# Synthesis and Characterization of Novel Methyl (3)5-(N-Boc-piperidinyl)-1H-pyrazole-4-carboxylates 

Gita Matulevičiūté ${ }^{1,2}$, Eglė Arbačiauskienė ${ }^{2, *}$ © , Neringa Kleiziené ${ }^{1}$, Vilija Kederienė ${ }^{2}$, Greta Ragaitė ${ }^{1}$, Miglè Dagiliene ${ }^{1}$, Aurimas Bieliauskas ${ }^{1}$, Vaida Milišiūnaitė ${ }^{1}$, Frank A. Sløk ${ }^{3}$ and Algirdas Šačkus ${ }^{1, *}$<br>1 Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania; gita.matuleviciute@ktu.lt (G.M.); neringa.kleiziene@ktu.lt (N.K.); greta.ragaite@ktu.lt (G.R.); migle.dagiliene@ktu.lt (M.D.); aurimas.bieliauskas@ktu.lt (A.B.); vaida.milisiunaite@ktu.lt (V.M.)<br>2 Department of Organic Chemistry, Kaunas University of Technology, Radvilėnu pl. 19, LT-50254 Kaunas, Lithuania; vilija.kederiene@ktu.lt<br>3 Vipergen ApS, Gammel Kongevej 23A, V DK-1610 Copenhagen, Denmark; fas@vipergen.com<br>* Correspondence: egle.arbaciauskiene@ktu.lt (E.A.); algirdas.sackus@ktu.lt (A.Š.); Tel.: +370-37-451-401 (A.Š.)

Citation: Matulevičiūtè, G.; Arbačiauskienė, E.; Kleizienė, N.; Kederienė, V.; Ragaitè, G.; Dagilienė, M.; Bieliauskas, A.; Milišiūnaitè, V.; Sløk, F.A.; Šačkus, A. Synthesis and Characterization of Novel Methyl (3)5-(N-Boc-piperidinyl)-1H-pyrazole-4-carboxylates. Molecules 2021, 26, 3808. https://doi.org/10.3390/ molecules26133808

Academic Editor: Mohammad Alam

Received: 17 May 2021
Accepted: 19 June 2021
Published: 22 June 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).


#### Abstract

Series of methyl 3- and 5-(N-Boc-piperidinyl)-1H-pyrazole-4-carboxylates were developed and regioselectively synthesized as novel heterocyclic amino acids in their $N$-Boc protected ester form for achiral and chiral building blocks. In the first stage of the synthesis, piperidine-4-carboxylic and $(R)$ - and (S)-piperidine-3-carboxylic acids were converted to the corresponding $\beta$-keto esters, which were then treated with $\mathrm{N}, \mathrm{N}$-dimethylformamide dimethyl acetal. The subsequent reaction of $\beta$-enamine diketones with various $N$-mono-substituted hydrazines afforded the target 5-( $N$-Boc-piperidinyl)-1H-pyrazole-4-carboxylates as major products, and tautomeric NH-pyrazoles prepared from hydrazine hydrate were further $N$-alkylated with alkyl halides to give 3-( $N$-Boc-piperidinyl)1 H -pyrazole-4-carboxylates. The structures of the novel heterocyclic compounds were confirmed by ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}$-, and ${ }^{15} \mathrm{~N}-\mathrm{NMR}$ spectroscopy and HRMS investigation.


Keywords: heterocyclic amino acids; pyrazoles; piperidines; $\beta$-keto esters; enamines; hydrazines; building blocks

## 1. Introduction

Heterocyclic amino acids are becoming very important in modern drug discovery [1-5]. For instance, (RS)-piperidine-3-carboxylic acid (DL-nipecotic acid) is one of the most potent inhibitors of neuronal and glial $\gamma$-aminobutyric acid (GABA) uptake in vitro [6]. (S)-Pyrrolidinyl-2-carboxylic acid (L-proline) has been found to act as an agonist of the glycine receptor and of both the $N$-methyl-D-aspartate (NMDA) and non-NMDA ionotropic glutamate receptors [7].

Heterocyclic amino acids are also important scaffolds and building blocks for the preparation of heterocyclic systems, hybrids, and peptides [8-11]. For example, L-proline has been applied as a scaffold in the preparation of pyrrolizidine [12-14], pyrrolo[1,2-c][1,3] oxazole [15], pyrrolo[2,1-c][1,4]benzodiazepine [16], and benzo[f]pyrrolo[1,2-a][1,4] diazepine derivatives [17], while nipecotic and isonipecotic acids have given derivatives of heterospirocyclic 3-amino-2H-azirines [18,19]. Moreover, L-proline is a building block for N -(3-mercapto-2-D-methylpropanoyl)-L-proline, named captopril, which is used to regulate blood pressure [20]. D-Nipecotic acid, a building block for (R)-1-[4,4-bis-(3-methyl-2-thienyl)-3-butenyl]-3-piperidine carboxylic acid, named ( $R$ )-tiagabine, which amplifies neurotransmission of GABA, the predominant inhibitory neurotransmitter in the brain [21-23]. New derivatives of nipecotic acid, guvacin, and homo- $\beta$-proline are very potent and selective analogs of GABA uptake inhibitors [24-26].

The heterocyclic tripeptide Gly-Pro-Glu I, containing an L-proline residue, is a neuroprotective compound for the control of neurodegenerative processes such as Parkinson's
disease [27,28], while a proline peptidomimetic, faldaprevir II, was used as an experimental drug to treat hepatitis (Figure 1) [29-31]. The synthetically prepared derivative of the tripeptide (pyro)Glu-His-Pro $\left(\mathrm{NH}_{2}\right)$ III has specific activity as a hypothalamic gland thyrotropin-releasing hormone [32]. Many aromatic heterocyclic amino acids, such as [5-amino-4-(tert-butoxycarbonyl)thiophen-2-yl]acetic acid, provide synthetic peptides, including enantiopure cyclic tetraamide IV [33], which are similar to compounds in marine plants that exhibit resistance to infection or antitumor effects [34].


Gly-Pro-Glu


cyclic tetraamide


Faldaprevir

(pyro)Glu-His-Pro( $\mathrm{NH}_{2}$ )


Figure 1. Examples of biologically active peptides derived from heterocyclic amino acids: Gly-Pro-Glu I, faldaprevir II, (pyro)Glu-His-Pro( $\mathrm{NH}_{2}$ ) III, cyclic tetraamide IV, and VPC00628 V.

Heterocyclic amino acids have been applied widely as building blocks for the preparation of DNA-encoded chemical libraries, including heterocyclic hybrid and peptide compounds [35-39]. In general, a DNA-encoded library of target component molecules should have a high degree of structural and functional diversity, taking into account diversity-oriented synthesis (DOS) [40]. For example, a highly specific and potent $\mathrm{p} 38 \alpha$ kinase tripeptide-type inhibitor (VPC00628) $\mathbf{V}$ containing the residue of 3-amino-1-phenyl-1H-pyrazole-4-carboxylic acid has been identified directly from a multimillion-membered DNA-encoded molecule library that was prepared using highfidelity yoctoReactor ( yR ) technology [41].

We recently reported an efficient protocol for synthesizing highly functionalized amino acid building blocks by combining pyrazole, indazole, and indole carboxylates with $N$-Boc-3-iodoazetidine [42]. Moreover, we synthesized 4 -( $N$-Boc-cycloaminyl)-1,3-thiazole- and 4 -( $N$-Boc-cycloaminyl)-1,3-selenazole-5-carboxylates as novel heterocyclic chiral amino acid-like derivatives [43,44]. Herein, we report the efficient synthesis of 3(5)( $N$-Boc-piperidinyl)-1H-pyrazole-4-carboxylates as heterocyclic amino acid-like derivatives for novel achiral and chiral building blocks from piperidine-4-carboxylic and $(R)$ - and (S)-piperidine-3-carboxylic acids.

## 2. Results and Discussion

Numerous methods for forming pyrazole ring systems have been developed. The most common synthetic method for the production of pyrazoles is the condensation of the corresponding hydrazine derivative, which acts as a double nitrogen nucleophile, with three carbon units containing compounds such as 1,3-dicarbonyl and 2,3-unsaturated carbonyl, or enamine [45-47]. Rosa et al. [48] developed a simple and efficient method for preparing both regioisomers of 4,5 -substituted $N$-phenylpyrazoles from $\beta$-enamino diketones and phenylhydrazine, and the regiochemistry of the reaction was protic or aprotic solvent depen-
dent. A patent [49] was obtained for the synthesis of 4-(piperidin-4-yl)-N-phenylpyrazole derivatives from $\beta$-enamino diketones with 4-fluoro- and 4-methoxyphenylhydrazines.

Our strategy for the synthesis of methyl 3(5)-(N-Boc-piperidinyl)-1H-pyrazole-4carboxylates according to the enamine method is described in Schemes 1 and 2, and Figure 2. The synthetic sequence started with preparing $\beta$-keto esters $\mathbf{2 a} \mathbf{a} \mathbf{c}$ by treating $N$-Boc protected piperidine acids 1a-c with 2,2-dimethyl-1,3-dioxane-4,6-dione (Meldrum's acid) in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC $\cdot \mathrm{HCl}$ ) and 4-dimethylaminopyridine (DMAP), and further methanolysis of Meldrum's acid adduct $[50,51]$. Compounds 2a-c were treated with $N, N$-dimethylformamide dimethyl acetal (DMF-DMA) to obtain $\beta$-enamino diketones 3a-c [49].


Scheme 1. Synthesis of starting $\beta$-enamino diketones 3a-c.


4, 4', 5, 6: a $R=N$-Boc-piperidin-4-yl, $\mathrm{R}^{1}=\mathrm{Ph} ; \mathbf{b} \mathrm{R}=N$-Boc-piperidin-4-yl, $\mathrm{R}^{1}=4-\mathrm{MePh} ; \mathbf{c} \mathrm{R}=N$-Boc-piperidin-4-yl, $\mathrm{R}^{1}=3-\mathrm{MePh} ; \mathrm{d} \mathrm{R}=\mathrm{N}$-Boc-piperidin-4-yl, $\mathrm{R}^{1}=3-\mathrm{FPh} ; \mathrm{e} \mathrm{R}=N$-Boc-piperidin-4-yl, $\mathrm{R}^{1}=2-\mathrm{FPh} ; \mathbf{f}$ $\mathrm{R}=N$-Boc-piperidin-4-yl, $\mathrm{R}^{1}=4-\mathrm{OMePh} ; \mathbf{g} \mathrm{R}=N$-Boc-piperidin-4-yl, $\mathrm{R}^{1}=3$-OMePh; $\mathbf{h}: \mathrm{R}=$ N-Boc-piperidin-4yl, $\mathrm{R}^{1}=3-\mathrm{CF}_{3} \mathrm{Ph} ; \mathbf{i} \mathrm{R}=N$-Boc-piperidin-4-yl, $\mathrm{R}^{1}=\mathrm{Me} ; \mathbf{j} \mathrm{R}=(3 R)-N$-Boc-piperidin-3-yl, $\mathrm{R}^{1}=\mathrm{Ph} ; \mathbf{k} \mathrm{R}=(3 S)-N$ -Boc-piperidin-3-yl, $\mathrm{R}^{1}=\mathrm{Ph}$; I R = (3R)-N-Boc-piperidin-3-yl, $\mathrm{R}^{1}=4-\mathrm{MePh} ; \mathbf{m} \mathrm{R}=(3 S)-N$-Boc-piperidin-3-yl, $\mathrm{R}^{1}$ $=4-\mathrm{MePh} ; \mathrm{n} \mathrm{R}=(3 R)-N$-Boc-piperidin-3-yl, $\mathrm{R}^{1}=3-\mathrm{CF}_{3} \mathrm{Ph} ; \boldsymbol{o} \mathrm{R}=(3 S)-N$-Boc-piperidin-3-yl, $\mathrm{R}^{1}=3-\mathrm{CF}_{3} \mathrm{Ph}$.

Scheme 2. Synthesis of compounds 5a-o and 6a-o.
In the next step, we investigated the formation of 3(5)-substituted-1H-pyrazoles 5 and 6 via the key intermediates 4 and $4^{\prime}$ (Scheme 2). Optimization of the coupling reaction conditions was undertaken, choosing 3a and phenylhydrazine as a model system (Table 1). An investigation of the reaction course and regioselectivity was carried out in various solvents, and the LC/MS and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral data of the crude reaction mixture of intermediate compound $\mathbf{4 a}$ and products 5a, $\mathbf{6 a}$ were analyzed after 1 and 18 h (Table 1). EtOH was used as a polar protic (Table 1, entry 1), ACN as a polar aprotic (Table 1, entry 2), and $\mathrm{CCl}_{4}$ as a nonpolar solvent (Table 1, entry 3). As a result, the reaction in EtOH provided high regioselectivity ( $99.5 \%$ ) and good yield ( $78 \%$ ) of $\mathbf{5 a}$ and just traces of its regioisomer $\mathbf{6 a}$ (Table 1, entry 1). Similarly, the reaction in ACN resulted in $\mathbf{5 a}$ as the main product ( $75 \%$ ), and 6a was obtained with a 3\% yield (Table 1, entry 2). The poorest yield and regioselectivity
were observed when the reaction mixture was stirred in $\mathrm{CCl}_{4}$. In this case, $\mathbf{5 a}$ formed as a major product with $54 \%$ yield, and regioisomer 6a was obtained with $9 \%$ yield (Table 1, entry 3). During optimization of the reaction conditions in different solvents, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude reaction mixture after 1 h also showed the formation of intermediate compound 4a, which was successfully isolated for structure elucidation. The regioisomer 6a formed as a minor isomer via intermediate $\mathbf{4}^{\prime}$ a which resulted from the nucleophilic attack of a secondary amino group of phenylhydrazine on $\beta$-enamino diketone 3a.


5a (78\%)









5k (77\%)

51 (78\%)




5n (79\%)

50 (63\%)

Figure 2. Synthesized compounds 5a-o.
Table 1. Solvent effect on the formation of compounds $\mathbf{4 a}, \mathbf{5 a}$, and $\mathbf{6 a}$.

| Entry | Solvent $^{*}$ | $\mathbf{t}(\mathbf{h})$ | $\mathbf{4 a} / 5 \mathbf{a} / \mathbf{6 a} \mathbf{* *}^{*}$ | $\mathbf{t}(\mathbf{h})$ | $\mathbf{4 a / 5 a / 6 a}$ ** | 5a, Yield (\%) | *** |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | EtOH | 1 | $52.4 / 46.8 / 0.8$ | 18 | $0 / 99.5 / 0.5$ | 78 |  |
| 2 | ACN | 1 | $27.6 / 68.2 / 4.2$ | 18 | $0 / 95.2 / 4.8$ | 75 |  |
| 3 | $\mathrm{CCl}_{4}$ | 1 | $58.3 / 27.5 / 14.2$ | 18 | $18.3 / 67.9 / 13.8$ | 54 |  |

$*$ All reaction mixtures were stirred at room temperature. ${ }^{* *}$ Ratio was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral data from crude sample. ${ }^{* * *}$ After
purification by column chromatography.
In the case of intermediate compound $\mathbf{4 a}$, the key information for structure elucidation was obtained from the ${ }^{15} \mathrm{~N}$-NMR data. In the ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC spectrum of $4 \mathbf{a}$, the ${ }^{15} \mathrm{~N}$ shift of $\delta-241.2 \mathrm{ppm}$ was assigned to nitrogen $\mathrm{N}_{\mathrm{a}}$, due to the correlation with the neighboring protons $2^{\prime}\left(6^{\prime}\right)-\mathrm{H}(\delta 6.81 \mathrm{ppm})$ from the phenyl moiety (Figure 3). The ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC experiment indicated that proton $\mathrm{N}_{\mathrm{a}}-\mathrm{H}(\delta 6.24 \mathrm{ppm})$ had one-bond connectivity with the aforementioned nitrogen $\mathrm{N}_{\mathrm{a}}$ at $\delta-241.2 \mathrm{ppm}$, while proton $\mathrm{N}_{\mathrm{b}}-\mathrm{H}(\delta 11.72 \mathrm{ppm}$ ) generated a cross peak with nitrogen $\mathrm{N}_{\mathrm{b}}$ at $\delta-275.1 \mathrm{ppm}$. The formation of compound 4a was also confirmed by a NOESY experiment, which exhibited NOEs between the $2^{\prime}\left(6^{\prime}\right)$-H protons at $\delta 6.81 \mathrm{ppm}$ and the enamine proton at $\delta 8.28 \mathrm{ppm}$. However, the configuration of the ( $2 E$ or $2 Z$ )-isomer of compound $4 \mathbf{a}$ is not yet known.

Discrimination between regioisomeric compounds $\mathbf{5 a}$ and $\mathbf{6 a}$ was based on data from ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC, ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC, and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY experiments (Figure 3). The ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC experiment of the major regioisomer 5 a revealed three-bond correlations between the piperidine $4^{\prime}$-H proton at $\delta 3.10 \mathrm{ppm}$ and the phenyl group $2^{\prime \prime}\left(6^{\prime \prime}\right)$-H protons
at $\delta 7.34 \mathrm{ppm}$, with the pyrazole $\mathrm{N}-1$ "pyrrole-like" nitrogen at $\delta-160.3 \mathrm{ppm}[52,53]$. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum of 5 a exhibited NOEs between the phenyl group $2^{\prime \prime}\left(6^{\prime \prime}\right)$-H protons and the $4^{\prime}-\mathrm{H}$ proton from the piperidine moiety.


