already attained the maximal stimulation with humanized anti-MUC1 
antibodies. 

 
Figure 6. The endocytosis inhibitor PCZ promotes tumor antigen expression on T-47D cells but does not enhance antibody-
dependent NK cell-mediated cytotoxicity. (A) Experimental setup to determine whether endocytosis inhibitors enhance 
MUC1 epitope availability on tumor cells. (B) Overlay histograms of flow cytometric analysis of MUC1 epitope expression 
on T-47D tumor cells in the presence of endocytosis inhibitors using regular (CIM301-1) or defucosylated (CIM301-8) anti-
MUC1 antibodies or an irrelevant control antibody (CIM301-4). Anti-human IgG antibodies were used to detect antibody 
binding on tumor cells. Endocytosis inhibitors were dissolved in DMSO, here used as a negative control. One representa-
tive sample is shown. (C) Flow cytometric quantification of MFI of MUC1 expression levels on T-47D cells after treatment 
with endocytosis inhibitors as described in (B). Differences between control antibody (CIM301-4; grey bars) and anti-
MUC1 antibodies (regular CIM301-1 in blue and defucosylated CIM301-8 in red) were all statistically significant with p < 
0.0001. (D) Viability of T-47D tumor cells after incubation with anti-MUC1 antibodies with or without endocytosis inhib-
itors. Pooled data from three independent experiments performed at different timepoints. (E) Schematic overview of as-
says to test whether endocytosis inhibitors influence NK cell degranulation and cytotoxicity in the presence of anti-MUC1 

Figure 6. The endocytosis inhibitor PCZ promotes tumor antigen expression on T-47D cells but does not enhance antibody-
dependent NK cell-mediated cytotoxicity. (A) Experimental setup to determine whether endocytosis inhibitors enhance
MUC1 epitope availability on tumor cells. (B) Overlay histograms of flow cytometric analysis of MUC1 epitope expression
on T-47D tumor cells in the presence of endocytosis inhibitors using regular (CIM301-1) or defucosylated (CIM301-8)
anti-MUC1 antibodies or an irrelevant control antibody (CIM301-4). Anti-human IgG antibodies were used to detect
antibody binding on tumor cells. Endocytosis inhibitors were dissolved in DMSO, here used as a negative control. One
representative sample is shown. (C) Flow cytometric quantification of MFI of MUC1 expression levels on T-47D cells after
treatment with endocytosis inhibitors as described in (B). Differences between control antibody (CIM301-4; grey bars) and
anti-MUC1 antibodies (regular CIM301-1 in blue and defucosylated CIM301-8 in red) were all statistically significant with
p < 0.0001. (D) Viability of T-47D tumor cells after incubation with anti-MUC1 antibodies with or without endocytosis
inhibitors. Pooled data from three independent experiments performed at different timepoints. (E) Schematic overview
of assays to test whether endocytosis inhibitors influence NK cell degranulation and cytotoxicity in the presence of anti-
MUC1 antibodies. (F) Fraction of CD107a+ degranulating human NK cells in co-cultures with T-47D tumor cells at an
effector/target ratio of 1:1 in the presence of anti-MUC1 antibodies and endocytosis inhibitors. NK cells and tumor cells
were incubated for 4 h, with endocytosis inhibitors (5 µM PCZ, 30 µM Dyngo4A and 0.1% (v/v) DMSO) added during
the last hour. (G) Antibody-dependent NK-cell-mediated cytotoxicity against T-47D tumor cells. Experimental setup as
in (F). Panels (F,G) show pooled data from four independent experiments with different donors, performed at different
time points. Differences between groups were determined using two-way ANOVA with Tukey’s multiple comparisons test.
p < 0.05 (*); p < 0.01 (**); p < 0.001 (***); p < 0.0001 (****).
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4. Discussion

