
RESEARCH ARTICLE

NGS-QCbox and Raspberry for Parallel,
Automated and Rapid Quality Control
Analysis of Large-Scale Next Generation
Sequencing (Illumina) Data
Mohan A. V. S. K. Katta1, Aamir W. Khan1, Dadakhalandar Doddamani1, Mahendar Thudi1,
Rajeev K. Varshney1,2*

1 International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India, 2 School of
Plant Biology and Institute of Agriculture, The University of Western Australia, Crawley, Australia

* r.k.varshney@cgiar.org

Abstract
Rapid popularity and adaptation of next generation sequencing (NGS) approaches have

generated huge volumes of data. High throughput platforms like Illumina HiSeq produce

terabytes of raw data that requires quick processing. Quality control of the data is an

important component prior to the downstream analyses. To address these issues, we have

developed a quality control pipeline, NGS-QCbox that scales up to process hundreds or

thousands of samples. Raspberry is an in-house tool, developed in C language utilizing

HTSlib (v1.2.1) (http://htslib.org), for computing read/base level statistics. It can be used as

stand-alone application and can process both compressed and uncompressed FASTQ for-

mat files. NGS-QCbox integrates Raspberry with other open-source tools for alignment

(Bowtie2), SNP calling (SAMtools) and other utilities (bedtools) towards analyzing raw NGS

data at higher efficiency and in high-throughput manner. The pipeline implements batch pro-

cessing of jobs using Bpipe (https://github.com/ssadedin/bpipe) in parallel and internally, a

fine grained task parallelization utilizing OpenMP. It reports read and base statistics along

with genome coverage and variants in a user friendly format. The pipeline developed pres-

ents a simple menu driven interface and can be used in either quick or completemode. In

addition, the pipeline in quickmode outperforms in speed against other similar existing QC

pipeline/tools. The NGS-QCbox pipeline, Raspberry tool and associated scripts are made

available at the URL https://github.com/CEG-ICRISAT/NGS-QCbox and https://github.com/

CEG-ICRISAT/Raspberry for rapid quality control analysis of large-scale next generation

sequencing (Illumina) data.

Introduction
Next generation sequencing (NGS) technologies generates large volumes of data that are
proven to be cost effective over conventional sequencing methods. Rapid decline in costs of the

PLOSONE | DOI:10.1371/journal.pone.0139868 October 13, 2015 1 / 9

OPEN ACCESS

Citation: Katta MAVSK, Khan AW, Doddamani D,
Thudi M, Varshney RK (2015) NGS-QCbox and
Raspberry for Parallel, Automated and Rapid Quality
Control Analysis of Large-Scale Next Generation
Sequencing (Illumina) Data. PLoS ONE 10(10):
e0139868. doi:10.1371/journal.pone.0139868

Editor: Junwen Wang, The University of Hong Kong,
HONG KONG

Received: June 1, 2015

Accepted: September 16, 2015

Published: October 13, 2015

Copyright: © 2015 Katta et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: Raspberry, the inhouse
tool is available at https://github.com/CEG-ICRISAT/
Raspberry The NGS-QCbox pipeline is available at
https://github.com/CEG-ICRISAT/NGS-QCbox. The
simulated dataset used for benchmarking is available
at https://github.com/CEG-ICRISAT/NGS-QCbox/
blob/master/README.md#datasets-used-for-testing.

Funding: Authors are thankful to the CGIAR
Generation Challenge Program for financial support.
This work has been undertaken as part of the CGIAR
Research Program on Grain Legumes. ICRISAT is a
member of the CGIAR Consortium.

http://htslib.org/
https://github.com/ssadedin/bpipe
https://github.com/CEG-ICRISAT/NGS-QCbox
https://github.com/CEG-ICRISAT/Raspberry
https://github.com/CEG-ICRISAT/Raspberry
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0139868&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/CEG-ICRISAT/Raspberry
https://github.com/CEG-ICRISAT/Raspberry
https://github.com/CEG-ICRISAT/NGS-QCbox
https://github.com/CEG-ICRISAT/NGS-QCbox/blob/master/README.md#datasets-used-for-testing
https://github.com/CEG-ICRISAT/NGS-QCbox/blob/master/README.md#datasets-used-for-testing