Correlations:
~ ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC


5a major regioisomer

$\mathbf{6 a}$
minor regioisomer
Correlations:
$\curvearrowright{ }^{1}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY

Figure 3. Relevant ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC, ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N} \mathrm{HMBC},{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY, and ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC correlations and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (italics), ${ }^{13} \mathrm{C}$-NMR, and ${ }^{15} \mathrm{~N}-\mathrm{NMR}$ (bold) chemical shifts of intermediate compounds $4 \mathrm{a}, 5 \mathrm{a}$ (major regioisomer), and $\mathbf{6 a}$ (minor regioisomer).

The second regioisomer 6a was easily identified by utilizing a similar approach. The minor regioisomer 6a exhibited a strong three-bond connectivity between the piperidine proton $4^{\prime}-\mathrm{H}(\delta 3.43 \mathrm{ppm})$ and the pyrazole $\mathrm{N}-2$ "pyridine-like" nitrogen at $\delta-81.5 \mathrm{ppm}$, while the phenyl group protons $2^{\prime \prime}\left(6^{\prime \prime}\right)-\mathrm{H}(\delta 7.68 \mathrm{ppm})$ showed three-bond connectivity with the pyrazole N-1 "pyrrole-like" nitrogen at $\delta-165.7 \mathrm{ppm}$. Moreover, the pyrazole $5-\mathrm{H}$ proton in the ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum showed a three-bond connectivity with the phenyl group C-1" carbon at $\delta 139.3 \mathrm{ppm}$. Finally, confirmation of these regiochemical assignments was obtained from the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY 6 a spectrum, showing only the NOEs between the phenyl group $2^{\prime \prime}\left(6^{\prime \prime}\right)$-H protons and the pyrazole $5-\mathrm{H}$ proton ( 88.34 ppm ).

The optimal conditions for the regioselective synthesis of methyl 5 -( N -Boc-piperidinyl)1 H -pyrazole-4-carboxylate 5 a were applied to the synthesis of other pyrazoles to evaluate the scope of the methodology (Figure 2). $\beta$-Enamino diketone 3a was coupled with different phenylhydrazines to give corresponding products $\mathbf{5 b}-\mathbf{h}$ with fair to good yields. No obvious effect of the phenylhydrazine substituent on the reaction yield was observed. A reaction of $\beta$-enamino diketone 3 a with methylhydrazine provided a corresponding tert-butyl 4-[4-(methoxycarbonyl)-1-methyl-1H-pyrazol-5-yl]piperidine-1-carboxylate 5 i with a $51 \%$ yield. To our delight, the reactions of chiral $\beta$-enamino diketones $\mathbf{3 b}$,c with phenyl-, (4-methylphenyl)- or [3-(trifluoromethyl)phenyl]hydrazines formed products $5 \mathbf{j}-\mathbf{o}$, also with good yields. While analyzing the LC/MS and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectral data of crude cyclization reaction mixtures, the formation of the regioisomeric $\mathbf{6 b} \mathbf{b} \mathbf{o}$ was observed at trace amounts. The structure of compounds $\mathbf{5 b}-\mathbf{o}$ was determined by analogous NMR spectroscopy experiments as described above.

Next, having $\beta$-enamino diketone $\mathbf{3 a}$, we also performed a cyclocondensation reaction with hydrazine hydrate under the conditions described above, and the formation of
tautomeric 3(5)-substituted NH-pyrazole 7 was established by NMR analysis (Scheme 3, Figure 4).


Scheme 3. Two tautomers, $\mathbf{7 a}$ and $\mathbf{7 b}$, of 3(5)-substituted NH-pyrazole (7) and regioisomers 5i, $\mathbf{6 i}$, and compound 8.


Figure 4. Relevant ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC, ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC, and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY correlations and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (italics), ${ }^{13} \mathrm{C}-\mathrm{NMR}$, and ${ }^{15} \mathrm{~N}$-NMR (bold) chemical shifts of compound $\mathbf{7}$ (tautomeric equilibrium of $\mathbf{7 a}$ and $\mathbf{7 b}$ ) and regioisomers $5 \mathbf{i}, \mathbf{6 i}$ in $\mathrm{CDCl}_{3}\left(25^{\circ} \mathrm{C}\right)$.

The prototropic tautomerism of NH-pyrazoles is well documented in many scientific studies, including with the use of multinuclear dynamic NMR spectroscopy [54-56]. In general, the annular tautomerism of $3(5)-1 H$-pyrazoles in solution under normal conditions is a very rapid process on the NMR time scale, and the determination of tautomeric ratios can usually be achieved only at low temperatures [57]. We carried out NMR studies of compound 7 at $25^{\circ} \mathrm{C}$ in a diluted $\mathrm{CDCl}_{3}$ solution (Figure 4). The ${ }^{1} \mathrm{H}$-NMR spectrum of compound 7 revealed a narrow singlet of the pyrazole ring proton resonating at $\delta 7.96$ [3(5)-H] and two singlets for methyl ester and Boc moiety protons in the area of $\delta 3.83$ $\left(\mathrm{OCH}_{3}\right)$ and $1.47\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{ppm}$, respectively. The ${ }^{13} \mathrm{C}$-NMR spectrum provided important information; as expected, the characteristic signal of the pyrazole C-4 carbon at $\delta 110.1 \mathrm{ppm}$ remained sharp, while the other two signals of pyrazole ring carbons 3(5)-C resonated at $\delta 138.7$ and 153.6 ppm and appeared broadened. It is known that the broadening of NMR spectral lines very often reflects dynamic structural transformations of molecules in solution [58]. Therefore, the observed broadness of relevant C-3 and C-5 pyrazole carbon signals is due to the coalescence of individual signals to average signals, indicating tautomeric equilibrium of $7(7 \mathbf{a}$ and $7 \mathbf{b})$. In addition, the pyrazole NH proton ( $\delta 11.52 \mathrm{ppm}$ ) exhibited NOEs not only with the pyrazole ring proton at 7.96 ppm but also with the $3^{\prime}-\mathrm{H}$ piperidine protons at 1.70 ppm , which is only possible in the case of annular tautomerism 7.

It was not possible to obtain relevant information for the nitrogen atoms of the pyrazole ring $\mathrm{N}-1$ and $\mathrm{N}-2$ from the ${ }^{15} \mathrm{~N}-\mathrm{NMR}$ spectral data since ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC and HMBC experiments showed no direct or long-range correlations with appropriate protons.

Tautomeric compound 7 was alkylated with alkyl iodides (Scheme 3). It is known that $N$-alkylation of asymmetrically ring-substituted 1 H -pyrazoles generally results in the formation of a mixture of regioisomeric $N$-substituted products [59]. Treatment of compound 7 with methyl iodide in the presence of KOH in DMF gave an inseparable mixture of regioisomers $5 \mathbf{i}$ and $6 \mathbf{i}$ in a ratio of about $1: 5$ and a total yield of $74 \%$. However, alkylation of 1 H -pyrazole-4-carboxylate 7 with ethyl iodide under analogous conditions afforded compound 8 as the sole product with a good $87 \%$ yield.

Discrimination of regioisomeric compounds $5 \mathbf{i}$ and $6 \mathbf{i}$ were based on ${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C} \mathrm{HMBC}$, ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC, and ${ }^{1} \mathrm{H}-{ }^{-} \mathrm{H}$ NOESY spectral data (Figure 4). In the ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC spectra of minor regioisomer $5 \mathbf{i}$, a ${ }^{15} \mathrm{~N}$ shift of $\delta-178.3 \mathrm{ppm}$ was assigned to the "pyrrole-like" nitrogen $\mathrm{N}-1$ due to the correlation of this signal with a piperidine ring proton $4^{\prime}-\mathrm{H}$ ( $\delta 3.54 \mathrm{ppm}$ ). The ${ }^{1} \mathrm{H}-{ }^{-13} \mathrm{C}$ HMBC experiment exhibited a three-bond correlation of the $1-\mathrm{CH}_{3}$ protons with a pyrazole quaternary carbon $\mathrm{C}-5$ at $\delta 148.7 \mathrm{ppm}$. Moreover, the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum of $5 \mathbf{i}$ exhibited NOEs between the methyl group protons $\left(1-\mathrm{CH}_{3}\right)$ at 3.92 ppm and the piperidine proton $4^{\prime}-\mathrm{H}$ at $\delta 3.54 \mathrm{ppm}$. In the ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC spectra of the major regioisomer $\mathbf{6 i}$, an appropriate correlation between the piperidine ring proton $4^{\prime}-\mathrm{H}(\delta 3.36 \mathrm{ppm})$ and the "pyridine-like" pyrazole N-2 nitrogen which resonated at $\delta-77.3 \mathrm{ppm}$ could be observed. The ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectral data of compound $\mathbf{6 i}$ provided a strong three-bond correlation of $1-\mathrm{CH}_{3}$ protons with pyrazole protonated carbon C-5 at $\delta 134.6 \mathrm{ppm}$. Finally, the regiochemistry of compound $\mathbf{6 i}$ was confirmed by a NOESY experiment, which exhibited NOEs between the $1-\mathrm{CH}_{3}$ protons and pyrazole proton $5-\mathrm{H}(\delta 7.78 \mathrm{ppm})$. The structure of compound 8 was determined by analogous NMR spectroscopy experiments as described above.

After the successful synthesis of 3(5)-(N-Boc-piperidinyl)-1H-pyrazole-4-carboxylates, we further prepared several pyrazole carboxylic acids (Scheme 4). In particular, achiral pyrazole-4-carboxylic acid $9 \mathbf{a}$ was prepared from the corresponding ester 5a under the basic conditions ( 2 N NaOH , methanol, reflux). The same hydrolysis conditions were applied to the production of chiral pyrazole-4-carboxylic acids $(R)-9 \mathbf{b}$ and $(S)-9 \mathbf{c}$ from esters $5 \mathbf{j}$ and $5 \mathbf{k}$, respectively.

Pyrazole carboxylic acid amides, including anilides, have been known to play an important role in agrochemical research as fungicides [60,61]. Pyrazole-4-carboxylic acids $9 \mathbf{a}-\mathbf{c}$ were used to obtain new anilide compounds (Scheme 4). First, 9a reacted with aniline in the presence of EDC•HCl, DMAP, and dichloromethane to give pyrazole anilide 10a. Moreover, chiral pyrazole anilide $(R)-\mathbf{1 0 b}(100 \%$ ee) was obtained from carboxylic acid $\mathbf{9 b}$, while the corresponding chiral anilide (S)-10c ( $96 \%$ ee) was synthesized from carboxylic acid 9 c . The enantiomeric purity of prepared anilides $\mathbf{1 0 b}, \mathrm{c}$ was evaluated by chiral HPLC analysis. As an example, HPLC analysis of enantiomeric samples of anilides $\mathbf{1 0 b}, \mathbf{c}$ is shown in Figure 5.


Figure 5. Chiral HPLC analysis of (a) anilide $\mathbf{1 0 b}$ and (b) anilide 10c. Conditions: CHIRAL ART Amylose-SA ( $100 \times 4.6 \mathrm{~mm}$ I.D.; S-3 $\mu \mathrm{m}$; chiral selector amylose tris(3,5-dimethylphenylcarbamate); YMC); mobile phase: ACN $/(\mathrm{H} 2 \mathrm{O}+0.1 \% \mathrm{HCOOH}$ $(30: 70 \rightarrow 70: 30$ in 10 min$)$; $\mathrm{T}=36^{\circ} \mathrm{C}$; flow rate $1.0 \mathrm{~mL} / \mathrm{min}$.





Scheme 4. Reagents and conditions: (i) $2 \mathrm{~N} \mathrm{NaOH}, \mathrm{MeOH}$, reflux, 5 h ; (ii) aniline, EDC•HCl, DMAP, DCM, $0^{\circ} \mathrm{C}$ to r.t., 48 h .

## 3. Materials and Methods

### 3.1. General Information

All starting materials were purchased from commercial suppliers and were used as received. Flash column chromatography was performed on Silica Gel $60 \AA(230-400 \mu \mathrm{~m}$, Merck KGaA, Darmstadt, Germany). Thin-layer chromatography was carried out on Silica Gel plates (Merck Kieselgel $60 \mathrm{~F}_{254}$ ) and visualized by UV light ( 254 nm ). Melting points were determined on a Büchi M-565 melting point apparatus and were uncorrected. The IR spectra were recorded on a Bruker Vertex 70v FT-IR spectrometer (Bruker Optik GmbH, Ettlingen, Germany) using neat samples and are reported in the frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. Mass spectra were obtained on a Shimadzu LCMS-2020 (ESI ${ }^{+}$) spectrometer (Shimadzu Corporation, Kyoto, Japan). High-resolution mass spectra were measured on Bruker MicrOTOF-Q III (ESI ${ }^{+}$) apparatus (Bruker Daltonik GmbH, Bremen, Germany). Optical rotation data were recorded on a UniPol L SCHMIDT+HAENSCH polarimeter (concentration of compound ( $\mathrm{g} / 100 \mathrm{~mL}$ ) was included in calculations automatically (Windaus-Labortechnik GmbH \& Co. KG, Clausthal-Zellerfeld, Germany). HPLC analysis was carried out on Shimadzu LC-2030C apparatus with CHIRAL ART Amylose-SA ( $100 \times 4.6 \mathrm{~mm}$ I.D.; S-3 $\mu \mathrm{m}$; chiral selector amylose tris(3,5-dimethylphenylcarbamate); YMC, Shimadzu USA Manufacturing, Inc., Canby, OR, USA). The ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}$-, and ${ }^{15} \mathrm{~N}-\mathrm{NMR}$ spectra were recorded in $\mathrm{CDCl}_{3}$ solutions at $25^{\circ} \mathrm{C}$ on a Bruker Avance III $700(700 \mathrm{MHz}$ for ${ }^{1} \mathrm{H}, 176 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}, 71 \mathrm{MHz}$ for ${ }^{15} \mathrm{~N}$, Bruker BioSpin AG, Fallanden, Switzerland) spectrometer equipped with a $5 \mathrm{~mm} \mathrm{TCI}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C} /{ }^{15} \mathrm{~N} / \mathrm{D}$-gradient cryoprobe, and a Bruker Avance III $400\left(400 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}, 101 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}, 40 \mathrm{MHz}$ for ${ }^{15} \mathrm{~N}$, (Bruker BioSpin AG )
spectrometer using a 5 mm directly detecting BBO probe. The chemical shifts ( $\delta$ ) expressed in ppm, were relative to tetramethylsilane (TMS). The ${ }^{15} \mathrm{~N}-\mathrm{NMR}$ spectra were referenced to neat, external nitromethane (coaxial capillary). Full and unambiguous assignment of the ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}$ - and ${ }^{15} \mathrm{~N}-\mathrm{NMR}$ resonances was achieved using a combination of standard NMR spectroscopic techniques [62] such as DEPT, COSY, gs-HSQC, gs-HMBC, NOESY and 1,1-ADEQUATE experiments [63]. ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}-$, and ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC NMR spectra, and HRMS data of all new compounds are provided in Supplementary Materials as Figures S1-S99.

### 3.2. Synthesis of tert-Butyl 3- and

## 4-[(2)-3-(Dimethylamino)-2-(methoxycarbonyl)prop-2-enoyl]piperidine-1-carboxylates (3a-c)

To a solution of the corresponding 1-(tert-butoxycarbonyl)piperidinecarboxylic acid $(1 \mathbf{a}-\mathrm{c})(4 \mathrm{~g}, 17.4 \mathrm{mmol})$ in DCM $(24 \mathrm{~mL})$ cooled to $0^{\circ} \mathrm{C}$ temperature Meldrum's acid $(2.77 \mathrm{~g}, 19.2 \mathrm{mmol})$ was added followed by DMAP ( $4.26 \mathrm{~g}, 34.9 \mathrm{mmol})$. Then EDC•HCl $(3.68 \mathrm{~g}, 19.2 \mathrm{mmol})$ was added in portions over 10 min . The reaction mixture was gradually warmed to r.t. and stirred for 16 h . The reaction solution was diluted with DCM ( 10 mL ), washed with $1 \mathrm{M} \mathrm{KHSO}_{4}(2 \times 15 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. The organic layer was dried with anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. Then the residue was dissolved in $\mathrm{MeOH}(20 \mathrm{~mL})$ and left under reflux for 5 h . The solvent was evaporated in vacuo. A solution of crude $\beta$-keto ester ( $2 \mathbf{a}-\mathbf{c}$ ) ( $4.7 \mathrm{~g}, 16.4 \mathrm{mmol}$ ) and $N, N-$ dimethylformamide dimethyl acetal ( $4.4 \mathrm{~mL}, 32.8 \mathrm{mmol}$ ) in dioxane $(24 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$. After 5 h the solvent was removed under reduced pressure. Crude compounds $\mathbf{3 a - c}$ were carried forward without any further purification.

### 3.3. Synthesis Procedure for the Preparation of Compounds 4a, 5a, and 6a

Method I. Compound 3a ( 500 mg , 1.5 mmol ) was dissolved in EtOH ( 15 mL ) and treated with phenylhydrazine ( $160 \mathrm{mg}, 1.5 \mathrm{mmol}$ ). The reaction mixture was stirred at r.t. for 18 h . After removal of the solvent in vacuo, the residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: acetone $/ n$-hexane, $\left.1: 7, v / v\right)$ to provide compound 5 a ( $441 \mathrm{mg}, 78 \%$ ).