In this study, we investigated the potential of fully humanized anti-MUC1 antibodies
based on the murine 5E5 antibody that specifically recognizes MUC1 Tn/STn cancer-
associated epitopes. We demonstrated that the newly developed, fully human CIM301-1
and CIM301-8 antibodies also functionally bind to MUC1-Tn/STn epitopes on tumor cell
lines, and are capable of enhancing NK cell-mediated cytotoxicity upon binding to CD16.
Throughout our analyses, we found that defucosylation of the Fc tail (CIM301-8) further
enhanced anti-cancer effects. Together, these results are the next step in the use of these
cancer-specific fully human anti-MUC1 antibodies for cancer immunotherapy, especially
in the context of adoptive cell therapy.

The capacity of our humanized anti-MUC1 antibodies to enhance cytotoxicity was
dependent on the NK cell quantity and on the fucosylation status of the antibody Fc region.
In the pooled analysis of ADCC assays with Jurkat cells, fucosylated and defucosylated
humanized anti-MUC1 antibodies enhanced cytotoxicity by 23% and 49% (Figure 5D),
respectively. ADCC against the breast cancer cell line T-47D was enhanced by 31% by
defucosylated antibody CIM301-8 and 16% with CIM301-1 (Figure 5E). These findings
are in line with earlier studies investigating enhancement of ADCC by trastuzumab and
cetuximab, both currently used in the clinical setting. For instance, the anti-HER2 antibody
trastuzumab enhanced ADCC by 21% against the T-47D cell line that expresses HER2 at
low to moderate levels [32]. In a direct comparison between fucosylated and defucosylated
cetuximab (anti-EGFR), PBMC-mediated ADCC was enhanced by ~30% at various E:T
ratios [33]. These findings should be confirmed in patient studies, as in the clinical set-
ting, antibody availability, E:T ratios within the tumor microenvironment, other immune
populations, and various external factors greatly impact the antibody’s anti-cancer efficacy.

MUC1 is an interesting target for antibody-based anti-cancer therapy, as it is expressed
by a wide variety of tumors, including breast, ovarian, lung, colon, and pancreatic carci-
nomas as well as multiple myeloma [14]. MUC1 was identified almost 40 years ago, with
cancer-specific aberrations in its expression pattern and glycosylation being recognized
later [34]. The identification of the cancer-associated Tn and STn glycoforms of MUC1 also
lead to the introduction of the murine 5E5 antibody [27]. There are several examples of
MUC1 antibodies, such as HMFG1, HMFG2 [35], and SM3 [36], targeting a broad spectrum
of MUC1 epitopes. These have been considered for cancer immunotherapy, but currently
without much clinical success. For instance, a humanized form of HMFG1, designated
AS1402, was tested in a phase II clinical study that was terminated early because of worse
outcomes in patients receiving AS1402 [26]. HMFG2 and SM3 were demonstrated to be
effective against MUC1-expressing tumor cell lines in mouse models, both as antibodies
and as scFv in the context of a CAR-T [37]. Additionally, ga-tipotuzumab (PankoMab)
specifically reacts with cancer-associated MUC1 [28]. Although its safety was confirmed
in a phase I trial (ClinicalTrials.gov Identifier: NCT01222624) [38], it did not show benefi-
cial effects in a phase IIb trial in advanced ovarian cancer [39]. The 5E5 antibody under
investigation in this study is of particular interest, because of its specificity for Tn/STn
epitopes. It preferentially recognizes the Tn- and STn-carrying GSTA region of MUC1,
while PankoMab also recognizes the less cancer-specific T-carrying epitopes on the PDTR
region [17,27]. Given the wide expression pattern of MUC1, the narrowed specificity of
the 5E5 antibody is an advantage for any clinical application, as it reduces the risk of
recognition of non-cancerous epitopes.