data generation in recent years has boosted rapid adoption of NGS based applications towards
unraveling biological questions [1]. NGS approaches generate large volumes of data that are
cost effective over conventional sequencing methods. Availability of genome wide information
of species was a major constraint until NGS was introduced and adopted. The primary applica-
tion of such studies involve de novo genome assembly, whole genome re-sequencing, targeted
studies apart from other specialized analyses such as RNA-Seq. For example, several plant
genomes have been sequenced [2] and now efforts are underway to harness the diversity for
crop improvement though re-sequencing of thousands of germplasm lines for instance rice
(http://www.gigasciencejournal.com/content/3/1/7), maize [3], sorghum [4], chickpea [5] have
been sequenced. NGS technologies typically generate gigabytes to terabytes of raw data and in
due course the data accumulates to the scale of terabytes to petabytes in public archives. For
example, as of May 2015, the European Nucleotide Archive (ENA) contains a massive dataset
of 13.7 trillion read sequences (1,757.3 trillion bases) with the number of reads deposited dou-
bling every 22.9 months (http://www.ebi.ac.uk/ena/about/statistics#sra_growth). Notably, in
the period between 2006 and 2010, ENA has shown significant increase in the volume of data
deposited and hence reflects the data generated. In addition to the data storage related issues,
the challenge is to process and hence develop efficient tools to use the huge data towards down-
stream analysis in a limited time [6,7]. The data needs to be analyzed and archived for re-use at
a later stage. Hence, prior to the downstream analysis, the NGS data typically needs to be pro-
cessed for quality thereby generating high quality reads. Several tools like NGS QC Toolkit [8],
FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and HTSeq [9] exist for
extracting high quality read data. But the existing tools/pipelines are capable of handling only
few to tens of samples at an instance. Nevertheless, these tools could not address the issue of
processing the huge volumes of data in parallel. Hence there is a pressing need for tools that
can scale up to process thousands of samples simultaneously in short time. In this context,
quality control (QC) of raw and large-scale NGS data demands automation.

In recent past, stand-alone quality control tools and pipelines have been developed to manage
the overwhelming volume of data. For instance, quality control tools/pipelines like NGS QC
Toolkit [8] (http://59.163.192.90:8080/ngsqctoolkit) and Python (http://www.python.org) based
HTSeq [9] (http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html) were developed
to address these constraints but are slow. In general, these pipelines/tools are meant to work on
datasets in serial manner that can be daunting for the end user while dealing with large datasets.
Nowadays, not only the servers, but also modern personal computers include multicore processors
and therefore several NGS tools have been developed to process the data in parallel by multi-
threading. Keeping in view the requirement of an automated pipeline to analyze large-scale raw
NGS data, a menu driven pipeline, namely NGS-QCbox that integrates Raspberry, an in-house
developed tool, with other open source tools has been developed. The pipeline focuses on process-
ing large datasets in parallel and provides informative and crisp statistics. Typically, service provid-
ers or labs involved in generating NGS data develop in-house scripts, for pre-processing of NGS
data. NGS-QCbox aims to hasten and ease the processing of huge data in reasonable time frame.

The NGS-QCbox is meant to complement existing tools for QC. It aims to be a decision
making tool in assisting the scientist to judge if sufficient quality data has been generated with
an optimal coverage as the experiment demands.

Results and Discussion

Raspberry–a tool for FASTQ data statistics
The data generated from Illumina sequencing machines is in binary format (bcl). This is con-
verted to FASTQ format, which we refer to as raw data. Depending on the number of samples

NGS-QCbox for Quality Control of NGS Data

PLOS ONE | DOI:10.1371/journal.pone.0139868 October 13, 2015 2 / 9

Competing Interests: The authors have declared
that no competing interests exist.