Method II. The reaction of compound $3 \mathbf{a}$ ( $500 \mathrm{mg}, 1.5 \mathrm{mmol}$ ) with phenylhydrazine $(160 \mathrm{mg}, 1.5 \mathrm{mmol})$ in ACN $(15 \mathrm{~mL})$, was carried out and purified as described in Method I and afforded compounds $\mathbf{5 a}(424 \mathrm{mg}, 75 \%)$ and $\mathbf{6 a}(17 \mathrm{mg}, 3 \%)$.

Method III. The reaction of compound 3a ( $500 \mathrm{mg}, 1.5 \mathrm{mmol}$ ) with phenylhydrazine ( $160 \mathrm{mg}, 1.5 \mathrm{mmol}$ ) in $\mathrm{CCl}_{4}(15 \mathrm{~mL})$ was carried out as described in Method I, and the resulted residue was purified by gradient flash chromatography on silica gel (acetone/ $n$ hexane, $1: 15 \rightarrow 1: 7, v / v$ ) to yield compounds 4 a ( $79 \mathrm{mg}, 14 \%$ ), 5 a ( $305 \mathrm{mg}, 54 \%$ ) and $\mathbf{6 a}$ (51 mg, 9\%).
3.3.1. tert-Butyl 4-[(2E(Z))-2-(methoxycarbonyl)-3-(2-phenylhydrazinyl)prop-2-enoyl]piperidine-1-carboxylate (4a)

Yellowish oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.53-1.60(\mathrm{~m}, 2 \mathrm{H}$, $\operatorname{Pip} 3,5-\mathrm{H}), 1.75-1.83(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 3,5-\mathrm{H}), 2.76-2.87(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 2,6-\mathrm{H}), 3.70(\mathrm{tt}, J=11.7 \mathrm{~Hz}$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Pip} 4-\mathrm{H}), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.06-4.26(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 2,6-\mathrm{H}), 6.24\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}_{\mathrm{a}} \mathrm{H}\right)$, $6.81\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ph} 2^{\prime}, 6^{\prime}-\mathrm{H}\right), 6.99\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ph} 4^{\prime}-\mathrm{H}\right), 7.28(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, Ph $\left.3^{\prime}, 5^{\prime}-\mathrm{H}\right), 8.28(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, 3 E(\mathrm{Z})-\mathrm{H}), 11.76\left(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}_{\mathrm{b}} \mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ( $176 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 28.5\left(2 \times \mathrm{CH}_{2}\right.$, Pip 3,5-C and $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 43.8\left(2 \times \mathrm{CH}_{2}\right.$, Pip 2,6-C), 45.5 (Pip 4-C), $51.1\left(\mathrm{OCH}_{3}\right), 79.3\left(\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 99.2(2 E(\mathrm{Z})-\mathrm{C}), 113.6\left(2 \times \mathrm{CH}, \mathrm{Ph} 2^{\prime}, 6^{\prime}-\mathrm{C}\right), 122.4$ (Ph $\left.4^{\prime}-\mathrm{C}\right), 129.5\left(2 \times \mathrm{CH}, \mathrm{Ph} 3^{\prime}, 5^{\prime}-\mathrm{C}\right), 146.3\left(\mathrm{Ph} 1^{\prime}-\mathrm{C}\right), 154.8\left(\mathrm{COOC}^{2}\left(\mathrm{CH}_{3}\right)_{3}\right), 162.4(3 E(\mathrm{Z})-\mathrm{C})$, $166.6\left(\mathrm{COOCH}_{3}\right), 203.5(\mathrm{C}=\mathrm{O}) .{ }^{15} \mathrm{~N}-\mathrm{NMR}\left(71 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-275.1\left(\mathrm{~N}_{\mathrm{b}} \mathrm{H}\right),-241.2\left(\mathrm{~N}_{\mathrm{a}} \mathrm{H}\right)$. IR (FT-IR, $v_{\max }, \mathrm{cm}^{-1}$ ): 3438(N-H), 2928, 1717 (C=O), 1690 (C=O), 1242, 767. MS m/z (\%): $402\left([\mathrm{M}-\mathrm{H}]^{-}, 95 \%\right)$. HRMS $\left(\mathrm{ESI}^{+}\right)$for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{NaO}_{5}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calcd 426.1999, found 426.2001 .

### 3.3.2. tert-Butyl

4-[4-(methoxycarbonyl)-1-phenyl-1H-pyrazol-5-yl]piperidine-1-carboxylate (5a)
Yellowish crystals, mp $151-153{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 1.53-1.61 (m, 2H, Pip 3,5-H), 2.28 (qd, $J=12.7 \mathrm{~Hz}, 4.5 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Pip} 3,5-\mathrm{H}), 2.49-2.69(\mathrm{~m}$, $2 \mathrm{H}, \operatorname{Pip} 2,6-\mathrm{H}), 3.10(\mathrm{tt}, J=12.4 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Pip} 4-\mathrm{H}), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.02-4.27(\mathrm{~m}$, 2H, Pip 2,6-H), 7.31-7.37 (m, 2H, Ph 2,6-H), 7.47-7.54 (m, 3H, Ph 3,4,5-H), 8.03 (s, 1H, Pyr 3-H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 28.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.6\left(2 \times \mathrm{CH}_{2}, \mathrm{Pip} 3,5-\mathrm{C}\right), 35.1$ (Pip $4-\mathrm{C}), 44.1\left(2 \times \mathrm{CH}_{2}\right.$, Pip 2,6-C), $51.2\left(\mathrm{OCH}_{3}\right), 79.4\left(\mathrm{C}_{( }\left(\mathrm{CH}_{3}\right)_{3}\right), 111.7(\mathrm{Pyr} 4-\mathrm{C}), 126.6(2 \times \mathrm{CH}$, Ph 2,6-C), 129.3 ( $2 \times \mathrm{CH}, \mathrm{Ph} 3,5-\mathrm{C}$ ), 129.4 (Ph 4-C), 139.2 (Ph 1-C), 142.8 (Pyr 3-C), 149.8 (Pyr 5-C), $154.7\left(\underline{\mathrm{COOC}}\left(\mathrm{CH}_{3}\right)_{3}\right), 163.5\left(\mathrm{COOCH}_{3}\right) .{ }^{15} \mathrm{~N}-\mathrm{NMR}\left(71 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-294.5$ (N-Boc), -160.3 (Pyr N-1), -76.0 (Pyr N-2). IR (FT-IR, $v_{\max }, \mathrm{cm}^{-1}$ ): 2979, 1712 (C=O), 1674 (C=O), 1255, 765. MS m/z (\%): $386\left([\mathrm{M}+\mathrm{H}]^{+}, 99 \%\right)$. HRMS ( $\mathrm{ESI}^{+}$) for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{NaO}_{4}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calcd 408.1894, found 408.1894 .

### 3.3.3. tert-Butyl

4-[4-(methoxycarbonyl)-1-phenyl-1H-pyrazol-3-yl]piperidine-1-carboxylate (6a)
Brownish crystals, mp $134-136^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 1.83 (qd, $J=12.2 \mathrm{~Hz}, 4.2 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Pip} 3,5-\mathrm{H}), 1.93-2.01$ (m, 2H, Pip 3,5-H), 2.83-2.97 (m, 2H, $\operatorname{Pip} 2,6-\mathrm{H}), 3.43(\mathrm{tt}, J=11.6 \mathrm{~Hz}, 3.7 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Pip} 4-\mathrm{H}), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.12-4.29(\mathrm{~m}, 2 \mathrm{H}$, Pip 2,6-H), 7.30-7.35 (m, 1H, Ph 4-H), 7.43-7.49 (m, 2H, Ph 3,5-H), 7.65-7.70 (m, 2H, Ph 2,6 $-\mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Pyr} 5-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 28.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.0\left(2 \times \mathrm{CH}_{2}\right.$, Pip 3,5-C), $35.0(\operatorname{Pip} 4-\mathrm{C}), 44.0\left(2 \times \mathrm{CH}_{2}\right.$, Pip 2,6-C), $51.4\left(\mathrm{OCH}_{3}\right), 79.4\left(\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 112.8(\mathrm{Pyr}$ $4-\mathrm{C}), 119.5$ ( $2 \times \mathrm{CH}, \mathrm{Ph} 2,6-\mathrm{C}$ ), 127.3 (Ph 4-C), 129.7 ( $2 \times \mathrm{CH}, \mathrm{Ph} 3,5-\mathrm{C}$ ), 131.2 (Pyr 5-C), 139.3 (Ph 1-C), $155.0\left(\mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}\right), 159.0(\mathrm{Pyr} 3-\mathrm{C}), 163.8\left(\mathrm{COOCH}_{3}\right) .{ }^{15} \mathrm{~N}-\mathrm{NMR}(71 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $\delta-292.6$ ( $\mathrm{N}-\mathrm{Boc}$ ), -165.7 ( $\mathrm{Pyr} \mathrm{N}-1$ ), -81.5 ( $\mathrm{Pyr} \mathrm{N}-2$ ). IR (FT-IR, $\nu_{\max }, \mathrm{cm}^{-1}$ ): 2949, 1708 (C=O), $1692(\mathrm{C}=\mathrm{O}), 1537,753 . \mathrm{MS} \mathrm{m/z}(\%): 386$ ([M + H] ${ }^{+}, 95 \%$ ). HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{NaO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calcd 408.1894 , found 408.1894 .

### 3.4. Synthesis of tert-Butyl 4-[4-(methoxycarbonyl)-1H-pyrazol-5-yl]piperidine-1-carboxylates ( $\mathbf{5 b} \mathbf{b} \mathbf{0}$ )

Compounds 5b-o were obtained from $\beta$-enamino diketones $\mathbf{3 a - c}(500 \mathrm{mg}, 1.5 \mathrm{mmol})$ and appropriate hydrazines ( 1.5 mmol ) in $\mathrm{EtOH}(15 \mathrm{~mL})$ by the procedure which was used for the preparation of compound $\mathbf{5 a}$ (Method I).

### 3.4.1. tert-Butyl

4-[4-(methoxycarbonyl)-1-(4-methylphenyl)-1H-pyrazol-5-yl]piperidine-1-carboxylate (5b)
Compound 3a was coupled with p-tolylhydrazine hydrochloride. The obtained residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: acetone/ $n$-hexane, 1:7, $v / v$ ) to provide compound $\mathbf{5 b}$ as yellowish crystals. Yield $411 \mathrm{mg}(70 \%), \mathrm{mp} 133-135^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.49-1.61(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 3,5-\mathrm{H}), 2.23$ (qd, $J=12.6 \mathrm{~Hz}, 4.3 \mathrm{~Hz}, 2 \mathrm{H}$, Pip 3,5-H), $2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.49-2.72(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 2,6-\mathrm{H})$, $3.10(\mathrm{tt}, J=12.4 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Pip} 4-\mathrm{H}), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.00-4.29(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 2,6-\mathrm{H})$, 7.17-7.23 (m, 2H, Ph 2,6-H), 7.27-7.32 (m, 2H, Ph 3,5-H), 8.00 (s, 1H, Pyr 3-H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 21.4\left(\mathrm{CH}_{3}\right), 28.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.9\left(2 \times \mathrm{CH}_{2}, \operatorname{Pip} 3,5-\mathrm{C}\right), 35.3$ (Pip 4-C), $44.4\left(2 \times \mathrm{CH}_{2}\right.$, Pip 2,6-C), $51.4\left(\mathrm{OCH}_{3}\right), 79.6\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 111.8(\operatorname{Pyr} 4-\mathrm{C}), 126.5(2 \times \mathrm{CH}$, Ph 2,6-C), 130.0 ( $2 \times \mathrm{CH}, \mathrm{Ph} 3,5-\mathrm{C}$ ), 137.0 (Ph 1-C), 139.7 (Ph 4-C), 142.9 (Pyr 3-C), 150.1 (Pyr 5-C), $155.0\left(\underline{\mathrm{COOC}}\left(\mathrm{CH}_{3}\right)_{3}\right), 163.8\left(\mathrm{COOCH}_{3}\right) .{ }^{15} \mathrm{~N}-\mathrm{NMR}\left(41 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-294.5$ (N-Boc), -160.6 (Pyr N-1), -75.8 (Pyr N-2). IR (FT-IR, $v_{\max }, \mathrm{cm}^{-1}$ ): 2980, 1703 (C=O), 1688 (C=O), 1255, 779. MS m/z (\%): $400\left([\mathrm{M}+\mathrm{H}]^{+}, 99 \%\right)$. HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{NaO}_{4}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calcd 422.2050, found 422.2051.

### 3.4.2. tert-Butyl

4-[4-(methoxycarbonyl)-1-(3-methylphenyl)-1H-pyrazol-5-yl]piperidine-1-carboxylate (5c)
Compound 3a was coupled with $m$-tolylhydrazine hydrochloride. The obtained residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: acetone/ $n$-hexane, 1:9, $v / v)$ to provide compound 5 c as white crystals. Yield $310 \mathrm{mg}(53 \%), \mathrm{mp} 123-124{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-$

NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.51-1.60(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 3,5-\mathrm{H}), 2.26(\mathrm{qd}$, $J=12.7 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Pip} 3,5-\mathrm{H}), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.50-2.71(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 2,6-\mathrm{H}), 3.08(\mathrm{tt}$, $J=12.4 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Pip} 4-\mathrm{H}), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.04-4.26(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 2,6-\mathrm{H}), 7.10$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ph} 6-\mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph} 2-\mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} 4-\mathrm{H}), 7.37(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ph} 5-\mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Pyr} 3-\mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.4\left(\mathrm{CH}_{3}\right), 28.6$ $\left(\mathrm{C}_{( }\left(\mathrm{CH}_{3}\right)_{3}\right), 28.8\left(2 \times \mathrm{CH}_{2}, \operatorname{Pip} 3,5-\mathrm{C}\right), 35.3(\operatorname{Pip} 4-\mathrm{C}), 44.3\left(2 \times \mathrm{CH}_{2}, \operatorname{Pip} 2,6-\mathrm{C}\right), 51.4\left(\mathrm{OCH}_{3}\right)$, $79.6\left(\mathrm{C}_{( }\left(\mathrm{CH}_{3}\right)_{3}\right), 111.8$ (Pyr 4-C), 123.6 (Ph 6-C), 127.4 (Ph 2-C), 129.1 (Ph 5-C), 130.3 (Ph 4-C), 139.4 (Ph 1-C), 139.8 (Ph 3-C), 142.9 (Pyr 3-C), 150.0 ( $\mathrm{Pyr} 5-\mathrm{C}$ ), $155.0\left(\mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}\right), 163.8$ $\left(\mathrm{COOCH}_{3}\right) .{ }^{15} \mathrm{~N}-\mathrm{NMR}\left(41 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-159.9(\operatorname{Pyr~N}-1),-76.2(\mathrm{Pyr} \mathrm{N}-2)$. IR (FT-IR, $v_{\text {max }}, \mathrm{cm}^{-1}$ ): 2979, 1703 (C=O), 1688 (C=O), 1243, 779. MS m/z (\%): 400 ([M + H] $\left.{ }^{+}, 100 \%\right)$. HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{NaO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calcd 422.2050, found 422.2050.

### 3.4.3. tert-Butyl

4-[1-(3-fluorophenyl)-4-(methoxycarbonyl)-1 H -pyrazol-5-yl]piperidine-1-carboxylate (5d)
Compound 3a was coupled with (3-fluorophenyl)hydrazine hydrochloride. The obtained residue was purified by column chromatography ( $\mathrm{SiO}_{2}$, eluent: acetone $/ n$-hexane, $1: 8, v / v)$ to provide compound 5d as yellowish crystals. Yield $433 \mathrm{mg}(73 \%), \mathrm{mp} 134-136^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.51-1.64(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 3,5-\mathrm{H}), 2.27$ (qd, $J=12.7 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Pip} 3,5-\mathrm{H}), 2.49-2.72(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 2,6-\mathrm{H}), 3.08(\mathrm{tt}, J=12.3 \mathrm{~Hz}$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Pip} 4-\mathrm{H}), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.96-4.32(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 2,6-\mathrm{H}), 7.05-7.17$ (m, 2H, Ph 2,6-H), 7.19-7.25 (m, 1H, Ph 4-H), 7.43-7.53 (m, 1H, Ph 5-H), 8.02 (s, 1H, Pyr 3-H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 28.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.8\left(2 \times \mathrm{CH}_{2}\right.$, Pip 3,5-C), 35.3 (Pip 4-C), $44.3\left(2 \times \mathrm{CH}_{2}, \operatorname{Pip} 2,6-\mathrm{C}\right), 51.5\left(\mathrm{OCH}_{3}\right), 79.7\left(\underline{( }\left(\mathrm{CH}_{3}\right)_{3}\right), 112.3(\mathrm{Pyr} 4-\mathrm{C}), 114.6(\mathrm{~d}, \mathrm{~J}=23.8 \mathrm{~Hz}$, Ph 2-C), 116.8 ( $\mathrm{d}, J=20.9 \mathrm{~Hz}, \mathrm{Ph} 4-\mathrm{C}), 122.5$ (d, $J=3.3 \mathrm{~Hz}, \mathrm{Ph} 6-\mathrm{C}), 130.7$ (d, $J=9.0 \mathrm{~Hz}, \mathrm{Ph}$ $5-\mathrm{C}), 140.7$ ( $\mathrm{d}, \mathrm{J}=9.7 \mathrm{~Hz}, \mathrm{Ph} 1-\mathrm{C}$ ), 143.3 ( $\mathrm{Pyr} 3-\mathrm{C}$ ), 150.1 (Pyr $5-\mathrm{C}), 154.9\left(\mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 162.8 (d, $J=249.7 \mathrm{~Hz}$, Ph 3-C), $163.5\left(\mathrm{COOCH}_{3}\right) .{ }^{15} \mathrm{~N}-\mathrm{NMR}\left(41 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-161.2$ (Pyr N-1), -74.5 ( $\mathrm{Pyr} \mathrm{N}-2$ ). IR (FT-IR, $v_{\text {max }}, \mathrm{cm}^{-1}$ ): 2980, 1711 (C=O), 1674 (C=O), 1243, 867. MS $m / z(\%): 404\left([M+H]^{+}, 99 \%\right)$. HRMS ( $\mathrm{ESI}^{+}$) for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{FN}_{3} \mathrm{NaO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calcd 426.1800, found 426.1799.