NK cells efficiently eliminate tumor cells and pathogens after binding the Fc portion
of the monoclonal antibody, mainly through FcγRIIIa (CD16a) [6]. Defucosylation of the Fc
tail can be used to promote the binding to effector cells and has shown encouraging results
in in vitro experiments [40]. In line with this, we also found that the glycoengineered,
defucosylated variant of the humanized anti-MUC1 antibody (CIM301-8) outperformed
CIM301-1. Currently, three defucosylated antibodies are used for clinical care, and many
more are being evaluated in clinical trials. Obinutuzumab is an anti-CD20 defucosylated
mAb approved by the FDA in 2013 and is used for the treatment of patients suffering from
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follicular lymphoma and CLL [41]. Compared to its fucosylated counterpart rituximab, the
most widely used monoclonal antibody in the clinic, obinutuzumab enhances ADCC of NK
cells in human lymphoma xenograft models and displays superior anti-tumor activity [42].
The other two defucosylated mAbs approved for clinical application are mogamulizumab,
an anti-CCR4 antibody used for T cell lymphoma [43], and benralizumab, an anti-IL-5R
antibody used for severe eosinophilic asthma [44]. In contrast to obinutuzumab, the latter
two antibodies have not been directly compared to fucosylated antibodies. The previously
mentioned anti-MUC1 antibody gatipotuzumab is defucosylated and has been tested in two
clinical trials, so far without positive results [39]. Currently, another study investigates the
combination of gatipotuzumab with tomuzotuximab (anti-EGFR) for treatment of patients
with metastatic solid tumors (NCT03360734) [45]. In conclusion, antibody defucosylation
should always be considered for cancer therapy, as it often enhances binding and clinical
effects.

In addition to glycosylation of the Fc tail of an antibody [6,40,46], there are several
other determinants of the effectiveness of ADCC mediated by the interaction between NK
cells and monoclonal antibodies: the affinity of the monoclonal antibody [47], stability of
CD16 expression on NK cells [48], polymorphisms in CD16 [49] and concurrent Toll-like
receptor agonists stimulation [50]. Macías-León et al. demonstrated that amino acids H32,
A33, H35, H50, S99, T100, and F102 in the heavy chain and Y98 and Y100 in the light chain
of the murine 5E5 antibody form the GalNAc-Tn epitope binding domain [51]. Sequence
comparison of the humanized key antigen binding amino acids in the complementary
determining regions (CDR)-3 show them to be identical to the 5E5 murine antibody [51].
As our humanized 5E5 antibodies bind the MUC1-Tn at the same level with murine 5E5
(Figure 1), we hypothesize that their affinities are similar. Surface plasmon resonance assays
with MUC1-Tn peptides and the humanized and murine 5E5 antibodies may validate this
hypothesis in the future.

Furthermore, we found that CD16 expression levels decreased with increasing anti-
body concentrations as reported previously [24,52,53]. This may seem counterproductive:
in contrast to other activating receptors, antibody-mediated cross-linking of CD16 alone
is sufficient to fully activate NK cells and to trigger degranulation [54]. However, it has
been shown that the shedding of CD16 is required to disassemble the established immune
synapse between the NK cell and the tumor cell to allow for serial engagement of other
targets [52]. Interestingly, in vitro studies have shown that NK cells can eliminate up to
seven targets in 12 h [55,56]. In addition, it has been suggested that CD16 down-regulation
prevents NK cells from overactivation and exhaustion [57]. Still, lower baseline levels of
CD16 correlate with decreased ADCC responses in NK cells: compared with NK cells
obtained from healthy donors, it was demonstrated that NK cells from cancer patients
showed a significant reduction of both direct killing and ADCC against tumors, which
was due to CD16 down-regulation [58]. In cancer patients, the expression levels of CD16,
DNAM-1, and NKG2D have also been reported down-regulation on NK cells [59,60]. A
Western blot assay using NK cells after stimulation with tumor cells may further add
proof to possible CD16 shedding. Most activating receptors on NK cells, such as NKG2D,
can at least in part be rapidly recycled. In contrast, down-modulation of CD16 is medi-
ated by proteolytic cleavage by ADAM17 or MMP25 [24,25]. Consequently, recovery of
CD16 expression may take days or weeks, as for instance reported after exposure to an
influenza vaccine with partial recovery of CD16 expression only at day 18 [61]. Therefore,
it is interesting to consider inhibition of proteolytic cleavage of CD16. Indeed, inhibition
of the metalloprotease ADAM17 was shown to induce even stronger activation of NK
cells [24]. In addition, inhibition of ADAM17 expression in NK cells, for instance using
CRISPR/Cas9 or siRNA, could be used to prevent shedding of CD16 on NK cells used
for cancer immunotherapy. In line with these results, our anti-MUC1 antibodies induced
down-modulation of CD16 expression on NK cells in a dose-dependent manner. While we
observed higher activation levels of NK cells with higher anti-MUC1 doses, we also found
that NK cell-mediated ADCC responses were not enhanced at antibody concentrations
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higher than 1 µg/mL. In addition to optimal dosing of antibodies and modulation of
CD16 expression, clinical trials were recently launched using adoptive transfer of NK cells
expressing the high affinity form of CD16 [48].