http://www.gigasciencejournal.com/content/3/1/7
http://www.ebi.ac.uk/ena/about/statistics#sra_growth
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://59.163.192.90:8080/ngsqctoolkit
http://www.python.org/
http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html


or the data generated, often the raw data may be stored in compressed (gzip) or uncompressed
format (plain text). In FASTQ format [10], each read is represented linearly as a record of four
lines that includes identifier, sequence and its base quality information. The base quality infor-
mation includes an offset of either 33 (HiSeq/MiSeq) or 64 (GAIIx). In order to assess the qual-
ity of the data generated, we have developed an in-house tool called Raspberry (v0.3) (https://
github.com/CEG-ICRISAT/Raspberry) in C language utilizing HTSlib (v1.2) (http://htslib.org)
towards computing read/base level metrics. The tool provides an account of total number of
bases, reads, Q20 and Q30 bases, range of read length, average read length, range of quality,
range of phred quality score, number of A/T/G/C and N characters and GC content. In
addition, it provides a file with read lengths that could be plotted using a Python script, ‘read_
length_distribution.py’ included in ‘utils’ folder of the package. Raspberry can be used as a
stand-alone tool. It accepts compressed and uncompressed FASTQ format files as input. Rasp-
berry, by default utilizes all the processors available on the machine. However, it allows user to
change the number of processors to be used with the “–t” option. This could be beneficial if the
server/workstation is under heavy load and the user has less number of processors allocated
than the total available. This option would facilitate processing of the data in batches by the
number of processors provided. Note that the number of processors opted translates to the
number of samples processed at a given instance (batch). The datasets of legacy Illumina plat-
forms that were encoded with a phred offset ‘64’ could be processed using the ‘–p 64’ option.
By default the value is set to 33 which is the latest standard phred offset followed on HiSeq and
MiSeq platforms. The manual made available online lists these use cases.

Integrated pipeline
A top-level Python script (NGSQCbox-v0.1.py) presents a menu driven interface for the
required input data and spawns tasks in parallel for each sample using in-built shell scripts and
Bpipe [11] configuration files. Internally, Bpipe (v0.9.8.6_beta_1) was used to integrate NGS
tools such as Raspberry (v0.3) (https://github.com/CEG-ICRISAT/Raspberry), Sickle (v1.200)
(https://github.com/najoshi/sickle), Bowtie 2 (v2.1.0) [12], SAMtools (v0.1.19+) [13] and bed-
tools (v2.17.0) [14]. Within Bpipe, each of the components of the pipeline is represented as re-
usable tasks or blocks of code that may run in parallel to reduce computational run time–task
oriented parallelism.

The pipeline can be used in two modes: quick and complete (Fig 1). If the user is limited by
time, quickmode could be used to have a general overview of the reads generated that includes
base level metrics with quality trimming step. Alternately, it could be run in completemode to
generate additional information such as coverage, alignment, mean read depths and variants.
The completemode QC is in a way a full-fledged pipeline that covers processing raw reads to
identifying variants. Fig 2 depicts the interface for the two modes of the pipeline. The parame-
ters such as cut-off phred quality score, post trimming read length cut-off, data location and
number of cores to be used for the quick QC mode. B) In addition to parameters included in
quick QC mode, information related to the genome (bowtie index, genome size, number of
processors used by bowtie) are incorporated as additional parameters in the complete QC
mode.

Quality trimming by sickle includes parameters ‘-q 30’, ‘-l 50’, ‘-n’ and ‘-t sanger’, when run
with default parameters. The alignment parameters of Bowtie 2 include ‘–end-to-end’mode
with user provided insert size information. The bedtools genomecov parameters include ‘-bga’
followed by the output processing using an in-house python script ‘genome_cov.py’ to com-
pute the genome coverage from the alignment. Variant calling with SAMtools include the
parameters ‘-uf’ to samtoolsmpileup and ‘-bvcg’ to bcftools respectively. In quickmode the

NGS-QCbox for Quality Control of NGS Data

PLOS ONE | DOI:10.1371/journal.pone.0139868 October 13, 2015 3 / 9

https://github.com/CEG-�ICRISAT/Raspberry
https://github.com/CEG-�ICRISAT/Raspberry
http://htslib.org/
https://github.com/CEG-�ICRISAT/Raspberry
https://github.com/najoshi/sickle


user needs the sample information alone while in the completemode one needs to provide
additional information such as insert size of each sample size and Bowtie 2 index of the genome
(see online manual). Users can freely modify the steps and subsequently the parameters
involved by editing the bpipe scripts in the pipeline for both quick and completemode QC.