### 3.4.4. tert-Butyl

4-[1-(2-fluorophenyl)-4-(methoxycarbonyl)-1H-pyrazol-5-yl]piperidine-1-carboxylate (5e)
Compound 3a was coupled with (2-fluorophenyl)hydrazine hydrochloride. The obtained residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: acetone $/ n$-hexane, $1: 8, v / v)$ to provide compound 5 e as yellowish crystals. Yield $367 \mathrm{mg}(62 \%), \mathrm{mp} 114-116^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.48-1.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Pip} 3-\mathrm{H}), 1.60-1.76$ (m, 1H, Pip 5-H), 2.03-2.30 (m, 2H, Pip 3,5-H), 2.44-2.71 (m, 2H, Pip 2,6-H), 2.88-3.05 (m, 1H, Pip 4-H), 3.83 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$ ), 3.95-4.29 (m, 2H, Pip 2,6-H), 7.22-7.32 (m, 2H, Ph 3,6-H), 7.34-7.42 (m, 1H, Ph 5-H), 7.47-7.55 (m, 1H, Ph 4-H), 8.06 (s, 1H, Pyr 3-H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 28.6\left(\mathrm{C}_{( }\left(\mathrm{CH}_{3}\right)_{3}\right.$ and $2 \times \mathrm{CH}_{2}$, Pip 3,5-C), 35.6 (Pip 4-C), $44.1\left(2 \times \mathrm{CH}_{2}\right.$, Pip 2,6-C), $51.4\left(\mathrm{OCH}_{3}\right), 79.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 111.8($ Pyr $4-\mathrm{C}), 116.9(\mathrm{~d}, \mathrm{~J}=19.6 \mathrm{~Hz}, \mathrm{Ph} 3-\mathrm{C}), 125.0$ ( $\mathrm{d}, J=4.0 \mathrm{~Hz}, \mathrm{Ph} 6-\mathrm{C}$ ), 127.4 ( $\mathrm{d}, ~ J=12.6 \mathrm{~Hz}$, Ph 1-C), 129.7 ( $\mathrm{Ph} 5-\mathrm{C}$ ), 131.8 ( $\mathrm{d}, J=7.7 \mathrm{~Hz}$, Ph 4-C), 143.7 (Pyr 3-C), 151.4 (Pyr 5-C), $154.9\left(\mathrm{COOC}_{( }\left(\mathrm{CH}_{3}\right)_{3}\right), 157.5(\mathrm{~d}, J=252.5 \mathrm{~Hz}, \mathrm{Ph}$ 2-C), $163.6\left(\mathrm{COOCH}_{3}\right) .{ }^{15} \mathrm{~N}-\mathrm{NMR}\left(41 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-292.8(\mathrm{~N}-\mathrm{Boc}),-172.7$ (Pyr N-1), -73.8 (Pyr N-2). IR (FT-IR, $v_{\text {max }}, \mathrm{cm}^{-1}$ ): 2980, 1716 (C=O), 1682 (C=O), 1275, 770. MS $m / z$ (\%): $404\left([\mathrm{M}+\mathrm{H}]^{+}, 96 \%\right)$. HRMS ( $\mathrm{ESI}^{+}$) for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{FN}_{3} \mathrm{NaO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calcd 426.1800, found 426.1800 .

### 3.4.5. tert-Butyl

4-[4-(methoxycarbonyl)-1-(4-methoxyphenyl)-1H-pyrazol-5-yl]piperidine-1-carboxylate (5f)
Compound 3a was coupled with (4-methoxyphenyl)hydrazine hydrochloride. The obtained residue was purified by column chromatography ( $\mathrm{SiO}_{2}$, eluent: acetone $/ n$-hexane, $1: 8, v / v)$ to provide compound $5 f$ as orange crystals. Yield $366 \mathrm{mg}(60 \%), \mathrm{mp} 151-153^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 1.48-1.59 (m, 2H, Pip 3,5-H), 2.20 (qd, $J=12.7 \mathrm{~Hz}, 5.1 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Pip} 3,5-\mathrm{H}), 2.49-2.73(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 2,6-\mathrm{H}), 3.09(\mathrm{tt}, J=12.4 \mathrm{~Hz}$,
$3.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Pip} 4-\mathrm{H}), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.99-4.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Pip}$ $2,6-\mathrm{H}), 6.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph} 3,5-\mathrm{H}), 7.23(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph} 2,6-\mathrm{H}), 7.99$ (s, 1H, Pyr 3-H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 28.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.9\left(2 \times \mathrm{CH}_{2}\right.$, Pip 3,5-C), 35.3 (Pip $4-\mathrm{C}), 44.2\left(2 \times \mathrm{CH}_{2}\right.$, Pip 2,6-C), $51.4\left(\mathrm{COOCH}_{3}\right), 55.7\left(\mathrm{OCH}_{3}\right), 79.6\left(\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 111.6(\mathrm{Pyr}$ $4-\mathrm{C}), 114.5(2 \times \mathrm{CH}, \mathrm{Ph} 3,5-\mathrm{C}), 128.0(2 \times \mathrm{CH}, \mathrm{Ph} 2,6-\mathrm{C}), 132.4$ (Ph 1-C), 142.7 (Pyr 3-C), 150.2 (Pyr 5-C), $154.9\left(\mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}\right), 160.3(\mathrm{Ph} 4-\mathrm{C}), 163.8\left(\mathrm{COOCH}_{3}\right) .{ }^{15} \mathrm{~N}-\mathrm{NMR}(41 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $\delta-161.4$ (Pyr N-1), -75.4 (Pyr N-2). IR (FT-IR, $v_{\max }, \mathrm{cm}^{-1}$ ): 2981, 1715 (C=O), $1682(\mathrm{C}=\mathrm{O}), 1245,780 . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 416\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right)$. HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{NaO}_{5}$ ([M+Na] ${ }^{+}$) calcd 438.1999, found 438.2000.

### 3.4.6. tert-Butyl

4-[4-(methoxycarbonyl)-1-(3-methoxyphenyl)-1H-pyrazol-5-yl]piperidine-1-carboxylate (5g)
Compound 3a was coupled with (3-methoxyphenyl)hydrazine hydrochloride. The obtained residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: acetone $n$-hexane, $1: 9, v / v)$ to provide compound 5 g as yellowish crystals. Yield $330 \mathrm{mg}(54 \%), \mathrm{mp} 69-71^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.50-1.61(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 3,5-\mathrm{H}), 2.27(\mathrm{qd}$, $J=12.7 \mathrm{~Hz}, 4.3 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Pip} 3,5-\mathrm{H}), 2.51-2.71(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 2,6-\mathrm{H}), 3.11(\mathrm{tt}, J=12.4 \mathrm{~Hz}, 3.7 \mathrm{~Hz}$, $1 \mathrm{H}, \operatorname{Pip} 4-\mathrm{H}), 3.83\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right.$ and $\left.\mathrm{COOCH}_{3}\right), 3.99-4.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Pip} 2,6-\mathrm{H}), 6.85-6.93(\mathrm{~m}$, 2H, Ph 2,4-H), 7.00-7.06 (m, 1H, Ph 6-H), 7.35-7.43 (m, 1H, Ph 5-H), 8.01 (s, 1H, Pyr 3-H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 28.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.8\left(2 \times \mathrm{CH}_{2}, \operatorname{Pip} 3,5-\mathrm{C}\right), 35.3(\operatorname{Pip} 4-\mathrm{C})$, $44.3\left(2 \times \mathrm{CH}_{2}\right.$, Pip 2,6-C), $51.4\left(\mathrm{COOCH}_{3}\right), 55.7\left(\mathrm{OCH}_{3}\right), 79.6\left(\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 112.0($ Pyr $4-\mathrm{C})$, 112.5 (Ph 2-C), 115.5 (Ph 4-C), 118.8 (Ph 6-C), 130.1 (Ph 5-C), 140.4 (Ph 1-C), 143.0 (Pyr 3-C), 150.0 (Pyr 5-C), $155.0\left(\underline{\mathrm{COOC}}\left(\mathrm{CH}_{3}\right)_{3}\right), 160.4(\mathrm{Ph} 3-\mathrm{C}), 163.7\left(\mathrm{COOCH}_{3}\right)$. IR (FT-IR, $v_{\max }$, $\left.\mathrm{cm}^{-1}\right): 2979,1702(\mathrm{C}=\mathrm{O}), 1686(\mathrm{C}=\mathrm{O}), 1109,778 . \mathrm{MS} \mathrm{m} / z(\%): 400\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right)$. HRMS ( $\mathrm{ESI}^{+}$) for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{NaO}_{5}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calcd 438.1999, found 438.2000.
3.4.7. tert-Butyl 4-\{4-(methoxycarbonyl)-1-[3-(trifluoromethyl)phenyl]-1H-pyrazol-5-yl\}piperidine-1-carboxylate (5h)

Compound 3a was coupled with [3-(trifluoromethyl)phenyl]hydrazine hydrochloride. The obtained residue was purified by column chromatography ( $\mathrm{SiO}_{2}$, eluent: acetone $/ n$ hexane, $1: 5, v / v)$ to provide compound 5 h as yellowish crystals. Yield $506 \mathrm{mg}(76 \%), \mathrm{mp}$ $113-115{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.55-1.62(\mathrm{~m}, 2 \mathrm{H}$, Pip 3,5-H), 2.24-2.37 (m, 2H, Pip 3,5-H), 2.50-2.70 (m, 2H, Pip 2,6-H), 3.05 (tt, $J=12.3 \mathrm{~Hz}$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Pip} 4-\mathrm{H}), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.06-4.29(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 2,6-\mathrm{H}), 7.54-7.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}$ $6-\mathrm{H}), 7.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{Ph} 2-\mathrm{H}), 7.68(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} 5-\mathrm{H}), 7.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{Ph} 4-\mathrm{H}), 8.06$ (s, 1H, Pyr 3-H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 28.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.8\left(2 \times \mathrm{CH}_{2}\right.$, Pip 3,5-C), 35.4 (Pip 4-C), $44.1\left(2 \times \mathrm{CH}_{2}\right.$, Pip 2,6-C), $51.4\left(\mathrm{OCH}_{3}\right), 79.6\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 112.5(\operatorname{Pyr} 4-\mathrm{C}), 123.3$ ( $\mathrm{q}, J=271.5 \mathrm{~Hz}, \mathrm{CF}_{3}$ ), $123.7(\mathrm{q}, J=3.7 \mathrm{~Hz}, \operatorname{Ph} 2-\mathrm{C}), 126.2(\mathrm{q}, ~ J=3.7 \mathrm{~Hz}, \mathrm{Ph} 4-\mathrm{C}), 129.7(\mathrm{Ph}$ 5-C), 130.1 ( $\mathrm{Ph} 6-\mathrm{C}$ ), 132.1 ( $\mathrm{q}, J=33.3 \mathrm{~Hz}, \mathrm{Ph} 3-\mathrm{C}$ ), 139.8 ( $\mathrm{Ph} 1-\mathrm{C}$ ), 143.5 (Pyr 3-C), 150.1 (Pyr 5-C), $154.8\left(\underline{\mathrm{COOC}}\left(\mathrm{CH}_{3}\right)_{3}\right), 163.3\left(\mathrm{COOCH}_{3}\right) .{ }^{15} \mathrm{~N}-\mathrm{NMR}\left(71 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-294.7$ (N-Boc), -163.3 (Pyr N-1), -76.0 (Pyr N-2). IR (FT-IR, $v_{\max }, \mathrm{cm}^{-1}$ ): 2980, 1714 (C=O), 1686 (C=O), 1169, 1062. MS $m / z(\%): 354\left([M-B o c+H]^{+}\right), 454\left([M+H]^{+}\right), 99 \%$. HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{NaO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calcd 476.1768 , found 476.1768 .

### 3.4.8. tert-Butyl

4-[4-(methoxycarbonyl)-1-methyl-1H-pyrazol-5-yl]piperidine-1-carboxylate (5i)
Compound 3a was coupled with methylhydrazine. The obtained residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: acetone/ $n$-hexane, $\left.1: 3, v / v\right)$ to provide compound 5 i as white crystals. Yield $242 \mathrm{mg}(51 \%), \mathrm{mp} 147-149{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.48\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.59-1.70(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 3,5-\mathrm{H}), 2.15(\mathrm{qd}, J=12.7 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pip}$ 3,5-H), 2.68-2.89 (m, 2H, Pip 2,6-H), 3.53 (tt, $J=12.6 \mathrm{~Hz}, 3.7 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Pip} 4-\mathrm{H}), 3.79$ (s, 3H, $\left.\mathrm{OCH}_{3}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.10-4.44(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 2,6-\mathrm{H}), 7.81\left(\mathrm{~s}, 1 \mathrm{H}\right.$, Pyr 3-H). ${ }^{13} \mathrm{C}$ NMR (101
 $\left(2 \times \mathrm{CH}_{2}\right.$, Pip 2,6-C), $51.2\left(\mathrm{OCH}_{3}\right), 79.8\left(\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 111.3(\mathrm{Pyr} 4-\mathrm{C}), 141.5(\mathrm{Pyr} 3-\mathrm{C}), 148.8$ (Pyr 5-C), $154.9\left(\underline{\mathrm{COOC}}\left(\mathrm{CH}_{3}\right)_{3}\right), 164.0\left(\mathrm{COOCH}_{3}\right) .{ }^{15} \mathrm{~N}$ NMR $\left(41 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-293.2$
(N-Boc), -176.9 (Pyr N-1), -75.1 (Pyr N-2). IR (FT-IR, $v_{\max }, \mathrm{cm}^{-1}$ ): 2980, 1705 (C=O), 1688 (C=O), 1234, 779. MS $m / z(\%): 324\left([M+H]^{+}, 100 \%\right)$. HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{NaO}_{4}$ ([M $+\mathrm{Na}]^{+}$) calcd 346.1737, found 346.1737.
3.4.9. tert-Butyl
(3R)-3-[4-(methoxycarbonyl)-1-phenyl-1H-pyrazol-5-yl]piperidine-1-carboxylate ( $\mathbf{5 j}$ )
Compound $\mathbf{3 b}$ was coupled with phenylhydrazine. The obtained residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: acetone/ $n$-hexane, $\left.1: 7, v / v\right)$ to provide compound $5 \mathbf{j}$ as as brownish oil. Yield $379 \mathrm{mg}(67 \%),[\alpha]_{\mathrm{D}}{ }^{20}=6.4(c 1.12, \mathrm{MeOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.40\left(\mathrm{~s}, 10 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ and Pip $\left.5-\mathrm{H}\right), 1.63-1.78(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 4,5-\mathrm{H}), 2.46$ (qd, $J=13.1 \mathrm{~Hz}, 4.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Pip} 4-\mathrm{H}), 2.74-2.87(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Pip} 6-\mathrm{H}), 2.88-3.01(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Pip}$ 3-H), 3.54-3.69 (m, 1H, Pip 2-H), $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.92-4.17$ (m, 2H, Pip 2,6-H), 7.36-7.42 (m, 2H, Ph 2,6-H), 7.48-7.54 (m, 3H, Ph 3,4,5-H), 8.05 (s, 1H, Pyr 3-H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( 101 MHz , $\mathrm{CDCl}_{3}$ ): $\delta 25.3$ (Pip 5-C), 27.4 (Pip 4-C), $28.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 36.0$ (Pip 3-C), 43.7 (Pip 6-C), 46.1 (Pip 2-C), $51.5\left(\mathrm{OCH}_{3}\right), 79.6\left(\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 112.3($ Pyr 4-C), $126.5(2 \times \mathrm{CH}, \mathrm{Ph} 2,6-\mathrm{C}), 129.4$ (Ph 4-C), 129.5 ( $2 \times \mathrm{CH}$, Ph 3,5-C), 139.0 (Ph 1-C), 143.3 (Pyr 3-C), 148.1 (Pyr 5-C), 154.8 $\left(\underline{\mathrm{COOC}}\left(\mathrm{CH}_{3}\right)_{3}\right), 163.9\left(\mathrm{COOCH}_{3}\right) .{ }^{15} \mathrm{~N}-\mathrm{NMR}\left(41 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-159.4(\operatorname{Pyr} \mathrm{~N}-1),-76.1$ (Pyr N-2). IR (FT-IR, $v_{\max }, \mathrm{cm}^{-1}$ ): 2975, 1716 (C=O), 1687 (C=O), 1261, 1099, 765. MS m/z (\%): $286\left([\mathrm{M}-\mathrm{Boc}+\mathrm{H}]^{+}\right), 386\left([\mathrm{M}+\mathrm{H}]^{+}\right), 95 \%$. HRMS $\left(\mathrm{ESI}^{+}\right)$for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{NaO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ calcd 408.1894, found 408.1893.

