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Abstract: Evidences from more than three decades of work support the function of non-duplex
DNA structures called G-quadruplex (G4) in important processes like transcription and replication.
In addition, G4 structures have been studied in connection with DNA base modifications and
chromatin/nucleosome arrangements. Recent work, interestingly, shows promise of G4 structures,
through interaction with G4 structure-interacting proteins, in epigenetics—in both DNA and histone
modification. Epigenetic changes are found to be intricately associated with initiation as well as
progression of cancer. Multiple oncogenes have been reported to harbor the G4 structure at regulatory
regions. In this context, G4 structure-binding ligands attain significance as molecules with potential
to modify the epigenetic state of chromatin. Here, using examples from recent studies we discuss
the emerging role of G4 structures in epigenetic modifications and, therefore, the promise of G4
structure-binding ligands in epigenetic therapy.

Keywords: epigenetics; G4-interacting proteins; dietary G4 structure-binding molecules; histones;
chromatin; replication

1. Introduction

DNA-protein interactions package genomic DNA into globular chromatin. This along with
modifications of nucleic acids—for example, methylation of cytosine residues—that otherwise do not
affect the sequence of chromosomal DNA constitute the epigenetic state of the genome [1] Modifications
of the epigenetic status are closely associated with several diseases including cancer, neurodegenerative
and metabolic disorders and autoimmune diseases [2–6]. Therefore molecules that can alter or
‘correct’ aberrant epigenetic modifications are of importance as therapeutics—and are sometimes called
‘epigenetic drugs’ [5].

The non-duplex DNA secondary structure called G-quadruplex (commonly called G4),
particularly molecules/ligands that specifically interact with G4 structures gain significance in this
context. The biological role of G4 structures was first implicated when G-rich telomeric repeats
were observed to adopt the four-stranded secondary structure through stacking interactions of
guanine-tetrads (Figure 1) [7–10]. Interestingly, genome-wide analysis revealed a sequence capable
of forming G4 structures was enriched in gene regulatory regions (Figure 1) [11–13]. This was
initially observed through genome-wide analysis in bacteria including E. coli—based on which authors
proposed a widespread gene regulatory role of G4 structures [11]. Prevalence and conservation
within promoters of homologous genes in human, chimpanzee, mouse, and rat further implicated G4
structures in gene regulatory function (Figure 1) [11,14,15]—this was experimentally observed to be
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so using G4-binding ligands [16]. Gene regulatory functions, and in addition role of G4 structures in
replication and recombination have been reviewed earlier [17,18].
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Figure 1. The G4 structure and its relevance. (A) G-quadruplex (G4) structural illustration: left panel
with G-tetrad planes forming an intramolecular G4 stem, right panel shows Hoogsteen base-pairing
of guanines making a G-tetrad. (B) Heat map showing averaged relative enrichment of potential
G4 (PG4) sequences near TSS across all chromosomes in the human genome (density of PG4s in
100 base windows). (C) Heat map of conserved promoter PG4s across organisms: upper panel
shows enriched PG4 motifs near TSS, lower panel shows conservation of PG4 motif clusters between
human and ‘orthologous’ mouse and rat promoters (red boxes for PG4 motifs per 100 bp window,
each row displays individual promoters); 773 human promoters containing 1414 PG4 motifs shown
here. Reprinted (adapted) with permission from (Verma, A. et al. Genome-Wide Computational
and Expression Analyses Reveal G-Quadruplex DNA Motifs as Conserved cis-Regulatory Elements
in Human and Related Species. J. Med. Chem. 51, 5641–5649 (2008)). Copyright (2008) American
Chemical Society.

The involvement of G4 structures in epigenetic functions, though noted in early work,
has received more direct attention in a recent review, where G4 structures have been implicated
as structural mediators of epigenetic modifications in chromatin [19]. The authors have focused
on human telomerase reverse transcriptase (hTERT) promoter transcription factor binding sites
and telomerase reactivation in cancer as a case study for epigenetic regulation mediated by G4
structures. Therefore, G4 structure-binding ligands, including ones available as nutrient molecules
might be important in epigenetic regulation/modifications—particularly in conditions with established
epigenetic aberrations. G4 structure binding ligands have been previously characterized from natural
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sources (e.g., berberine [20], sanguinarine [21]) and are also artificially synthesized (e.g., ligand
360A [22], pyridostatin [23]). Several of such ligands were found to affect gene regulation through
possible epigenetic mechanisms implicated in cancers as well other disorders.