The workflow
The pipeline starts processing paired end reads using Raspberry. Base quality trimming of the
paired end reads is performed using Sickle to produce high quality reads. Raspberry generates
the metrics both before and after the base quality trimming step to help compare and assess the
amount of reads/bases passing QC filter. This is essentially the quick QC mode. The complete
QCmode includes the quick QCmode as well as the following steps. The high quality reads are
aligned to the reference genome using Bowtie 2 to generate alignments in SAM/BAM format
(https://samtools.github.io/hts-specs/SAMv1.pdf) followed by indexing with SAMtools. The
singletons produced by the Sickle are also used in alignment. Bedtools is then used to compute
the genome coverage based on the read depths at each base position. An in-house Python
script, genome_cov.py (included with the tool source code) summarizes the output in terms of
X coverage (1X, 2X, 5X, 10X, 15X). The X coverage trace could be used to evaluate the drop in
read depth that may affect variant calling downstream. SAMtools is simultaneously used to
call variants in VCF format (http://www.1000genomes.org/wiki/analysis/variant%20call%
20format/vcf-variant-call-format-version-41) for each sample. The VCF files generated could

Fig 1. Flowchart of NGS-QCbox pipeline illustrating the twomodes of usage namely quick and complete. NGS-QCbox comprises of two workflow
modes namely quick and complete. In quickmode, read/base level metrics are computed in parallel using Raspberry, an in-house tool, both before and after
quality trimming. On the other hand, completemode is full-fledged quality control and variant calling pipeline that integrates quick mode and additionally
generates genome coverage information in parallel. Quality of the data generated could be assessed using this information.

doi:10.1371/journal.pone.0139868.g001

NGS-QCbox for Quality Control of NGS Data

PLOS ONE | DOI:10.1371/journal.pone.0139868 October 13, 2015 4 / 9

https://samtools.github.io/hts-specs/SAMv1.pdf
http://www.1000genomes.org/wiki/analysis/variant%20call%20format/vcf-variant-call-format-version-41
http://www.1000genomes.org/wiki/analysis/variant%20call%20format/vcf-variant-call-format-version-41


be filtered and used for downstream applications such as GWAS, diversity analysis and devel-
opment of markers for genotyping applications. The complete QCmode serves as a full-fledged
pipeline for variant calling and is unique feature of the pipeline. An example file containing
information on the output is illustrated in the S1 Table. Computation of genome coverage and
variant calling steps use the same BAM files as input and hence these tasks have been paralle-
lized internally to save time.

Salient features of the pipeline

1. The pipeline accepts compressed/uncompressed paired-end Illumina FASTQ data.

2. Easy to use python based interface for fast (quick) and detailed (complete) processing of
data.

3. Scalability–The pipeline is designed to process hundreds/thousands of samples in parallel
(automated).

4. Batch processing of jobs–Even with the availability of limited number of processors all the
samples can be processed in batch mode automatically.

5. Use of advanced shell features (Process substitution), task oriented parallelism, Python/
multiprocessing, and HTSlib to gain performance in speed and save disk-space.

6. The pipeline computes and summarizes genome coverage and variant detection in parallel
which reduces the processing time.

7. Available as docker image to ease portability of the pipeline.

Fig 2. Themenu driven interface for NGS-QCbox for quick and complete mode respectively. (a) Shows
the prompt and the parameters such as cut-off phred score, minimum read length after trimming, data source
and number of processors to be used for the quick QCmode. (b) Complete QCmode adds more parameters
to quick mode like information related to the genome (bowtie index, genome size, number of processors used
by bowtie).

doi:10.1371/journal.pone.0139868.g002

NGS-QCbox for Quality Control of NGS Data

PLOS ONE | DOI:10.1371/journal.pone.0139868 October 13, 2015 5 / 9



Benchmarking
The features of NGS-QCbox were compared with five well known tools/pipelines namely
Prinseq-lite [15], NGS QC Toolkit, HTSeq, FastQC and FastX Toolkit (fastx_quality_stats)
(http://hannonlab.cshl.edu/fastx_toolkit/index.html) (Table 1). The quick QCmode of
NGS-QCbox was used for benchmarking. The unique features of the pipeline are simple menu
interface, batch processing of jobs, task parallelization and information on genome coverage
and variations.