### 3.4.10. tert-Butyl

(3S)-3-[4-(methoxycarbonyl)-1-phenyl-1H-pyrazol-5-yl]piperidine-1-carboxylate (5k)
Compound 3 c was coupled with phenylhydrazine. The obtained residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: acetone $/ n$-hexane, $\left.1: 11, v / v\right)$ to provide compound $5 \mathbf{k}$ as brownish oil. Yield $436 \mathrm{mg}(77 \%),[\alpha]_{\mathrm{D}}{ }^{20}=-6.4(c 0.73, \mathrm{MeOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.40\left(\mathrm{~s}, 10 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ and Pip 5-H), 1.60-1.80 (m, 2H, Pip 4,5-H), 2.46 ( $\mathrm{q}, ~ J=13.3 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Pip} 4-\mathrm{H}), 2.80(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Pip} 6-\mathrm{H}), 2.94(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Pip} 3-\mathrm{H}), 3.48-3.79(\mathrm{~m}, 1 \mathrm{H}$, Pip 2-H), $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.91-4.30(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 2,6-\mathrm{H}), 7.32-7.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph} 2,6-\mathrm{H})$, $7.46-7.56$ (m, 3H, Ph 3,4,5-H), 8.05 (s, 1H, Pyr 3-H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 25.3$ (Pip 5-C), 27.4 (Pip 4-C), $28.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 36.0$ (Pip 3-C), 44.0 (Pip 6-C), 46.0 (Pip 2-C), 51.5 $\left(\mathrm{OCH}_{3}\right), 79.6\left(\underline{( }\left(\mathrm{CH}_{3}\right)_{3}\right), 112.3(\mathrm{Pyr} 4-\mathrm{C}), 126.5(2 \times \mathrm{CH}, \mathrm{Ph} 2,6-\mathrm{C}), 129.4$ (Ph 4-C), 129.5 $(2 \times \mathrm{CH}, \mathrm{Ph} 3,5-\mathrm{C}), 139.1$ (Ph 1-C), 143.3 (Pyr 3-C), 148.1 (Pyr 5-C), $154.7\left(\mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $163.9\left(\mathrm{COOCH}_{3}\right)$. IR (FT-IR, $\left.v_{\max }, \mathrm{cm}^{-1}\right): 2979,1717(\mathrm{C}=\mathrm{O}), 1684(\mathrm{C}=\mathrm{O}), 1408,1259,757$. MS $m / z(\%): 386\left([M+H]^{+}, 96 \%\right)$. HRMS $\left(\mathrm{ESI}^{+}\right)$for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{NaO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calcd 408.1894, found 408.1892 .

### 3.4.11. tert-Butyl

(3R)-3-[4-(methoxycarbonyl)-1-(4-methylphenyl)-1H-pyrazol-5-yl]piperidine-1-carboxylate (51)
Compound $\mathbf{3 b}$ was coupled with $p$-tolylhydrazine hydrochloride. The obtained residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: acetone/ $n$-hexane, $\left.1: 7, v / v\right)$ to provide compound 51 as brownish oil. Yield $458 \mathrm{mg}(78 \%),[\alpha]_{\mathrm{D}}{ }^{20}=4.1(c 0.62, \mathrm{MeOH})$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.40\left(\mathrm{~s}, 10 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ and Pip 5-H), 1.61-1.74 (m, 2H, Pip 4,5-H), $2.43\left(\mathrm{~s}, 4 \mathrm{H}\right.$, Pip 4-H and $\left.\mathrm{CH}_{3}\right), 2.79(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Pip} 6-\mathrm{H}), 2.93(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Pip} 3-\mathrm{H}), 3.48-3.72$ (m, 1H, Pip 2-H), $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.90-4.18(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 2,6-\mathrm{H}), 7.22-7.33(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}$ 2,3,5,6-H), 8.03 (s, 1H, Pyr 3-H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.4\left(\mathrm{CH}_{3}\right), 25.3$ (Pip 5-C), 27.4 (Pip 4-C), $28.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 36.0(\operatorname{Pip} 3-\mathrm{C}), 43.9$ (Pip 6-C), 45.8 (Pip 2-C), $51.5\left(\mathrm{OCH}_{3}\right), 79.5$ $\left(\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 112.1$ (Pyr 4-C), $126.3(2 \times \mathrm{CH}, \mathrm{Ph} 2,6-\mathrm{C}), 130.0(2 \times \mathrm{CH}, \mathrm{Ph} 3,5-\mathrm{C}), 136.6$ (Ph $1-\mathrm{C}), 139.6$ (Ph 4-C), 143.1 (Pyr 3-C), 148.1 (Pyr 5-C), $154.7\left(\mathrm{COOC}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 164.0\left(\mathrm{COOCH}_{3}\right) \text {. }}^{(\mathrm{P}}\right.$. ${ }^{15} \mathrm{~N}-\mathrm{NMR}\left(41 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-157.9(\operatorname{Pyr} \mathrm{~N}-1),-74.6(\mathrm{Pyr} \mathrm{N}-2)$. IR (FT-IR, $\left.\mathrm{v}_{\max }, \mathrm{cm}^{-1}\right)$ : 2976, $1710(\mathrm{C}=\mathrm{O}), 1692(\mathrm{C}=\mathrm{O}), 1148,824 . \mathrm{MS} \mathrm{m} / z(\%): 300\left([\mathrm{M}-\mathrm{Boc}+\mathrm{H}]^{+}\right), 400\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, $97 \%$. HRMS $\left(\mathrm{ESI}^{+}\right)$for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{NaO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calcd 422.2050, found 422.2052.
3.4.12. tert-Butyl (3S)-3-[4-(methoxycarbonyl)-1-(4-methylphenyl)-1H-pyrazol-5-yl]piperidine-1-carboxylate (5m)

Compound 3 c was coupled with $p$-tolylhydrazine hydrochloride. The obtained residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: acetone $/ n$-hexane, $\left.1: 9, v / v\right)$ to provide compound 5 m as brownish oil. Yield $475 \mathrm{mg}(81 \%),[\alpha]_{\mathrm{D}}{ }^{20}=-4.3(c 0.86, \mathrm{MeOH})$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.40\left(\mathrm{~s}, 10 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ and Pip 5-H), 1.61-1.77 (m, 2H, Pip 4,5-H), 2.43 (s, 4H, Pip 4-H and $\mathrm{CH}_{3}$ ), 2.79 (s, 1H, Pip 6-H), 2.93 (s, 1H, Pip 3-H), 3.48-3.76 (m, 1H, Pip 2-H), $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.90-4.26(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 2,6-\mathrm{H}), 7.21-7.32(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}$ 2,3,5,6-H), $8.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Pyr} 3-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.4\left(\mathrm{CH}_{3}\right), 25.3$ (Pip 5-C), 27.4 (Pip 4-C), $28.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 36.1$ (Pip 3-C), 43.5 (Pip 6-C), 46.4 (Pip 2-C), $51.5\left(\mathrm{OCH}_{3}\right), 79.5$ $\left(\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 112.1(\mathrm{Pyr} 4-\mathrm{C}), 126.3(2 \times \mathrm{CH}, \mathrm{Ph} 2,6-\mathrm{C}), 130.0(2 \times \mathrm{CH}, \mathrm{Ph} 3,5-\mathrm{C}), 136.6$ (Ph 1-C), 139.6 (Ph 4-C), 143.1 (Pyr 3-C), 148.1 (Pyr 5-C), $154.7\left(\mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}\right), 164.0\left(\mathrm{COOCH}_{3}\right)$. IR (FT-IR, $v_{\text {max }}, \mathrm{cm}^{-1}$ ): 2930, $1714(\mathrm{C}=\mathrm{O}), 1688(\mathrm{C}=\mathrm{O}), 1261,822 . \mathrm{MS} \mathrm{m} / z(\%): 400\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, $95 \%$ ). HRMS $\left(\mathrm{ESI}^{+}\right)$for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{NaO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calcd 422.2050, found 422.2051.
3.4.13. tert-Butyl (3R)-3-\{4-(methoxycarbonyl)-1-[3-(trifluoromethyl)phenyl]-1H-pyrazol-5-yl\}piperidine-1-carboxylate (5n)

Compound 3b was coupled with [3-(trifluoromethyl)phenyl]hydrazine hydrochloride. The obtained residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: acetone $/ n-$ hexane, $1: 5, v / v)$ to provide compound 5 n as brownish oil. Yield $526 \mathrm{mg}(79 \%),[\alpha]_{\mathrm{D}}{ }^{20}=9.9$ (c 1.31, MeOH). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.39\left(\mathrm{br} \mathrm{s}, 10 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ and Pip 5-H), 1.68-1.77 (m, 2H, Pip 4,5-H), $2.50(\mathrm{qd}, J=12.9 \mathrm{~Hz}, 3.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Pip} 4-\mathrm{H}), 2.72-3.00(\mathrm{~m}, 2 \mathrm{H}$, Pip 3,6-H), 3.52-3.75 (m, 1H, Pip 2-H), $3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.90-4.21(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 2,6-\mathrm{H})$, 7.52-7.69 (m, 2H, Ph 5,6-H), 7.71 (br s, 1H, Ph 2-H), 7.73-7.82 (m, 1H, Ph 4-H), 8.07 (s, 1H, Pyr 3-H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 25.2$ (Pip 5-C), 27.3 (Pip 4-C), $28.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 35.9$ (Pip 3-C), 43.9 (Pip 6-C), 45.7 (Pip 2-C), $51.5\left(\mathrm{OCH}_{3}\right), 79.6\left(\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 112.8$ (Pyr 4-C), 123.3 ( $\mathrm{q}, ~ J=272.4 \mathrm{~Hz}^{2} \mathrm{CF}_{3}$ ), 123.5 ( $\mathrm{Ph} 2-\mathrm{C}$ ), 126.1 ( $\mathrm{Ph} 4-\mathrm{C}$ ), 129.4 ( $\mathrm{Ph} 5-\mathrm{C}$ ), 130.0 ( $\left.\mathrm{Ph} 6-\mathrm{C}\right), 132.2$ ( Ph 3-C), 139.3 (Ph 1-C), 143.7 (Pyr 3-C), 148.1 (Pyr 5-C), $154.7\left(\mathrm{COOC}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 163.5\left(\mathrm{COOCH}_{3}\right) .}\right.$ ${ }^{15} \mathrm{~N}-\mathrm{NMR}\left(41 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-162.0$ (Pyr N-1), -76.1 ( $\mathrm{Pyr} \mathrm{N}-2$ ). IR (FT-IR, $v_{\max }, \mathrm{cm}^{-1}$ ): 2951, 1717 (C=O), $1688(\mathrm{C}=\mathrm{O}), 1130,1098 . \mathrm{MS} \mathrm{m/z}(\%): 354\left([\mathrm{M}-\mathrm{Boc}+\mathrm{H}]^{+}\right), 454\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, $96 \%$. HRMS $\left(\mathrm{ESI}^{+}\right)$for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{NaO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calcd 476.1768, found 476.1769.
3.4.14. tert-Butyl (3S)-3-\{4-(methoxycarbonyl)-1-[3-(trifluoromethyl)phenyl]-1H-pyrazol-5-yl\}piperidine-1-carboxylate (5o)

Compound 3c was coupled with [3-(trifluoromethyl)phenyl]hydrazine hydrochloride. The obtained residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: acetone $/ n$-hexane, 1:11, $v / v$ ) to provide compound 50 as brownish oil. Yield $420 \mathrm{mg}(63 \%)$, $[\alpha]_{\mathrm{D}}{ }^{20}=-9.8(c 0.85, \mathrm{MeOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.39\left(\mathrm{br} \mathrm{s}, 10 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ and Pip 5-H), 1.68-1.77 (m, 2H, Pip 4,5-H), $2.50(q d, J=12.9 \mathrm{~Hz}, 3.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Pip} 4-\mathrm{H}), 2.72-3.00$ (m, 2H, Pip 3,6-H), 3.52-3.75 (m, 1H, Pip 2-H), 3.87 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$ ), 3.90-4.21 (m, 2H, Pip 2,6-H), 7.52-7.69 (m, 2H, Ph 5,6-H), 7.71 (br s, 1H, Ph 2-H), 7.73-7.82 (m, 1H, Ph 4-H), 8.08 (s, 1H, Pyr 3-H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 25.2$ (Pip 5-C), 27.3 (Pip 4-C), $28.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 35.9 (Pip 3-C), 43.9 (Pip 6-C), 45.7 (Pip 2-C), $51.5\left(\mathrm{OCH}_{3}\right), 79.6\left(\mathrm{C}_{( }\left(\mathrm{CH}_{3}\right)_{3}\right), 112.8$ (Pyr 4-C), 123.3 ( $\mathrm{q}, J=272.4 \mathrm{~Hz}, \mathrm{CF}_{3}$ ), 123.5 ( $\mathrm{Ph} 2-\mathrm{C}$ ), 126.1 ( $\mathrm{Ph} 4-\mathrm{C}$ ), 129.4 ( $\mathrm{Ph} 5-\mathrm{C}$ ), 130.0 ( $\mathrm{Ph} 6-\mathrm{C}$ ), 132.2 (Ph 3-C), 139.3 ( $\mathrm{Ph} 1-\mathrm{C}$ ), 143.7 ( $\mathrm{Pyr} 3-\mathrm{C}$ ), 148.1 ( $\mathrm{Pyr} 5-\mathrm{C}), 154.7\left(\mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}\right), 163.5$ $\left(\mathrm{COOCH}_{3}\right)$. IR (FT-IR, $v_{\max }, \mathrm{cm}^{-1}$ ): 2951, $1717(\mathrm{C}=\mathrm{O}), 1688(\mathrm{C}=\mathrm{O}), 1130,1099 . \mathrm{MS} \mathrm{m} / \mathrm{z}$ (\%): 454 ( $[\mathrm{M}+\mathrm{H}]^{+}, 100 \%$ ). HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{NaO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calcd 476.1768, found 476.1772 .

### 3.5. Synthesis of tert-Butyl 4-[4-(methoxycarbonyl)-1H-pyrazolyl]piperidine-1-carboxylate (7)

Compound 3a ( $500 \mathrm{mg}, 1.5 \mathrm{mmol}$ ) was dissolved in $\mathrm{EtOH}(15 \mathrm{~mL})$ and treated with $55 \%$ hydrazine hydrate solution ( $74 \mathrm{mg}, 1.5 \mathrm{mmol}$ ). Reaction mixture was stirred at r.t. for 18 h . After removal of the solvent in vacuo, the residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: acetone $/ n$-hexane, $\left.1: 7, v / v\right)$ to provide compound 7 as white crystals.

Yield $272 \mathrm{mg}(60 \%)$, mp $128-130{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 1.64-1.78 (m, 2H, Pip 3,5-H), 1.92-1.99 (m, 2H, Pip 3,5-H), 2.77-2.95 (m, 2H, Pip 2,6-H), 3.53 $(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Pip} 4-\mathrm{H}), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.10-4.36(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 2,6-\mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}$, Pyr 3(5)-H), 11.52 (s, 1H, Pyr NH). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 28.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.8$ $\left(2 \times \mathrm{CH}_{2}, \operatorname{Pip} 3,5-\mathrm{C}\right), 33.8(\operatorname{Pip} 4-\mathrm{C}), 44.2\left(2 \times \mathrm{CH}_{2}, \operatorname{Pip} 2,6-\mathrm{C}\right), 51.2\left(\mathrm{OCH}_{3}\right), 79.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 110.1 (Pyr 4-C), 138.7 and 153.6 (Pyr 3(5)-C), $154.9\left(\mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}\right), 164.1\left(\mathrm{COOCH}_{3}\right) .{ }^{15} \mathrm{~N}-$ NMR ( $71 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta-292.7$ (N-Boc). IR (FT-IR, $v_{\max }, \mathrm{cm}^{-1}$ ): $3208(\mathrm{~N}-\mathrm{H}), 2980,1706$ (C=O), 1655 (C=O), 1434, 1165, 763. MS m/z (\%): 210 ( $[\mathrm{M}-\mathrm{Boc}+\mathrm{H}]^{+}$) $308\left([\mathrm{M}-\mathrm{H}]^{-}\right), 97 \%$. HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{NaO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calcd 332.1581, found 332.1581.
3.6. Synthesis of tert-Butyl 4-[4-(methoxycarbonyl)-1H-pyrazolyl]piperidine-1-carboxylates (5i, 6i, 8)

A solution of compound $7(100 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{KOH}(27 \mathrm{mg}, 0.5 \mathrm{mmol})$, and alkyl iodide ( 1 mmol ) in DMF $(0.75 \mathrm{~mL}$ ) was stirred at r.t. for 4 h . The reaction mixture was diluted with EtOAc ( 10 mL ), washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine ( 15 mL ). The organic layer was dried with anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography using an eluent- $\mathrm{Hex} / \mathrm{Me}_{2} \mathrm{CO}$ in the appropriate ratio.