Role of epigenetics in cancer has gained significance as multiple genes and microRNAs related
to cancer initiation and progression were reported to exhibit epigenetic abnormalities [24]. Most of
these were results of differential regulation of genes coding for epigenetic modifiers itself, leading to
silencing of tumor suppressor genes, activation of oncogenes, and altered expression of microRNAs.
Several reviews cover this aspect in substantial detail [3,25,26].

Attempts to find out any possible association of G4 structures with genes reported to undergo
epigenetic modifications in various cancer types, yielded evidence that several of these gene
promoters exhibit potential G4 sequence (PG4), for example, hTERT [27], H19 [28], KRAS [29]
BCL-2 [30], RET [31,32], PARP-1 [33,34]. Interestingly, these epigenetic modifications were shown
to be regulated by epigenetic modifiers such as DNA methyltransferases (DNMTs) and polycomb
group (PcG) proteins, like EZH2, which has been reported to bind to G4 structures in vitro and in vivo
respectively [35–37] (vide infra). This indicates the possibility that G4 structures could potentially
recruit epigenetic modifiers.

With these in mind, we herein focus reviewing literature on how G4 structure-binding molecules
and proteins might be important for development of epigenetic therapeutic interventions in future,
particularly in cancer.

2. G4 Structures Impact Local Chromatin at Telomeric and Extra-Telomeric Sites

2.1. The G4 Structure and DNA Base Modifications

Methylation at the C5 position of cytosine within (GGGGCC)8•(GGCCCC)8 repeats—associated
with two neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia
(FTD)—was reported to influence stability of G4 structures in the promoter as well as coding region
of the C9orf72 gene [38]. In addition, cytosine methylation of dCGG repeats in the FMR1 gene,
which expand during progression of fragile X-mental retardation syndrome, were reported to result
in stabilization of G4 structures formed by the dCGG repeats in vitro [39]. Increased G4 structure
stability upon methylation of d(CGG)n oligomers was therefore implicated in repression of FMR1
in fragile X syndrome [39]. In similar lines, C5 methylation within the G-rich promoter region of
the B-cell lymophoma (BCL-2) gene, which forms G4 structure, was observed to lead to repression
of BCL-2 known to be abnormally overexpressed in many cancers [30,40]. Results showing that C5
methylation stabilized folding of the G4 structure-forming oligomer further implicated role of DNA
methylation-dependent stability of the G4 structure in epigenetic regulation of BCL-2 [30]. Recently,
a CTCF binding site located in the first exon of the human telomerase hTERT gene was reported
to be disrupted due to the formation of a stable G4 structure following C5 methylation. This was
found to result in marked reactivation of hTERT—the enzyme essential for telomere synthesis found
to over-expressed in more than 90% of human cancers [41,42]. Furthermore, 8-oxoguanine (8oxoG)
modification of DNA—from oxidation through reactive oxygen species—was shown to affect stability
of promoter G4 structures resulting in altered expression of multiple genes like c-myc, VEGF, NTHL1,
and KRAS (Figure 2) [29,43–46].
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Figure 2. Regulatory roles of G-quadruplex. G4 structures in DNA and RNA are involved in the
transcriptional and epigenetic regulation of the genome by acting as anchor sites for recruitment of
transcription factors at promoters. G4 structure-interacting proteins recruit epigenetic modifiers upon
binding to G4 structures at telomeres and extra-telomeric sites.

2.2. G4 Structures and Histone Protein Modifications

Recent work further reveal the possible role of the G4 structure in arrangement/modification
of histones—proteins required to package chromatin—which help determine the epigenetic state of
the genome [47–49]. It was noted that the absence of REV1, a helicase that resolves the G4 structure,
resulted in replication-associated errors [47]. Because of this, after replication, in cells without REV1 the
β-globin gene locus was found to lose the K9-dimethylated variant of histone H3 critical for maintaining
the repressed state of chromatin. This resulted in de-repression of the β-globin gene. The role of the
G4 structure was studied further through artificial insertion a G4 structure in the lysozyme C gene,
which otherwise did not have a G4 structure and therefore was unaffected by the absence of REV1 [47]:
artificial insertion of the G4 structure resulted in activation of lysozyme expression in cells without REV1.
In addition, it was also found that the presence or absence of the G4 structure affected histone H3
modifications (K4-trimethylation and K9/K14-acetylation) at the BU-1 promoter, which was dependent
on the presence of the G4-helicase REV1 [49].