Performance in processing large datasets
In order to test the scalability and the performance of NGS-QCbox, it was evaluated with data
from 1, 100, 200 and 300 simulated paired-end samples (Table 2). The tools were evaluated
based on the performance observed with 1 processor against using 20 processors (parallel) with
similar dataset size. The time consumed by NGS-QCbox to process one sample of size 4.38 Gb
running on one processor was 217 seconds. This is a notable speedup of 2.76X over Prinseq-
lite, 132X over NGS QC Toolkit, and 2.9X over HTSeq, 1.65X over FastQC and 4.9X over
FastX. Similarly the time taken to process 100, 200 and 300 samples were in corresponding pro-
portion because of the serial processing of the samples. In this case, with increase in the num-
ber of samples, all the programs scale up linearly with increase in data size (number of
samples).

On the other hand, NGS-QCbox runtime with 20 processors is the same 217 seconds as
observed earlier with 1 processor (Table 2). This is because in both the cases (1 processor or
20 processors), threads are opened based on the number of samples (one sample per thread).
Therefore if one sample is processed, it would use only one thread from the pool of threads.
But the performance gain is evident with increasing the number of samples from 1 to 100, 200
and 300. While processing 100 samples in parallel with 20 processors, the speedup obtained is
6.29X over the one processor run. Better speedups of 9.4X and 9X were observed when com-
paring the runtime of 200 and 300 samples. This translates to the fact that the runtime to pro-
cess each sample gets reduced to 23–34 seconds with parallelization which is a huge gain
over running them serially. The programs such as Prinseq-lite, HTSeq and FastX run in
serial, can only use one processor and hence were not considered for comparison in parallel.
NGS-QCbox is much faster than NGS QC Toolkit when 20 processors were considered. In
parallel mode (20 processors), NGS-QCbox ran 46X, 275X, 412X and 398X times faster than
NGS QC Toolkit as evident from the comparisons of 1, 100, 200 and 300 samples respectively.
However, sequential execution of the steps used in complete QC mode for a sample with one
processor resulted in a loss of 38 seconds, underlining the efficiency of the pipeline in complete

Table 1. A comparative account of the features of NGS-QCbox pipeline with five similar pipeline/tools.

NGS-QCbox Prinseq-lite NGS QC Toolkit HTSeq FastQC FastX

Compressed FASTQ (input) Y N N N N N

Batch job processing Y N N N Y/N N

Genome coverage Y N N N N Y

Variations (SNP/INDEL) Y N N N N N

Menu interface Y N N N Y N

Feature richness Y Y Y N Y N

Task parallelization Y N N N N N

The symbols Y and N denote Yes and No respectively describing the presence or absence of the feature.

doi:10.1371/journal.pone.0139868.t001

NGS-QCbox for Quality Control of NGS Data

PLOS ONE | DOI:10.1371/journal.pone.0139868 October 13, 2015 6 / 9

http://hannonlab.cshl.edu/fastx_toolkit/index.html


QCmode. Whereas scaling of number of samples to 100 with 20 processors gave a speedup of
8.82X compared to the run of one sample with one processor in complete QC mode (Table 2).
In summary, parallelization drastically improved and facilitated processing of hundreds
of samples. This would scale to thousands of samples but then disk I/O may be a constraint
that might limit the performance. The mechanism of batch processing of samples in NGS-
QCbox helps in containing the disk I/O because even though the number of samples exceeds
the number of processors available, limited number of threads in a batch limit the disk read/
writes proportionately and ensure that the disk I/O does not become a bottleneck while pro-
cessing large number of samples. This would indirectly help contain the memory usage.
NGS-QCbox consumes negligible amount of memory as it reads only a line at a time from a
sample file and therefore is suitable for use on desktop machines.

NGS-QCbox can be used to process any paired end data from NGS experiments such as
DNA-Seq, RAD-Seq, GBS, RNA-Seq. For processing single end read datasets one may need to
use Raspberry independently.

The NGS-QCbox pipeline and Raspberry are available alternatively from dockerhub
(https://registry.hub.docker.com) as a docker image (dadu/ngsqcbox:v0.2.1 for linux and dadu/
ngsqcbox_win:v0.2 for Windows). Docker (docker.io) is a popular and portable lightweight
linux container based technology to host applications in a virtual environment. This technol-
ogy eases the process of distributing the application and thereby helps solve application related

Table 2. Parallel performance comparison of NGS-QCbox with other tools/pipelines.