### 3.6.1. tert-Butyl

4-[4-(methoxycarbonyl)-1-methyl-1H-pyrazol-3-yl]piperidine-1-carboxylate (6i) and tert-Butyl 4-[4-(methoxycarbonyl)-1-methyl-1H-pyrazol-5-yl]piperidine-1-carboxylate (5i)

Compound 7 was coupled with iodomethane. The obtained residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: acetone $n$-hexane, $\left.1: 4, v / v\right)$ to provide an inseparable mixture of regioisomers $6 \mathrm{i}: 5 \mathrm{i}(5: 1)$ as white crystals. Yield $77 \mathrm{mg}(74 \%) .{ }^{1} \mathrm{H}-$ NMR ( $700 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) (two isomers are seen in the spectra ratio $\sim 5: 1(6 \mathbf{i}: 5 \mathrm{i})$ ): $\delta 1.44(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3},(\mathbf{6 i})\right), 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3},(\mathbf{5 i})\right), 1.59-1.76(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 3,5-\mathrm{H},(6 \mathbf{i}$ and $5 \mathbf{i})), 1.82-1.95$ (m, 2H, Pip 3,5-H, (6i)), 2.14 (qd, $J=12.7 \mathrm{~Hz}, 4.5 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Pip} 3,5-\mathrm{H},(5 i)), 2.69-2.95(\mathrm{~m}, 2 \mathrm{H}$, Pip 2,6-H, (6i and 5i)), 3.36 (tt, $J=11.8 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Pip} 4-\mathrm{H},(6 i)), 3.54(\mathrm{t}, J=12.6 \mathrm{~Hz}$, $1 \mathrm{H}, \operatorname{Pip} 4-\mathrm{H},(5 \mathbf{i})), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3},(6 \mathbf{i})\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3},(5 \mathbf{i})\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3},(6 \mathbf{i})\right)$, $3.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3},(5 i)\right), 4.03-4.34(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 2,6-\mathrm{H},(6 \mathbf{i}$ and 5 i$)$ ), 7.78 (s, $1 \mathrm{H}, \operatorname{Pyr} 5-\mathrm{H},(6 \mathbf{i})$ ), 7.82 (s, 1H, Pyr 3-H, (5i)). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 28.6\left(2 \times \mathrm{CH}_{2}, \operatorname{Pip} 3,5-\mathrm{C},(5 i)\right)$, $28.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3},(\mathbf{6 i}\right.$ and $\left.5 \mathbf{i})\right), 31.2\left(2 \times \mathrm{CH}_{2}\right.$, Pip 3,5-C, $\left.(6 \mathbf{i})\right)$, 34.1 (Pip 4-C, (5i)), 34.8 (Pip 4-C, (6i)), $38.7\left(\mathrm{CH}_{3},(5 i)\right), 39.2\left(\mathrm{CH}_{3},(6 i)\right), 43.8\left(2 \times \mathrm{CH}_{2}\right.$, Pip 2,6-C, (6i)), $44.7\left(2 \times \mathrm{CH}_{2}\right.$, Pip $2,6-\mathrm{C},(5 \mathbf{i})), 51.2\left(\mathrm{OCH}_{3},(6 \mathbf{i})\right), 51.2\left(\mathrm{OCH}_{3},(5 \mathbf{i})\right), 79.3\left(\underline{C}\left(\mathrm{CH}_{3}\right)_{3},(6 \mathbf{i})\right), 79.8\left(\underline{C}\left(\mathrm{CH}_{3}\right)_{3},(5 \mathbf{i})\right)$, 110.7 (Pyr 4-C, (6i)), 111.3 (Pyr 4-C, (5i)), 134.6 (Pyr 5-C, (6i)), 141.4 (Pyr 3-C, (5i)), 148.7 (Pyr 5-C, (5i)), $154.8\left(\mathrm{COOC}_{\left.\left(\mathrm{CH}_{3}\right)_{3}, ~(6 i)\right), ~}^{154.9}\left(\mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3},(5 i)\right), 158.1\right.$ (Pyr 3-C, (6i)), $163.9\left(\mathrm{COOCH}_{3},(6 \mathbf{i})\right), 164.0\left(\mathrm{COOCH}_{3},(5 \mathbf{i})\right) .{ }^{15} \mathrm{~N}-\mathrm{NMR}\left(71 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-294.3(\mathrm{~N}-\mathrm{Boc}$, (5i)), -183.8 (Pyr N-1, (6i)), -178.3 (Pyr N-1, (5i)), -77.3 (Pyr N-2, (6i)), -76.7 (Pyr N-2, (5i)). MS m/z (\%): $324\left([M+H]^{+}, 100 \%\right)$. HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{NaO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ calcd 346.1737 , found 346.1737 .
3.6.2. tert-Butyl

4-[1-ethyl-4-(methoxycarbonyl)-1H-pyrazol-3-yl]piperidine-1-carboxylate (8)
Compound 7 was coupled with iodoethane. The obtained residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: acetone $/ n$-hexane, $\left.1: 5, v / v\right)$ to provide compound 8 as white crystals, yield $95 \mathrm{mg}(87 \%)$, $\mathrm{mp} 77-78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.43-1.50$ $\left(\mathrm{m}, 12 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.72(\mathrm{qd}, J=12.5 \mathrm{~Hz}, 4.1 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Pip} 3,5-\mathrm{H}), 1.85-1.93(\mathrm{~m}$, 2H, Pip 3,5-H), 2.80-2.90 (m, 2H, Pip 2,6-H), 3.37 (tt, $J=11.8 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Pip} 4-\mathrm{H}), 3.79$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.08-4.23\left(\mathrm{~m}, 4 \mathrm{H}\right.$, Pip 2,6-H and $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Pyr} 5-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ( $\left.176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 15.2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 28.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.1\left(2 \times \mathrm{CH}_{2}, \operatorname{Pip} 3,5-\mathrm{C}\right), 34.9$ (Pip $4-\mathrm{C}), 44.4\left(2 \times \mathrm{CH}_{2}, \operatorname{Pip} 2,6-\mathrm{C}\right), 47.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 51.3\left(\mathrm{OCH}_{3}\right), 79.9\left(\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 110.5(\mathrm{Pyr} 4-\mathrm{C})$, 133.1 (Pyr 5-C), $155.2\left(\underline{\mathrm{COOC}}\left(\mathrm{CH}_{3}\right)_{3}\right), 157.8(\mathrm{Pyr} 3-\mathrm{C}), 163.9\left(\mathrm{COOCH}_{3}\right) .{ }^{15} \mathrm{~N}-\mathrm{NMR}(71 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $\delta-168.7$ (Pyr N-1), -82.9 (Pyr N-2). IR (FT-IR, $v_{\max }, \mathrm{cm}^{-1}$ ): 2980, 1715 (C=O), $1678(\mathrm{C}=\mathrm{O}), 1219,768 . \mathrm{MS} \mathrm{m} / z(\%): 338\left([\mathrm{M}+\mathrm{H}]^{+}, 99 \%\right)$. HRMS (ESI ${ }^{+}$) for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{NaO}_{4}$ ([M + Na] ${ }^{+}$) calcd 360.1894, found 360.1894.

### 3.7. Synthesis of 5-[1-(tert-Butoxycarbonyl)piperidinyl]-1H-pyrazole-4-carboxylic acids (9a-c)

Corresponding ester ( $\mathbf{5 a}, \mathbf{5 j} \mathbf{5} \mathbf{5 k}$ ) ( $300 \mathrm{mg}, 0.78 \mathrm{mmol}$ ) was dissolved in $\mathrm{MeOH}(0.1 \mathrm{mM})$ and treated with 2 N NaOH (4 equiv). The solution was stirred under reflux for 5 h . After removal of the solvent in vacuo, the residue was dissolved in water ( 15 mL ), washed with EtOAc $(2 \times 15 \mathrm{~mL})$, acidified with $1 \mathrm{M} \mathrm{KHSO}_{4}(\mathrm{pH}=1)$, and washed with EtOAc $(2 \times 15 \mathrm{~mL})$. The extracts were combined and dried over sodium sulfate, filtered, and concentrated to dryness to give desired compounds which were directly used in the next step without further purification.

### 3.7.1. 5-[1-(tert-Butoxycarbonyl)piperidin-4-yl]-1-phenyl-1H-pyrazole-4-carboxylic Acid (9a)

Brownish crystals, yield 240 mg ( $83 \%$ ), mp 190-192 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta 1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.52-1.70(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 3,5-\mathrm{H}), 2.26(\mathrm{qd}, J=12.7 \mathrm{~Hz}, 4.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pip}$ $3,5-\mathrm{H}), 2.48-2.76(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 2,6-\mathrm{H}), 3.12(\mathrm{tt}, J=12.5 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Pip} 4-\mathrm{H}), 3.97-4.30(\mathrm{~m}$, 2H, Pip 2,6-H), 7.31-7.38 (m, 2H, Ph 2,6-H), 7.47-7.57 (m, 3H, Ph 3,4,5-H), 8.09 (s, 1H, Pyr $3-\mathrm{H}), 9.39$ (br s, 1H, OH). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 28.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.8\left(2 \times \mathrm{CH}_{2}\right.$, Pip 3,5-C), 35.4 (Pip 4-C), $44.3\left(2 \times \mathrm{CH}_{2}\right.$, Pip 2,6-C), $79.8\left(\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 111.5(\operatorname{Pyr} 4-\mathrm{C}), 126.8$ $(2 \times \mathrm{CH}, \mathrm{Ph} 2,6-\mathrm{C}), 129.5(2 \times \mathrm{CH}, \mathrm{Ph} 3,5-\mathrm{C}), 129.7$ (Ph 4-C), 139.3 (Ph 1-C), 143.9 (Pyr 3-C), 150.9 (Pyr 5-C), $155.0\left(\underline{C O O C}\left(\mathrm{CH}_{3}\right)_{3}\right), 168.4(\mathrm{COOH}) .{ }^{15} \mathrm{~N}-\mathrm{NMR}\left(41 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta-159.6$ (Pyr N-1), -75.8 (Pyr N-2). IR (FT-IR, $v_{\max }, \mathrm{cm}^{-1}$ ): 2852, 1675 (C=O), 1547, 1424, 764. MS m/z (\%): $370\left([\mathrm{M}-\mathrm{H}]^{-}, 95 \%\right)$. HRMS $\left(\mathrm{ESI}^{+}\right)$for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{NaO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ calcd 394.1737, found 394.1738 .
3.7.2. 5-[(3R)-1-(tert-Butoxycarbonyl)piperidin-3-yl]-1-phenyl-1H-pyrazole-4-carboxylic Acid (9b)

Brownish crystals, yield $254 \mathrm{mg}(88 \%), \mathrm{mp} 86-88^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=10.4(c 1.10, \mathrm{MeOH}) .{ }^{1} \mathrm{H}-$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.41\left(\mathrm{~s}, 10 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ and Pip 5-H), 1.60-1.80 (m, 2H, Pip 4,5-H), 2.38-2.52 (m, 1H, Pip 4-H), 2.64-2.86 (m, 1H, Pip 6-H), 2.86-3.13 (m, 1H, Pip 3-H), 3.45-3.75 (m, 1H, Pip 2-H), 3.87-4.23 (m, 2H, Pip 2,6-H), 7.36-7.44 (m, 2H, Ph 2,6-H), 7.49-7.57 (m, $3 \mathrm{H}, \mathrm{Ph} 3,4,5-\mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Pyr} 3-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 25.2$ (Pip 5-C), 27.4 (Pip 4-C), $28.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 36.1$ (Pip 3-C), 43.5 (Pip 6-C), 46.3 (Pip 2-C), $79.7\left(\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 111.8$ (Pyr 4-C), 126.5 ( $2 \times \mathrm{CH}, \mathrm{Ph} 2,6-\mathrm{C}$ ), 129.6 ( $3 \times \mathrm{CH}, \mathrm{Ph} 3,4,5-\mathrm{C}$ ), 138.9 (Ph 1-C), 144.1 (Pyr 3-C), 148.8 (Pyr 5-C), $154.7\left(\underline{C O O C}\left(\mathrm{CH}_{3}\right)_{3}\right), 168.3(\mathrm{COOH}) .{ }^{15} \mathrm{~N}-\mathrm{NMR}\left(41 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta-158.1$ (Pyr N-1), -75.9 ( $\mathrm{Pyr} \mathrm{N}-2$ ). IR (FT-IR, $v_{\max }, \mathrm{cm}^{-1}$ ): 2930, 1686 (C=O), 1412, 1147, 764. MS $m / z(\%): 370\left([\mathrm{M}-\mathrm{H}]^{-}, 97 \%\right)$. HRMS $\left(\mathrm{ESI}^{+}\right)$for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{NaO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ calcd 394.1737, found 394.1738.
3.7.3. 5-[(3S)-1-(tert-Butoxycarbonyl)piperidin-3-yl]-1-phenyl-1H-pyrazole-4-carboxylic Acid (9c)

Yellowish crystals, yield $243 \mathrm{mg}(84 \%), \mathrm{mp} 88-90^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=-10.5(c 1.0, \mathrm{MeOH})$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.41\left(\mathrm{~s}, 10 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ and Pip 5-H), 1.62-1.78 (m,2H, Pip $4,5-\mathrm{H}), 2.45(\mathrm{qd}, \mathrm{J}=12.7 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Pip} 4-\mathrm{H}), 2.68-2.87(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Pip} 6-\mathrm{H}), 2.92-3.08(\mathrm{~m}$, 1H, Pip 3-H), 3.46-3.76 (m, 1H, Pip 2-H), 3.87-4.21 (m, 2H, Pip 2,6-H), 7.36-7.45 (m, 2H, Ph 2,6-H), 7.47-7.57 (m, 3H, Ph 3,4,5-H), 8.15 (s, 1H, Pyr 3-H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta 25.2$ (Pip 5-C), 27.4 (Pip 4-C), $28.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 36.1$ (Pip 3-C), 43.5 (Pip 6-C), 46.3 (Pip 2-C), $79.7\left(\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 111.7(\operatorname{Pyr} 4-\mathrm{C}), 126.5(2 \times \mathrm{CH}, \mathrm{Ph} 2,6-\mathrm{C}), 129.6(3 \times \mathrm{CH}, \mathrm{Ph} 3,4,5-\mathrm{C}), 138.9$ (Ph 1-C), 144.1 (Pyr 3-C), 148.9 (Pyr 5-C), $154.7\left(\underline{C O O C}\left(\mathrm{CH}_{3}\right)_{3}\right), 168.3(\mathrm{COOH})$. IR (FT-IR, $v_{\max }, \mathrm{cm}^{-1}$ ): 2930, 1687 (C=O), 1412, 1148, 765. MS m/z (\%): 370 ( $\left.[\mathrm{M}-\mathrm{H}]^{-}, 97 \%\right)$. HRMS $\left(\mathrm{ESI}^{+}\right)$for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{NaO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calcd 394.1737, found 394.1739.

### 3.8. Synthesis of tert-Butyl 3- and 4-[4-(Phenylcarbamoyl)-1H-pyrazol-5-yl]piperidine-1-carboxylates (10a-c)

To a solution of the appropriate pyrazole-4-carboxylic acids ( $9 \mathbf{a}-\mathbf{c}$ ) ( $200 \mathrm{mg}, 0.54 \mathrm{mmol}$ ) and DMAP $(7 \mathrm{mg}, 0.05 \mathrm{mmol})$ in DCM $(0.1 \mathrm{mM})$ cooled to $0{ }^{\circ} \mathrm{C}$ temperature EDC $\cdot \mathrm{HCl}$ $(114 \mathrm{mg}, 0.59 \mathrm{mmol})$ and aniline $(50 \mathrm{mg}, 0.54 \mathrm{mmol})$ were added. The reaction mixture was
left at r.t. for 48 h . The solvent was removed under reduced pressure and the crude product was purified by flash chromatography using an eluent- $\mathrm{Hex} / \mathrm{Me}_{2} \mathrm{CO}(6: 1, v / v)$.

### 3.8.1. tert-Butyl <br> 4-[1-phenyl-4-(phenylcarbamoyl)-1H-pyrazol-5-yl]piperidine-1-carboxylate (10a)

White crystals, yield $192 \mathrm{mg}(80 \%), \mathrm{mp} 187-189{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.42$ ( $\left.\mathrm{s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.55-1.76(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 3,5-\mathrm{H}), 2.18-2.33(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Pip} 3,5-\mathrm{H}), 2.43-2.71(\mathrm{~m}$, 2H, Pip 2,6-H), $3.15(\mathrm{tt}, J=12.4 \mathrm{~Hz}, 3.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Pip} 4-\mathrm{H}), 3.99-4.24$ (m, 2H, Pip 2,6-H), 7.10-7.18 (m, 1H, NHPh 4-H), 7.33-7.39 (m, 4H, NHPh 3,5-H and NPh 2,6-H), 7.48-7.54 (m, 3H, NPh 3,4,5-H), 7.54-7.61 (m, 2H, NHPh 2,6-H), 7.67 (s, 1H, NH), 7.90 (s, 1H, Pyr 3-H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 28.6\left(\mathrm{C}\left(\mathrm{C}_{3}\right)_{3}\right), 29.6\left(2 \times \mathrm{CH}_{2}\right.$, Pip 3,5-C), $35.4(\operatorname{Pip} 4-\mathrm{C})$, $44.3\left(2 \times \mathrm{CH}_{2}, \operatorname{Pip} 2,6-\mathrm{C}\right), 79.6\left(\underline{( }\left(\mathrm{CH}_{3}\right)_{3}\right), 116.0($ Pyr $4-\mathrm{C}), 120.5(2 \times \mathrm{CH}, \mathrm{NHPh} 2,6-\mathrm{C})$, 124.6 (NHPh 4-C), $126.8(2 \times \mathrm{CH}, \mathrm{NPh} 2,6-\mathrm{C}), 129.2(2 \times \mathrm{CH}, \mathrm{NHPh} 3,5-\mathrm{C}), 129.5(2 \times \mathrm{CH}$, NPh 3,5-C), 129.7 (NPh 4-C), 138.0 (NHPh 1-C), 138.9 (Pyr 3-C), 139.6 (NPh 1-C), 149.2 (Pyr $5-\mathrm{C}), 154.9\left(\mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}\right), 161.8(\mathrm{CONH}) .{ }^{15} \mathrm{~N}-\mathrm{NMR}\left(41 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-252.4(\mathrm{NH})$, -159.8 (Pyr N-1), -76.7 (Pyr N-2). IR (FT-IR, $v_{\text {max }}, \mathrm{cm}^{-1}$ ): 3390, 1671 (C=O), 1435, 748. MS $m / z(\%): 347\left([\mathrm{M}-\mathrm{Boc}+\mathrm{H}]^{+}, 99 \%\right)$. HRMS $\left(\mathrm{ESI}^{+}\right)$for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{NaO}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calcd 469.2210, found 469.2209.