2.3. G4 Structures Engage Epigenetic Factors through G4 Binding Proteins

It has been noted that modifications of DNA and histones can cooperate to engage or disrupt
binding of regulatory factors [50,51]. Therefore, the role of G4 structures in DNA/histone modifications
are expected to impact association of regulatory factors. This was further supported when the
binding of epigenetic factors was observed to be dependent on the promoter G4 structure within
the cyclin-dependent kinase p21 and telomerase (hTERT) promoters [22,27]. Interestingly, at the
p21 promoter this was through the recently discovered function of the telomeric protein TRF2
as a transcription factor. Recruitment of the epigenetic repressor complex of proteins including
REST/co-REST/LSD1 was through TRF2—where TRF2 binding required presence of the p21 promoter
G4 structure [22]. Similarly, in another study authors noted that critical histone modifications for
hTERT repression in normal adult cells required binding of the metastasis suppressor factor NME2 [27].
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Occupancy of NME2 on the hTERT promoter depended on the promoter G4 structure—consistent
with NME2-G4 association noted earlier [52]—thereby making the hTERT histone modifications and
expression G4-dependent (Figure 2) [27].

Furthermore, high-affinity binding of G4 structures with factors that methylate DNA called
DNA methyltransferases (DNMT) was reported recently [53]. Along with earlier work implicating
association between G4 structures, global DNA methylation and DNMTs these further supports the
possible role of G4 structures in epigenetic modifications [35,54].

2.4. G4 Structures Formed by RNA: Role in Epigenetic Modifications

Biological role of G4 structures formed by RNA sequences (RNA-G4) in
transcription/translation [55–58], including epigenetic regulation [59] and the potential of
RNA-G4 structures as targets for small molecule-based therapies has been reviewed (Figure 2) [60,61].
Mature human microRNAs were recently discovered to contain RNA-G4 structures that were
implicated in miRNA-mRNA-based transcriptional regulation [62]. Multiple studies show the
telomeric repeat-containing RNA (TERRA), a long non-coding RNA molecule (lncRNA) that forms G4
structures (RNA-G4), to be important in this context [63,64]. Interestingly, it was noted that RNA-G4
structures formed by TERRA bind to lysine-specific histone demethylase1 (LSD-1)—a histone modifier
protein—and this catalyzes the removal of methyl groups from histone 3 at lysine 4 and lysine 9
(H3K4/9) in metazoans [65].

2.5. Telomeric G4 Structures and Epigenetic Modifiers

Formation of G4 structures by (TTAGGG)n telomeric repeats in vertebrates has been implicated in
the activity of the telomere synthesizing protein telomerase [66]. Relatively recent work reveal telomeric
G4 structures might be involved in maintaining the chromatin state of the telomeric/subtelomeric
regions (Figure 2) [67,68]. RNA-G4 binding proteins like TLS/FUS and EWS bind TERRA as well as
telomeric G4 structures forming a ternary RNA-DNA G4 complex [69–72]. This complex of proteins
was observed to recruit the methyltransferase Suv4-20h2, which tri-methylated K20 residues of histone
H4 one of the prime histone modifiers at telomeres [72]. In addition, association of TERRA with the
G4 structure-binding RGG3 domain of TLS/FUS mediates K9 tri-methylation of histone H3, which is
an essential heterochromatin mark at telomeres [73].

Interestingly, interaction of ATRX, an epigenetic modifier of SWI2/SNF2 family, with telomeric G4
structures was shown to be important in maintaining the ‘dynamic’ state of telomeric chromatin
in undifferentiated pluripotent cells [74]. Binding of CBX5 (chromobox homolog 5) along with
ATRX at telomeres was involved in inducing the repressed chromatin state. At the same time,
ATRX bound to TTAGGG repeats interacted with K4 of H3.3 histones imparting features of open
chromatin. In differentiated cells telomeres are predominantly in a closed conformation. Therefore
the ATRX-G4 interaction mediated cell cycle-specific ‘open/closed’ telomeric state in undifferentiated
pluripotent cells appears to be of significance [74].