Quick QC mode

Samples Processors NGS-QCbox Prinseq-lite NGS QC Toolkit HTSeq FastQC FastX
(seconds) (seconds) (seconds) (seconds) (seconds) (seconds)

1 1 217 600 28,618 630 360 1,073

100 1 21,849 60,116 2,861,800* 63,513 36,121 107,300*

200 1 43,741 120,232* 5,523,600* 127,026* 72,318 214,600*

300 1 65,319 180,348* 8,285,400* 190,539* 108,477* 321,900*

1 20 217 NA 10,020 NA NA NA

100 20 3,472 NA 954,221 NA NA NA

200 20 4,636 NA 1,908,442* NA NA NA

300 20 7,189 NA 2,862,663* NA NA NA

Complete QC mode

NGS-QCbox (seconds) Shell script (sequential processing time in seconds)

1 1 2,800 2,838

100 20 31,723 NA

The tools were evaluated based on the performance observed with 1 processor against using 20 processors (parallel). To process one sample of size

4.38 Gb with one processor, NGS-QCbox consumes 217 seconds. This is a notable speedup of 2.76X over Prinseq-lite, 132X over NGS QC Toolkit, 2.9X

over HTSeq, 1.65X over FastQC and 4.9X over FastX. In this case, with increase in the number of samples, all the programs scale linearly with increase

in data size (samples). Similarly with 100, 200 and 300 samples, the speedups are the same order because of the serial processing of the samples. But

when processing 100 samples in parallel with 20 processors the speedup obtained is 6.25X over the one processor run. Similar speedups of 9.4X and 9X

were observed when comparing the runtime of 200 and 300 samples. This translates to the fact that the runtime to process each sample gets reduced to

23–34 seconds with parallelization which is a huge gain over running them serially. The “*” symbol indicates that the values are extrapolated based on the

linear run time. Extrapolation is necessary because in such cases the run time exceeds a time period over days and months. NA indicates the program

does not support parallelization. We have executed the flow of commands used in complete QC mode of pipeline into sequential order instead of parallel

mode with one processor as input. It was observed that there was a loss of 38 seconds per sample when NGS-QCbox steps were ran sequentially. When

complete QC mode was tested for 100 samples parallel processing gave a massive speedup of 8.82X.

doi:10.1371/journal.pone.0139868.t002

NGS-QCbox for Quality Control of NGS Data

PLOS ONE | DOI:10.1371/journal.pone.0139868 October 13, 2015 7 / 9

https://registry.hub.docker.com/


cross platform compatibility issues. The docker image solves the issue of dependencies across
various linux platforms and Windows.

Conclusions
NGS-QCbox is a generic pipeline that integrates open-source NGS tools in order to process
large datasets of any organism. It was designed and implemented to take advantage of paralleli-
zation. Parallelization enables quick analysis of datasets that would otherwise be a daunting
task. In quickmode we observe 6X to 9X speedup while scaling up to hundreds of datasets.
Raspberry, an in-house tool was developed for quality control of raw data is integrated into the
pipeline.

Materials and Methods
Raspberry, an in-house tool to process large datasets generated from Illumina next generation
sequencers was developed in C language using htslib C library (http://htslib.org) API (Applica-
tion Programming Interface). This library was chosen for efficiency in processing datasets with
low memory consumption and faster processing. In addition, it supports reading compressed
or uncompressed datasets. OpenMP (http://openmp.org) (v4.0) was used to process datasets in
batches. Cmake (http://www.cmake.org) (v2.8) build system was used to develop Raspberry as
it supports cross-platform compilation. Static binaries compiled on x86_64 machine architec-
ture are provided with the software to facilitate direct use of the application by naive users.

The NGS-QCbox pipeline was implemented by integrating NGS tools such as Bpipe, Sickle,
bedtools, Bowtie 2, SAMtools and in-house software, Raspberry. Python, C, Bash shell was
used extensively in building the application. Parallelization was envisaged at different levels.
Python’s multiprocessing module was used to implement batch processing based on the num-
ber of processors requested by the user. Bpipe’s inbuilt parallelization of task blocks feature was
used towards computing genome coverage and variation information simultaneously.