### 3.8.2. tert-Butyl

(3R)-3-[1-phenyl-4-(phenylcarbamoyl)-1H-pyrazol-5-yl]piperidine-1-carboxylate (10b)
White crystals, yield $197 \mathrm{mg}(82 \%)$, $\mathrm{mp} 199-201^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=-20.1(c 0.87, \mathrm{MeOH})$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.40\left(\mathrm{~s}, 10 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ and Pip 5-H), 1.57-1.70(m, 1H, Pip $5-\mathrm{H}), 1.70-1.83(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Pip} 4-\mathrm{H}), 2.48(\mathrm{qd}, \mathrm{J}=12.9 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Pip} 4-\mathrm{H}), 2.69-3.05(\mathrm{~m}, 2 \mathrm{H}$, Pip 3,6-H), 3.49-3.81 (m, 1H, Pip 2-H), 3.88-4.24 (m, 2H, Pip 2,6-H), 7.10-7.18 (m, 1H, NHPh 4-H), 7.33-7.45 (m, 4H, NHPh 3,5-H and NPh 2,6-H), 7.46-7.59 (m, 5H, NHPh 2,6-H and NPh 3,4,5-H), 7.72 (s, 1H, NH), $7.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Pyr} 3-\mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 25.2$ (Pip 5-C), 27.9 (Pip 4-C), $28.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 36.3$ (Pip 3-C), 43.8 (Pip 6-C), 46.6 (Pip 2-C), 79.5 $\left(\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 116.5(\operatorname{Pyr} 4-\mathrm{C}), 120.6(2 \times \mathrm{CH}, \mathrm{NHPh} 2,6-\mathrm{C}), 124.7(\mathrm{NHPh} 4-\mathrm{C}), 126.5(2 \times \mathrm{CH}$, NPh 2,6-C), 129.3 ( $2 \times \mathrm{CH}$, NHPh 3,5-C), 129.5 ( $3 \times \mathrm{CH}, \mathrm{NPh} 3,4,5-\mathrm{C}$ ), 137.9 (NHPh 1-C), 139.1 (NPh 1-C), 139.3 (Pyr 3-C), 147.0 (Pyr 5-C), 154.8 ( $\left.\mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}\right), 161.8(\mathrm{CONH}) .{ }^{15} \mathrm{~N}-$ NMR ( $41 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta-252.5(\mathrm{NH}),-158.7$ (Pyr N-1), -77.1 (Pyr N-2). IR (FT-IR, $v_{\max }$, $\mathrm{cm}^{-1}$ ): $3400(\mathrm{~N}-\mathrm{H}), 1677(\mathrm{C}=\mathrm{O}), 1405,1137,751 . \mathrm{MS} \mathrm{m} / z(\%): 447\left([\mathrm{M}+\mathrm{H}]^{+}, 96 \%\right)$. HRMS $\left(\mathrm{ESI}^{+}\right)$for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{NaO}_{3}\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right)\right.$calcd 469.2210, found 469.2216. The enantiomeric excess was determined by HPLC with a CHIRAL ART Amylose-SA column, $\mathrm{t}_{\mathrm{R}}=6.5 \mathrm{~min}$ (100\%), ee $=100 \%$.

### 3.8.3. tert-Butyl

(3S)-3-[1-phenyl-4-(phenylcarbamoyl)-1H-pyrazol-5-yl]piperidine-1-carboxylate (10c)
White crystals, yield $161 \mathrm{mg}(67 \%)$, $\mathrm{mp} 199-201^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}=19.9(c 0.70, \mathrm{MeOH})$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.39\left(\mathrm{~s}, 10 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ and Pip 5-H), 1.57-1.67 (m, 1H, Pip $5-\mathrm{H}), 1.71-1.80(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Pip} 4-\mathrm{H}), 2.48(\mathrm{qd}, J=12.8 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Pip} 4-\mathrm{H}), 2.69-3.02$ (m, 2H, Pip 3,6-H), 3.45-3.83 (m, 1H, Pip 2-H), 3.88-4.20 (m, 2H, Pip 2,6-H), 7.10-7.18 (m, 1H, NHPh 4-H), 7.33-7.44 (m, 4H, NHPh 3,5-H and NPh 2,6-H), 7.46-7.61 (m, 5H, NHPh 2,6-H and NPh 3,4,5-H), 7.75 (s, 1H, NH), 7.92 (s, 1H, Pyr 3-H). ${ }^{13}$ C-NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 25.2$ (Pip 5-C), 27.9 (Pip 4-C), $28.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 36.3$ (Pip 3-C), 43.9 (Pip 6-C), 46.6 (Pip 2-C), $79.5\left(\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 116.5$ (Pyr 4-C), $120.6(2 \times \mathrm{CH}, \mathrm{NHPh} 2,6-\mathrm{C}), 124.6$ (NHPh 4-C), $126.5(2 \times \mathrm{CH}, \mathrm{NPh} 2,6-\mathrm{C}), 129.2(2 \times \mathrm{CH}, \mathrm{NHPh} 3,5-\mathrm{C}), 129.5(3 \times \mathrm{CH}$, NPh 3,4,5-C), 138.0 (NHPh 1-C), 139.1 (NPh 1-C), 139.3 (Pyr 3-C), 147.0 (Pyr 5-C), 154.6 $\left(\mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}\right), 161.8(\mathrm{CONH}) .{ }^{15} \mathrm{~N}-\mathrm{NMR}\left(41 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-252.4(\mathrm{NH}),-158.6(\mathrm{Pyr}$ N-1), -77.0 (Pyr N-2). IR (FT-IR, $v_{\max }, \mathrm{cm}^{-1}$ ): 3402 (N-H), 1677 (C=O), 1405, 1137, 751. MS $m / z(\%): 347\left([M-B o c+H]^{+}\right), 447\left([M+H]^{+}\right), 99 \%$. HRMS $\left(E S I I^{+}\right)$for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{NaO}_{3}$ ( $[\mathrm{M}+\mathrm{Na}]^{+}$) calcd 469.2210, found 469.2210. The enantiomeric excess was determined by HPLC with a CHIRAL ART Amylose-SA column, $\mathrm{t}_{\mathrm{R}}=6.5 \mathrm{~min}$ ( $1.8 \%$ minor enantiomer), $\mathrm{t}_{\mathrm{R}}=9.2 \mathrm{~min}(98.2 \%$ major enantiomer), ee $=96 \%$.

## 4. Conclusions

In summary, we developed a new regioselective process for synthesizing 3- or 5( N -Boc-piperidinyl)-1H-pyrazole-4-carboxylates as achiral and chiral heterocyclic building blocks. Regioselective synthesis of targeted building blocks was obtained starting from piperidine-4-carboxylic and (R)- and (S)-piperidine-3-carboxylic acids conversion to the corresponding $\beta$-enamino diketones via formation of intermediate $\beta$-keto esters. Further investigation of the reaction of $\beta$-enamino diketones with various aryl and alkyl hydrazines in various solvents at room temperature proved the regioselective formation of 5-( N -Boc-piperidinyl)-1H-pyrazole-4-carboxylates in ethanol compared to polar aprotic or nonprotic solvents. Regioisomeric 3-( N -Boc-piperidinyl)-1H-pyrazole-4-carboxylates were obtained by treating $\beta$-enamino diketone with hydrazine hydrate and subsequent alkylation of tautomeric 3(5)-substituted NH-pyrazole with alkylhalides. Furthermore, we demonstrated that 5-(N-Boc-piperidinyl)-1H-pyrazole-4-carboxylates can be successfully applied to the synthesis of tert-butyl 3- and 4-[4-(phenylcarbamoyl)-1H-pyrazol-5-yl]piperidine-1carboxylates by basic hydrolysis and the subsequent reaction of obtained carboxylic acids with aniline in the presence of EDC• HCl and DMAP. The structures of all synthesized compounds were confirmed by detailed NMR spectroscopy and HRMS investigations.

Supplementary Materials: The following are available online. Figure S1: ${ }^{1} \mathrm{H}-\mathrm{NMR}(700 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) spectrum of compound 4a, Figure S2: ${ }^{13} \mathrm{C}$-NMR $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{4 a}$, Figure S3: ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC ( $71 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 4a, Figure S4: HRMS (ESI-TOF) of compound 4a, Figure $\mathrm{S5}:{ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 5a, Figure S 6 : ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $5 \mathbf{5}$, Figure $\mathrm{S} 7:{ }^{1} \mathrm{H}^{15} \mathrm{~N} \mathrm{HMBC}\left(71 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 5a, Figure S8: HRMS (ESI-TOF) of compound 5a, Figure S9: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{6 a}$, Figure S10: ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{6 a}$, Figure S11: ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC ( $71 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 6a, Figure S12: HRMS (ESI-TOF) of compound 6a, Figure S13: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $5 \mathbf{b}$, Figure S14: ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 5b, Figure S15: ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC ( 41 MHz , $\mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 b}$, Figure S16: HRMS (ESI-TOF) of compound $\mathbf{5 b}$, Figure S17: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) spectrum of compound 5 c , Figure S18: ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{5 c}$, Figure S19: ${ }^{15} \mathrm{~N}-\mathrm{NMR}\left(41 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{5 c}$, Figure S20: HRMS (ESI-TOF) of compound 5 c , Figure S21: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 5d, Figure S22: ${ }^{13} \mathrm{C}$-NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 5d, Figure S23: ${ }^{1} \mathrm{H}$ ${ }^{15}$ N HMBC ( $41 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 5d, Figure S24: HRMS (ESI-TOF) of compound 5d, Figure S25: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) spectrum of compound 5e, Figure S26: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 5e, Figure S27: ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N} \mathrm{HMBC}\left(41 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) spectrum of compound 5e, Figure S28: HRMS (ESI-TOF) of compound 5e, Figure S29: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) spectrum of compound $5 \mathbf{f}$, Figure $\mathrm{S} 30:{ }^{13} \mathrm{C}-\mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 5f, Figure S31: ${ }^{15} \mathrm{~N}-\mathrm{NMR}\left(41 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) spectrum of compound 5f, Figure S32: HRMS (ESI-TOF) of compound $5 \mathbf{f}$, Figure S33: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{5 g}$, Figure S34: ${ }^{13} \mathrm{C}$-NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 5 g , Figure S35: HRMS (ESI-TOF) of compound 5 g, Figure S36: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) spectrum of compound $5 \mathbf{h}$, Figure S37: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( $176 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 5 h , Figure $\mathrm{S} 38:{ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N} \mathrm{HMBC}\left(71 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) spectrum of compound 5 h, Figure S39: HRMS (ESI-TOF) of compound 5h, Figure S40: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ( 400 MHz , $\mathrm{CDCl}_{3}$ ) spectrum of compound $5 \mathbf{i}$, Figure $\mathrm{S} 41:{ }^{13} \mathrm{C}$-NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 5i, Figure S42: ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC ( $41 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 5i, Figure S43: HRMS (ESITOF) of compound $5 \mathbf{i}$, Figure $\mathrm{S} 44:{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 5 j , Figure S 45 : ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{5 j}$, Figure S46: ${ }^{1} \mathrm{H}-{ }^{-15} \mathrm{~N} \mathrm{HMBC}\left(41 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 5j, Figure S47: HRMS (ESI-TOF) of compound 5j, Figure S48: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $5 \mathbf{k}$, Figure S49: ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) spectrum of compound $5 \mathbf{k}$, Figure S50: HRMS (ESI-TOF) of compound $\mathbf{5 k}$, Figure S51: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) spectrum of compound 51, Figure S52: ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $5 \mathbf{1}$, Figure S53: ${ }^{1} \mathrm{H}-{ }^{-15} \mathrm{~N}$ HMBC ( $41 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 51, Figure S54: HRMS (ESI-TOF) of compound 51 , Figure S55: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) spectrum of compound 5 m , Figure S56: ${ }^{13} \mathrm{C}$-NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 5m, Figure S57: HRMS (ESI-TOF) of compound 5 m , Figure S58: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) spectrum of compound 5 n , Figure S59: ${ }^{13} \mathrm{C}-\mathrm{NMR}$
( $176 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 5 n, Figure $\mathrm{S} 60:{ }^{1} \mathrm{H}-{ }^{-15} \mathrm{~N} \mathrm{HMBC}\left(41 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) spectrum of compound $\mathbf{5 n}$, Figure S61: HRMS (ESI-TOF) of compound $\mathbf{5 n}$, Figure S62: ${ }^{1} \mathrm{H}-\mathrm{NMR}(700 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 0}$, Figure $663:{ }^{13} \mathrm{C}-\mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 5o, Figure S64: HRMS (ESI-TOF) of compound 5o, Figure S65: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 7, Figure S66: ${ }^{13} \mathrm{C}$-NMR ( $176 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 7, Figure S67: ${ }^{1}{ }^{H}-{ }^{1} \mathrm{H}$ NOESY $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound 7, Figure S68: HRMS (ESI-TOF) of compound 7, Figure S69: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compounds $6 \mathbf{i}$ and 5 i , Figure $\mathrm{S70}:{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compounds $6 \mathbf{i}$ and $5 \mathbf{i}$, Figure $\mathrm{S71:}{ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N} \mathrm{HMBC}\left(71 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compounds $\mathbf{6 i}$ and $5 \mathbf{i}$, Figure S72: HRMS (ESI-TOF) of compound 6i and 5i, Figure S73: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 8, Figure S74: ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 8, Figure $\mathrm{S75}:{ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC $\left(71 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 8 , Figure S76: HRMS (ESI-TOF) of compound 8, Figure S77: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 9a, Figure S78: ${ }^{13} \mathrm{C}$-NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 9a, Figure S79: ${ }^{1} \mathrm{H}$ ${ }^{15} \mathrm{~N}$ HMBC ( $41 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 9a, Figure S80: HRMS (ESI-TOF) of compound 9a, Figure S81: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) spectrum of compound $9 \mathbf{9}$, Figure $\mathrm{S} 82:{ }^{13} \mathrm{C}-\mathrm{NMR}$ ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{9 b}$, Figure S 83 : ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC ( $41 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 9b, Figure S84: HRMS (ESI-TOF) of compound 9b, Figure S85: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) spectrum of compound 9 c , Figure $\mathrm{S} 86:{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 9 c , Figure S87: HRMS (ESI-TOF) of compound 9 c , Figure $\mathrm{S88}$ : ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 10a, Figure S89: ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 10a, Figure S90: ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC ( $41 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 10a, Figure S91: HRMS (ESI-TOF) of compound 10a, Figure S92: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 10b, Figure S93: ${ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) spectrum of compound 10b, Figure S94: ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N} \mathrm{HMBC}\left(41 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 10b, Figure S95: HRMS (ESI-TOF) of compound 10b, Figure S96: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 10c, Figure S97: ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) spectrum of compound 10c, Figure S98: ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HMBC ( $41 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 10c, Figure S99: HRMS (ESI-TOF) of compound 10c.

Author Contributions: Conceptualization, F.A.S. and A.Š.; methodology, N.K.; validation, N.K., G.M. and G.R.; formal analysis, A.B., G.R. and M.D.; investigation, G.M., V.M. and M.D.; data curation, V.M.; writing-original draft preparation, A.Š., A.B., E.A. and G.M.; writing-review and editing, N.K. and V.K.; visualization A.B., A.Š. and E.A.; resources, F.A.S., supervision, A.Š. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Vipergen ApS (Copenhagen, Denmark).
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: The data presented in this study are available on request from the corresponding authors.
Conflicts of Interest: The authors declare no conflict of interest.
Sample Availability: Samples of the compounds are not available from the authors.