3. Promise of G4 Structure Binding Molecules in Epigenetics Based Therapeutics

3.1. G4 Structure Binding Ligands as Potential Modifiers of the Epigenetic State

Epigenetic drugs include compounds that bind to proteins that affect chromatin organization,
such as histone methylation/demethylation inhibitors, bromo-domain inhibitors, HAT inhibitors,
HDAC inhibitors, and DNA methyltransferase inhibitors: many of which are at different stages of
clinical trials as anti-cancer molecules [75–77]. Ligand(s) that bind to G4 structures in DNA/RNA and
thereby modulate changes in the chromatin in ways described above, therefore, could be of importance
as ‘epigenetic modifiers’. With this in mind, in the following sections we focus on G4 structure-binding
ligands that could be relevant in epigenetics. The role of G4 ligands as potential anticancer agents
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and in antiviral therapy through functions other than epigenetic mechanisms have been reviewed
earlier [78,79].

Berberine, a plant alkaloid known to bind G4 structures [20,21], was found to induce
hypomethylation of the TP53 promoter leading to apoptosis in the human multiple myeloma U266
cells [80]. In addition, berberine has been shown to down-regulate histone deacetlyases (HDACs) [81];
up-regulate histone acetyltransferases, demethylases, and methyltransferases, resulting in wide
spread changes in methylation of lysine K4/K27/K36 of histone H3 (i.e., H3K4me3, H3K27me3, and
H3K36me3) [82]; and, interestingly, affect interaction of DNMTs with microRNAs during malignant
transformation of colorectal cancer cells [83]. Although G4-berberine interaction was not directly
studied, together these studies implicate berberine in epigenetic functions that could be through G4
structures (Table 1). Similarly, sanguinarine, another molecule obtained from plants, that binds the
telomeric and c-myc promoter G4 structures [21,84] was noted to epigenetically modify chromatin by
inducing altered histone methylation [85].

Table 1. G4 structure binding ligands and their biological roles including in epigenetics.

Ligand Target G4 Structure(s) Affected Function/Pathway/Disease Reference

Berberine,
quindoline

Telomeric
c-myc promoter
p53 promoter

L-type pyruvate kinase (L-PK)
promoter

Colorectal cancer, cervical cancer, liver cancer, multiple
myeloma, lung cancer

Whole genome methylation
Non-alcoholic fatty liver disease mediation by increasing

L-PK expression

[20,80–83,86,87]

Telomestatin
Telomeric

PDGFR-β promoter,
telomerase (hTERT) promoter

Inhibition of telomerase activity
PDGFR-β/hTERT downregulation

Inhibition of fibroblast development and cellular
migration due to hypomethylation of PDGFR-β promoter

[88–91]

L1H1-7OTD Dele, CD6 Transcriptional regulation [92]

Substituted
acridines

hTERT promoter, c-kit promoter,
KRAS promoter, telomeric

hTERT/c-kit/KRAS down-regulation
Telomere shortening [27,93–95]

Se2SAP VEGF promoter VEGF downregulation [96,97]

TMPyP4 miR-1587, C9orf72 promoter, UCP1
promoter, c-myc promoter, telomeric

Inhibition of miR-1587 regulation of TAGLN tumor
suppressor gene

Amyotrophic lateral sclerosis-fronto-temporal dementia
(ALS-FTD) remediation

Regulation of fat tissue differentiation
c-myc transcriptional repression

Telomere shortening

[98–102]

Isaindigotone
derivatives c-myc promoter Interference of NM23-H2—c-myc promoter binding,

c-myc repression [103]

Pyridostatin Telomeric, IGFN1 intron Telomere shortening
Change in IGFN1 mRNA alternative splicing [23,104]

Bleomycin Telomeric Telomere shortening [23]

PDC12 BU-1 promoter BU-1 downregulation in chicken DT40 cells [105]

Based on the effect of the G4 structure observed in replication (described above) small molecules
derived from modification of the well-known G4 binding ligand pyridine 2,6-dicarboximide (PDC)
was screened using the BU-1 locus in DT-40 chicken cells [105]. This resulted in several ligands (e.g.,
PDC12, 14, 22, 23, 25, and 40) that induced transcriptional reprogramming of the BU-1 locus. This was
found to be through the loss of trimethylated-K4 of histone H3 (H3K4me3) and interestingly, cytosine
methylation in the BU-1 gene. Together these suggested the role of the G4 structure in re(placement) of
histone marks, a hallmark of epigenetic regulation [105].