For benchmarking, a dataset of size 4.38 Gb, comprising of 100 bp paired-end reads were
simulated from chickpea genome [5] using ART simulator [16] (v2.1.8) (http://www.niehs.nih.
gov/research/resources/software/biostatistics/art/) at 10 fold genome coverage. The dataset is
publicly available (https://github.com/CEG-ICRISAT/NGS-QCbox/blob/master/README.
md#datasets-used-for-testing) on iPlant resource [17] (www.iplantcollaborative.org). The test
was conducted in quick mode on an Ubuntu Linux server with x86_64 architecture.

This was used to evaluate the performance of NGS-QCbox against five similar tools such as
Prinseq-lite, NGS QC Toolkit, HTSeq, FastQC and FastX. To establish a proof of concept
towards scalability, sample sets of 100, 200 and 300 samples were drawn from the same dataset
to test the performance of the tools with one processor and 20 processors (in parallel) indepen-
dently. This enables comparison of runtime in serial versus parallel modes of NGS-QCbox. All
the benchmarking tests were performed on the 64-bit server with no load.

Supporting Information
S1 Table. Sample output of the analysis of simulated NGS data using NGS-QCbox pipeline.
(XLS)

Acknowledgments
We thank Manish Pandey for his invaluable suggestions towards improvement of the
manuscript.

NGS-QCbox for Quality Control of NGS Data

PLOS ONE | DOI:10.1371/journal.pone.0139868 October 13, 2015 8 / 9

http://htslib.org/
http://openmp.org/
http://www.cmake.org/
http://www.niehs.nih.gov/research/resources/software/biostatistics/art/
http://www.niehs.nih.gov/research/resources/software/biostatistics/art/
https://github.com/CEG-�ICRISAT/NGS-�QCbox/blob/master/README.md#datasets-used-for-testing
https://github.com/CEG-�ICRISAT/NGS-�QCbox/blob/master/README.md#datasets-used-for-testing
http://www.iplantcollaborative.org/
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0139868.s001


Author Contributions
Conceived and designed the experiments: RKVMAVSKK. Performed the experiments:
MAVSKK AWK DD. Analyzed the data: MAVSKK AWK DD RKV. Contributed reagents/
materials/analysis tools: RKVMAVSKK AWK DDMT. Wrote the paper: RKVMAVSKK
AWK DDMT.

References
1. Thudi M, Li Y, Jackson SA, May GD, Varshney RK. Current state-of-art of sequencing technologies for

plant genomics research. Briefings in Functional Genomics. 2012; 11(1):3–11. doi: 10.1093/bfgp/
elr045 PMID: 22345601

2. McCouch S, Baute GJ, Bradeen J, Bramel P, Bretting PK, Buckler E, et al. Agriculture: feeding the
future. Nature. 2013; 499(7456):23–24. doi: 10.1038/499023a PMID: 23823779

3. Jiao Y, Zhao H, Ren L, SongW, Zeng B, Guo J, et al. Genome-wide genetic changes during modern
breeding of maize. Nature genetics. 2012; 44(7):812–815. doi: 10.1038/ng.2312 PMID: 22660547

4. Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ, Bian L, et al. Whole-genome sequencing reveals
untapped genetic potential in Africa's indigenous cereal crop sorghum. Nature communications. 2013;
4. doi: 10.1038/ncomms3320 PMID: 23982223

5. Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, et al. Draft genome sequence of chick-
pea (Cicer arietinum) provides a resource for trait improvement. Nature biotechnology. 2013; 31
(3):240–246. doi: 10.1038/nbt.2491 PMID: 23354103

6. Gardner SN, Hall BG. When whole-genome alignments just won't work: kSNP v2 software for align-
ment-free SNP discovery and phylogenetics of hundreds of microbial genomes. PLoS One. 2013; 8
(12):e81760. doi: 10.1371/journal.pone.0081760 PMID: 24349125

7. Bertels F, Silander OK, Pachkov M, Rainey PB, van Nimwegen E. Automated reconstruction of whole-
genome phylogenies from short-sequence reads. Molecular biology and evolution. 2014; 31(5):1077–
1088. doi: 10.1093/molbev/msu088 PMID: 24600054

8. Patel RK, Jain M. NGSQC Toolkit: a toolkit for quality control of next generation sequencing data. PloS
one. 2012; 7(2):e30619. doi: 10.1371/journal.pone.0030619 PMID: 22312429

9. Anders S, Pyl PT, Huber W. HTSeq—A Python framework to work with high-throughput sequencing
data. Bioinformatics. 2014; btu638.

10. Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger FASTQ file format for sequences with
quality scores, and the Solexa/Illumina FASTQ variants. Nucleic acids research. 2010; 38(6):1767–
1771. doi: 10.1093/nar/gkp1137 PMID: 20015970

11. Sadedin SP, Pope B, Oshlack A. Bpipe: a tool for running and managing bioinformatics pipelines. Bioin-
formatics. 2012; 28(11):1525–1526. doi: 10.1093/bioinformatics/bts167 PMID: 22500002

12. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature methods. 2012; 9
(4):357–359. doi: 10.1038/nmeth.1923 PMID: 22388286

13. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format
and SAMtools. Bioinformatics. 2009; 25(16):2078–2079. doi: 10.1093/bioinformatics/btp352 PMID:
19505943

14. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformat-
ics. 2010; 26(6):841–842. doi: 10.1093/bioinformatics/btq033 PMID: 20110278

15. Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics.
2011; 27(6):863–864 doi: 10.1093/bioinformatics/btr026 PMID: 21278185

16. HuangW, Li L, Myers JR, Marth GT. ART: a next-generation sequencing read simulator. Bioinformat-
ics. 2012; 28(4):593–594. doi: 10.1093/bioinformatics/btr708 PMID: 22199392

17. Goff SA, Vaughn M, McKay S, Lyons E, Stapleton AE, Gessler D, et al. The iPlant collaborative: cyber-
infrastructure for plant biology. Frontiers in plant science. 2011; 2. doi: 10.3389/fpls.2011.00034 PMID:
22645531

NGS-QCbox for Quality Control of NGS Data

PLOS ONE | DOI:10.1371/journal.pone.0139868 October 13, 2015 9 / 9

http://dx.doi.org/10.1093/bfgp/elr045
http://dx.doi.org/10.1093/bfgp/elr045
http://www.ncbi.nlm.nih.gov/pubmed/22345601
http://dx.doi.org/10.1038/499023a
http://www.ncbi.nlm.nih.gov/pubmed/23823779
http://dx.doi.org/10.1038/ng.2312
http://www.ncbi.nlm.nih.gov/pubmed/22660547
http://dx.doi.org/10.1038/ncomms3320
http://www.ncbi.nlm.nih.gov/pubmed/23982223
http://dx.doi.org/10.1038/nbt.2491
http://www.ncbi.nlm.nih.gov/pubmed/23354103
http://dx.doi.org/10.1371/journal.pone.0081760
http://www.ncbi.nlm.nih.gov/pubmed/24349125
http://dx.doi.org/10.1093/molbev/msu088
http://www.ncbi.nlm.nih.gov/pubmed/24600054
http://dx.doi.org/10.1371/journal.pone.0030619
http://www.ncbi.nlm.nih.gov/pubmed/22312429
http://dx.doi.org/10.1093/nar/gkp1137
http://www.ncbi.nlm.nih.gov/pubmed/20015970
http://dx.doi.org/10.1093/bioinformatics/bts167
http://www.ncbi.nlm.nih.gov/pubmed/22500002
http://dx.doi.org/10.1038/nmeth.1923
http://www.ncbi.nlm.nih.gov/pubmed/22388286
http://dx.doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
http://dx.doi.org/10.1093/bioinformatics/btq033
http://www.ncbi.nlm.nih.gov/pubmed/20110278
http://dx.doi.org/10.1093/bioinformatics/btr026
http://www.ncbi.nlm.nih.gov/pubmed/21278185
http://dx.doi.org/10.1093/bioinformatics/btr708
http://www.ncbi.nlm.nih.gov/pubmed/22199392
http://dx.doi.org/10.3389/fpls.2011.00034
http://www.ncbi.nlm.nih.gov/pubmed/22645531