## References

1. Singh, P.; Samanta, K.; Das, S.K.; Panda, G. Amino acid chirons: A tool for asymmetric synthesis of heterocycles. Org. Biomol. Chem. 2014, 12, 6297-6339. [CrossRef] [PubMed]
2. Sardina, F.J.; Rapoport, H. Enantiospecific Synthesis of Heterocycles from $\alpha$-Amino Acids. Chem. Rev. 1996, 96, 1825-1872. [CrossRef] [PubMed]
3. Blaskovich, M.A.T. Unusual Amino Acids in Medicinal Chemistry. J. Med. Chem. 2016, 59, 10807-10836. [CrossRef] [PubMed]
4. Žukauskaitė, A.; Moretto, A.; Peggion, C.; De Zotti, M.; Šačkus, A.; Formaggio, F.; De Kimpe, N.; Mangelinckx, S. Synthesis and Conformational Study of Model Peptides Containing N-Substituted 3-Aminoazetidine-3-carboxylic Acids. Eur. J. Org. Chem. 2014, 2014, 2312-2321. [CrossRef]
5. Vale, N.; Ferreira, A.; Matos, J.; Fresco, P.; Gouveia, M.J. Amino Acids in the Development of Prodrugs. Molecules 2018, 23, 2318. [CrossRef]
6. Bonina, F.P.; Arenare, L.; Palagiano, F.; Saija, A.; Nava, F.A.; Trombetta, D.; De Caprariis, P. Synthesis, stability, and pharmacological evaluation of nipecotic acid prodrugs. J. Pharm. Sci. 1999, 88, 561-567. [CrossRef]
7. Henzi, V.; Reichling, D.B.; Helm, S.W.; MacDermott, A.B. L-proline activates glutamate and glycine receptors in cultured rat dorsal horn neurons. Mol. Pharmacol. 1992, 41, 793-801.
8. Wang, M.; Rakesh, K.; Leng, J.; Fang, W.-Y.; Ravindar, L.; Gowda, D.C.; Qin, H.-L. Amino acids/peptides conjugated heterocycles: A tool for the recent development of novel therapeutic agents. Bioorg. Chem. 2018, 76, 113-129. [CrossRef]
9. Walsh, C.T.; O'Brien, R.V.; Khosla, C. Nonproteinogenic Amino Acid Building Blocks for Nonribosomal Peptide and Hybrid Polyketide Scaffolds. Angew. Chem. Int. Ed. 2013, 52, 7098-7124. [CrossRef]
10. Cerminara, I.; Chiummiento, L.; Funicello, M.; Guarnaccio, A.; Lupattelli, P. Heterocycles in Peptidomimetics and Pseudopeptides: Design and Synthesis. Pharmaceuticals 2012, 5, 297-316. [CrossRef]
11. Hollis, S.J. Heterocyclic in Peptide Chemistry. Ph. D. Thesis, The Open University, Milton Keynes, UK, 2000.
12. Kothapalli, Y.; Puthukanoori, R.K.; Alapati, S.R. Enantiospecific first total synthesis of 7a(S)-p-hydroxyphenopyrrozin. Tetrahedron Lett. 2012, 53, 1891-1893. [CrossRef]
13. Lin, C.-H.; Hong, B.-C.; Lee, G.-H. Asymmetric synthesis of functionalized pyrrolizidines by an organocatalytic and pot-economy strategy. RSC Adv. 2016, 6, 8243-8247. [CrossRef]
14. Luna-Freire, K.R.; Scaramal, J.P.S.; Resende, J.A.L.C.; Tormena, C.F.; Oliveira, F.L.; Aparicio, R.; Coelho, F. An asymmetric substrate-controlled Morita-Baylis-Hillman reaction as approach for the synthesis of pyrrolizidinones and pyrrolizidines. Tetrahedron 2014, 70, 3319-3326. [CrossRef]
15. Dockerty, P.; Edens, J.G.; Tol, M.B.; Angeles, D.M.; Domenech, A.; Liu, Y.; Hirsch, A.K.H.; Veening, J.-W.; Scheffers, D.-J.; Witte, M.D. Bicyclic enol cyclocarbamates inhibit penicillin-binding proteins. Org. Biomol. Chem. 2016, 15, 894-910. [CrossRef]
16. Lu, X.; Shi, L.; Zhang, H.; Jiang, Y.; Ma, D. Assembly of $N$-substituted pyrrolo[2,1-c][1,4]benzodiazepine-5,11-diones via copper catalyzed aryl amination. Tetrahedron 2010, 66, 5714-5718. [CrossRef]
17. Wang, H.; Jiang, Y.; Gao, K.; Ma, D. Facile synthesis of 1,4-benzodiazepin-3-ones from $o$-bromobenzylamines and amino acids via a cascade coupling/condensation process. Tetrahedron 2009, 65, 8956-8960. [CrossRef]
18. Villalgordo, J.M.; Heimgartner, H. Synthesis of a novel heterospirocyclic 3 -( N -methyl- N -phenylamino)- 2 H -azirine and its use as an amino acid equivalent in the preparation of a model tripeptide. Tetrahedron 1993, 49, 7215-7222. [CrossRef]
19. Heimgartner, H.; Strässler, C.; Linden, A. Synthesis of Tripeptides Containing Heterocyclic $\alpha$-Amino Acids by Using Heterospirocyclic 3-Amino-2H-azirines. Heterocycles 2018, 97, 333. [CrossRef]
20. Shimazaki, M.; Hasegawa, J.; Kan, K.; Nomura, K.; Nose, Y.; Kondo, H.; Ohashi, T.; Watanabe, K. Synthesis of captopril starting from an optically active.BETA.-hydroxy acid. Chem. Pharm. Bull. 1982, 30, 3139-3146. [CrossRef]
21. Luer, M.S.; Rhoney, D.H. Tiagabine: A Novel Antiepileptic Drug. Ann. Pharmacother. 1998, 32, 1173-1180. [CrossRef]
22. Leach, J.P.; Brodie, M.J. Tiagabine. Lancet 1998, 351, 203-207. [CrossRef]
23. Chorghade, M.S.; Ellegaard, P.; Lee, E.C.; Petersen, H.; Sørensen, P.O. Synthesis of Desmethyl Tiagabine. Heterocycles 1994, 37, 783. [CrossRef]
24. Andersen, K.E.; Sørensen, J.L.; Lau, J.; Lundt, B.F.; Petersen, H.; Huusfeldt, P.O.; Suzdak, P.D.; Swedberg, M.D.B. Synthesis of Novel $\gamma$-Aminobutyric Acid (GABA) Uptake Inhibitors. 5.1Preparation and Structure-Activity Studies of Tricyclic Analogues of Known GABA Uptake Inhibitors. J. Med. Chem. 2001, 44, 2152-2163. [CrossRef] [PubMed]
25. Seth, A.; Sharma, P.A.; Tripathi, A.; Choubey, P.K.; Srivastava, P.; Tripathi, P.N.; Shrivastava, S.K. Design, synthesis, evaluation and molecular modeling studies of some novel $N$-substituted piperidine-3-carboxylic acid derivatives as potential anticonvulsants. Med. Chem. Res. 2018, 27, 1206-1225. [CrossRef]
26. Schaarschmidt, M.; Höfner, G.; Wanner, K.T. Synthesis and Biological Evaluation of Nipecotic Acid and Guvacine Derived 1,3-Disubstituted Allenes as Inhibitors of Murine GABA Transporter mGAT1. ChemMedChem 2019, 14, 1135-1151. [CrossRef]
27. Saura, J.; Curatolo, L.; Williams, C.E.; Gatti, S.; Benatti, L.; Peeters, C.; Guan, J.; Dragunow, M.; Post, C.; Faull, R.L.M.; et al. Neuroprotective effects of Gly-Pro-Glu, the N-terminal tripeptide of IGF-1, in the hippocampus in vitro. NeuroReport 1999, 10, 161-164. [CrossRef]
28. Minelli, A.; Conte, C.; Cacciatore, I.; Cornacchia, C.; Pinnen, F. Molecular mechanism underlying the cerebral effect of Gly-Pro-Glu tripeptide bound to l-dopa in a Parkinson's animal model. Amino Acids 2012, 43, 1359-1367. [CrossRef]
29. Kanda, T.; Yokosuka, O.; Omata, M. Faldaprevir for the Treatment of Hepatitis C. Int. J. Mol. Sci. 2015, 16, 4985-4996. [CrossRef]
30. White, P.W.; Llinàs-Brunet, M.; Amad, M.; Bethell, R.C.; Bolger, G.; Cordingley, M.G.; Duan, J.; Garneau, M.; Lagacé, L.; Thibeault, D.; et al. Preclinical Characterization of BI 201335, a C-Terminal Carboxylic Acid Inhibitor of the Hepatitis C Virus NS3-NS4A Protease. Antimicrob. Agents Chemother. 2010, 54, 4611-4618. [CrossRef]
31. Bilodeau, F.; Bailey, M.D.; Bhardwaj, P.K.; Bordeleau, J.; Forgione, P.; Garneau, M.; Ghiro, E.; Gorys, V.; Halmos, T.; Jolicoeur, E.S.; et al. Synthesis and optimization of a novel series of HCV NS3 protease inhibitors: 4-Arylproline analogs. Bioorg. Med. Chem. Lett. 2013, 23, 4267-4271. [CrossRef]
32. Folkers, K.; Enzmann, F.H. Tripeptidine Having the Activity of the Thyrotropin Releasing Hormone. U.S. Patent 3,746,697, 17 July 1973.
33. Ngo, H.T.; Berndt, H.; Wilsdorf, M.; Lentz, D.; Reissig, H.-U. Linear and Cyclic Hybrids of Alternating Thiophene-Amino Acid Units: Synthesis and Effects of Chirality on Conformation and Molecular Packing. Chem. A Eur. J. 2013, 19, 15155-15165. [CrossRef]
34. Raja, R.; Hemaiswarya, S.; Ganesan, V.; de Carvalho, I.S. Recent developments in therapeutic applications of Cyanobacteria. Crit. Rev. Microbiol. 2015, 42, 1-12. [CrossRef]
35. Shi, B.; Zhou, Y.; Huang, Y.; Zhang, J.; Li, X. Recent advances on the encoding and selection methods of DNA-encoded chemical library. Bioorg. Med. Chem. Lett. 2017, 27, 361-369. [CrossRef]
36. Usanov, D.L.; Chan, A.I.; Maianti, J.P.; Liu, D.R. Second-generation DNA-templated macrocycle libraries for the discovery of bioactive small molecules. Nat. Chem. 2018, 10, 704-714. [CrossRef]
37. Madsen, D.; Azevedo, C.; Micco, I.; Petersen, L.K.; Vest Hansen, N.J. An overview of DNA-encoded libraries: A versatile tool for drug discovery. Prog. Med. Chem. 2020, 59, 181-249. [CrossRef]
38. Blakskjaer, P.; Heitner, T.; Vest Hansen, N.J. Fidelity by design: Yoctoreactor and binder trap enrichment for small-molecule DNA-encoded libraries and drug discovery. Curr. Opin. Chem. Biol. 2015, 26, 62-71. [CrossRef]
39. Hansen, M.H.; Blakskjær, P.; Petersen, L.K.; Hansen, T.H.; Hojfeldt, J.; Gothelf, K.V.; Vest Hansen, N.J. A Yoctoliter-Scale DNA Reactor for Small-Molecule Evolution. J. Am. Chem. Soc. 2009, 131, 1322-1327. [CrossRef]
40. Galloway, W.R.; Isidro-Llobet, A.; Spring, D.R. Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat. Coттии. 2010, 1, 80. [CrossRef]
41. Petersen, L.K.; Blakskjær, P.; Chaikuad, A.; Christensen, A.; Dietvorst, J.; Holmkvist, J.; Knapp, S.; Korinek, M.; Larsen, L.K.; Pedersen, A.; et al. Novel p38 $\alpha$ MAP kinase inhibitors identified from yoctoReactor DNA-encoded small molecule library. MedChemComm 2016, 7, 1332-1339. [CrossRef]
42. Iškauskienė, M.; Ragaitè, G.; Sløk, F.A.; Šačkus, A. Facile synthesis of novel amino acid-like building blocks by N-alkylation of heterocyclic carboxylates with $N$-Boc-3-iodoazetidine. Mol. Divers. 2020, 24, 1235-1251. [CrossRef]
43. Malinauskienė, V.; Kveselytė, A.; Dzedulionytė, K.; Bieliauskas, A.; Burinskas, S.; Sløk, F.A.; Šačkus, A. L-Proline and related chiral heterocyclic amino acids as scaffolds for the synthesis of functionalized 2-amino-1,3-selenazole-5-carboxylates. Chem. Heterocycl. Compd. 2018, 54, 469-473. [CrossRef]
44. Sackus, A.; Kveselyte, A.; Malinauskiene, V.; Dzedulionyte, K.; Bieliauskas, A.; Burinskas, S.; Krikstolaityte, S.; Slok, F.A. Heterocyclic amino acids as scaffolds for the synthesis of functionalized chiral 1,3-thiazole and 1,3-selenazole derivatives. In Proceedings of the 256th National Meeting and Exposition of the American-Chemical-Society (ACS), Boston, MA, USA, 19-23 August 2018; p. 586.
45. Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Fuentes, A.S. From 2000 to Mid-2010: A Fruitful Decade for the Synthesis of Pyrazoles. Chem. Rev. 2011, 111, 6984-7034. [CrossRef] [PubMed]
46. Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y.N.; Al-Aizari, F.A.; Ansar, M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018, 23, 134. [CrossRef] [PubMed]
47. Ansari, A.; Ali, A.; Asif, M.; Shamsuzzaman, S. Review: Biologically active pyrazole derivatives. New J. Chem. 2016, 41, 16-41. [CrossRef]
48. Souza, T.F.; Silva, M.J.V.; Silva, R.G.M.; Gonçalves, D.S.; Simon, P.A.; Jacomini, A.P.; Basso, E.A.; Moura, S.; Martins, M.A.P.; Back, D.F.; et al. Regiochemical Control of Pyrazoles by Solvent and $\beta$-Enamino Diketone Structure: Regioselective Synthesis of 4,5-Disubstituted $N$-Phenylpyrazoles. Asian J. Org. Chem. 2017, 6, 627-633. [CrossRef]
49. Gao, W.; Lau, T.; Pan, S.; Phillips, D.P.; Wang, X. Compounds and Compositions as TGR5 Agonists. WO Patent WO2012/082947A1, 14 December 2011.
50. Brooks, D.W.; Lu, L.D.-L.; Masamune, S. C-Acylation under Virtually Neutral Conditions. Angew. Chem. Int. Ed. 1979, 18, 72-74. [CrossRef]
51. Thomassigny, C.; Le Bouc, G.; Greck, C. Asymmetric syntheses of functionalized pyrrolizidin-3-ones. Arkivoc 2012, $2012,231$. [CrossRef]
52. Semenov, V.; Samultsev, D.O.; Krivdin, L.B. Substitution effects in the ${ }^{15} \mathrm{~N}$ NMR chemical shifts of heterocyclic azines evaluated at the GIAO-DFT level. Magn. Reson. Chem. 2018, 56, 767-774. [CrossRef]
53. Chernyshev, K.A.; Semenov, V.A.; Krivdin, L.B. Quantum-chemical calculations of NMR chemical shifts of organic molecules: VIII. Solvation effects on 15N NMR chemical shifts of nitrogen-containing heterocycles. Russ. J. Org. Chem. 2013, 49, 379-383. [CrossRef]
54. Claramunt, R.M.; López, C.; Maria, M.D.S.; Sanz, D.; Elguero, J. The Use of NMR Spectroscopy to Study Tautomerism. ChemInform 2007, 38, 169-206. [CrossRef]
55. Secrieru, A.; O'Neill, P.M.; Cristiano, M.L.S. Revisiting the Structure and Chemistry of 3(5)-Substituted Pyrazoles. Molecules 2019, 25, 42. [CrossRef]
56. Arbačiauskienė, E.; Krikštolaitytè, S.; Mitrulevičienė, A.; Bieliauskas, A.; Martynaitis, V.; Bechmann, M.; Roller, A.; Šačkus, A.; Holzer, W. On the Tautomerism of $N$-Substituted Pyrazolones: 1,2-Dihydro-3H-pyrazol-3-ones versus 1 H -Pyrazol-3-ols. Molecules 2018, 23, 129. [CrossRef]
57. Aguilar-Parrilla, F.; Cativiela, C.; Diaz-De-Villegas, M.D.; Limbach, H.-H.; Smith, J.A.S.; Toiron, C. The tautomerism of 3(5)phenylpyrazoles: An experimental (1H, 13C, 15N NMR and X-ray crystallography) study. J. Chem. Soc. Perkin Trans. 21992, 2, 1737-1742. [CrossRef]
58. Tarabová, D.; Šoralová, S.; Breza, M.; Fronc, M.; Holzer, W.; Milata, V. Use of activated enol ethers in the synthesis of pyrazoles: Reactions with hydrazine and a study of pyrazole tautomerism. Beilstein J. Org. Chem. 2014, 10, 752-760. [CrossRef]
59. Huang, A.; Wo, K.; Lee, S.Y.C.; Kneitschel, N.; Chang, J.; Zhu, K.; Mello, T.; Bancroft, L.; Norman, N.J.; Zheng, S.-L. Regioselective Synthesis, NMR, and Crystallographic Analysis of N1-Substituted Pyrazoles. J. Org. Chem. 2017, 82, 8864-8872. [CrossRef]
60. Liu, X.; Qiao, L.; Zhai, Z.; Cai, P.; Cantrell, C.L.; Tan, C.; Weng, J.; Han, L.; Wu, H. Novel 4-pyrazole carboxamide derivatives containing flexible chain motif: Design, synthesis and antifungal activity. Pest. Manag. Sci. 2019, 75, 2892-2900. [CrossRef]
61. Gewehr, M.; Dietz, J.; Grote, T.; Blettner, C.; Grammenos, W.; Hünger, U.; Müller, B.; Schieweck, F.; Schwögler, A.; Lohmann, J.K.; et al. Pyrazole Carboxylic Acid Anilides, Method for the Production Thereof and Agents Containing Them for Controlling Pathogenic Fungi. WO Patent WO2006087343A1, 15 February 2006.
62. Braun, S.; Kalinowski, H.O.; Berger, S. 150 and more Basic NMR Experiments: A Practical Course, 2nd ed.; ACS: New York, NY, USA, 2000.
63. Buevich, A.V.; Williamson, R.T.; Martin, G.E. NMR Structure Elucidation of Small Organic Molecules and Natural Products: Choosing ADEQUATE vs HMBC. J. Nat. Prod. 2014, 77, 1942-1947. [CrossRef]