In this study, we also investigated whether endocytosis inhibitors can enhance the
effects of anti-MUC1 antibodies by preventing the down-regulation of MUC1 epitopes via
endocytosis. MUC1 has been demonstrated to interact with the cell membrane through
dynamic endocytosis, mediated by clathrin and dynamin [62]. The cell surface expression
levels of under-glycosylated, cancer-associated MUC1 are reduced compared with normal
MUC1, either due to decreased delivery to the cell membrane or due to faster endocytosis,
a critical tumor immune escape mechanism [29]. The process of endocytosis of MUC1
after binding of HMFG1 antibodies in MCF7 cells takes around 15 min [30]. Endocytosis
inhibitors such as PCZ and Dyngo 4A have been proven to up-regulate tumor antigens
such as EGFR and Her2, thereby enhancing ADCC [31]. In this study, we tested these
two endocytosis inhibitors and found that MUC1-Tn/STn expression increased two-fold,
though the effect was restricted to PCZ implemented on T-47D cells. There are various
possible explanations for this phenomenon. For instance, different clathrin-independent
pathways may be responsible for MUC1 internalization upon antibody [31]. Moreover,
we found no changes in MUC1-Tn/STn epitope expression levels on Jurkat cells after
treatment with either PCZ or Dyngo 4A. This could indicate that the Tn/STn epitope on
Jurkat cell is so abundant that regular MUC1 internalization causes only slight changes on
the cell surface, leaving the epitope expression pattern virtually unaltered. Thus, the exact
mechanisms of MUC1 endocytosis in relation to ADCC need to be further studied to be
able to allow anti-MUC1 antibodies to bind optimally to cancer-associated MUC1 epitopes.

5. Conclusions

In this study, we demonstrated that the 5E5-based, humanized anti-MUC1 antibodies
CIM301-1 and CIM301-8 are potent enhancers of NK cell activation and cytotoxicity against
MUC1-Tn/STn positive tumor cells in vitro. Defucosylation (CIM301-8) further potentiated
the NK cell response. Hereafter, in vitro binding studies, in vivo animal studies, and clinical
trials should be conducted to explore the full therapeutic potential of these newly generated
antibodies. Furthermore, the developed antibodies could also be tested in the context of
adoptive cell therapy with effector cells redirected with chimeric antigen receptors (CAR)
employing the scFv of the humanized 5E5 antibodies. Given the cancer specificity of these
5E5-based antibodies, combined with the fact that many different tumors show expression
of cancerous MUC1 epitopes, CIM301-1 but especially CIM301-8 are interesting candidates
for cancer immunotherapy.
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enhances NK cell cytotoxicity via ADCC. Figure S5: The endocytosis inhibitors PCZ and Dyngo4A
neither up-regulate the antigens on the tumor surface nor enhance the ADCC of Jurkat cells.
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