As mentioned earlier, epigenetic reorganization of the hTERT promoter through interaction of
NME2 with the hTERT promoter G4 structures results in repression of abnormally overexpressed
hTERT in cancer cells [27]. Prompted by this authors checked several known G4 binding ligands.
Many of these like 9A, 9B, and Bis-ANON (acridine based), JD59 (bis-indole carboxamide) and RR110
(pyridostatin based) showed more than 50% reduction in hTERT expression, which was shown to be
dependent on presence of the hTERT promoter G4 structure [27]. In addition to this, several other
G4 ligands have been reported to repress hTERT expression [106]. These findings could be useful in
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development of G4 based epigenetic therapeutic interventions for restricting hTERT overexpression as
seen in cancer cells.

Transcription regulation of p21—activation of which results in growth arrest of cancer cells on
treatment with anticancer drugs—was dependent on TRF2-G4 interactions that induced epigenetic
modifications [22]. Anti-cancer drug resistance often results from ineffective p21 activation [107].
The role of the G4 structure in p21 epigenetic regulation was tested using the pyridine derivative G4
ligand 360A [22,108]. Authors showed that aggressive MDAMB-231 breast cancer cells, otherwise
resistant to the anti-cancer drug doxorubicin, regained doxorubicin-sensitivity in presence of 360A.
This was through 360A-mediated de-repression of p21 in MDAMB-231 cells suggesting the potential
function of G4 ligands in modification of cellular epigenetic mechanisms (Figure 3) [22].

3.2. Dietary G4 Ligands Can Affect Epigenetic Modifications

Dietary molecules that affect epigenetics and resulting changes in gene regulation include tea
polyphenols like ellagic acid [109], epigallocatechin gallate [110], curcumin [111], genistein [112],
resveratrol [113], and sulforaphane [114]. Amongst these, epigallocatechin gallate and
theaflavin-3,3′-digallate (TFDG) from green tea and black tea, and resveratrol from berries were
reported to bind telomeric G4 structures with high affinity [115,116]. Curcumin and ellagic acid were
also shown to bind KRAS G4 sequences in vitro [117]. Deficiency of the dietary component folate,
a methyl group donor metabolite, was observed to result in global hypomethylation of CpG islands
and increased G4 structure formation in HeLa cells [118], consistent with decreased methylation
within CpG islands that harbor potential G4 structures in a genome wide study [54]. Berberine
was found to impair parasitic infections from Eimeria sp. through epigenetic modifications in cells
of the gastrointestinal tract in mouse models showing potential as a food supplement in animal
husbandry [119]. Furthermore, ROS-induced oxidative stress is known to result in 8-oxo-guanine
modifications of Guanine base. As described above such modifications have been reported to affect
stability of the G4 structure leading to altered function [44,45,120,121]. Therefore, the effect of dietary
anti-oxidants on G4 structures and related epigenetics could be interesting to consider in future
(Figure 3).

3.3. G4 Structure-Binding Epigenetic Modifier Proteins: Potential for Development of Epigenetic
Intervention Agents

Nucleolin, possibly the first protein noted to interact with G-rich oligonucleotides that adopt
G4 structure was found to be involved in epigenetic modification of histone H1 implicated in
decondensation of chromatin [122–124].

Interestingly, in 2009, a metastasis suppressor factor NME2 was found to not only associate
with the promoter G4 structure of the oncogene c-myc but also important for transcription regulation
of c-myc suggesting transcription regulatory roles of G4 structures in association with regulatory
factors [52]. More recently, NME2 was shown to be involved in epigenetic regulation of hTERT through
association with the G4 structure in the promoter of hTERT [27].

Epigenetic modifiers like DNMT3A and 3B, EZH2, and ATRX (as discussed earlier) bind to
G4 structures where epigenetic regulatory functions mediated through such interactions might be
of clinical significance [35,37,53,74]. In addition, interaction of TRF2 with G4 structures and/or
G-rich binding sites might be important because of epigenetic regulation of genes like p21 and
several other [22], which interestingly was also noted to be dependent on telomere length [125].
The TRF2-mediated epigenetic regulation of p21 appears to be of added significance in aggressive as
well as commonly encountered drug resistant cancer cells.

Somewhat in line with these studies a large scale screening for G4 structure interacting factors
using protein microarrays comprising >9000 human proteins found several factors that are involved
in binding nucleosomes [126]. It is also likely that function of the G4 structure helicases like
FANCJ [127], BLM [128], WRN [129], and REV-1 [49] would be important in epigenetic modifications
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in a replication-dependent manner (as demonstrated for REV-1) [49]. Similarly factors that bind to
RNA G4 structures like the polycomb repressive complex 2 (PRC2) [37], TLS/FUS [72,73], EWS [71],
and hnRNP A1 [130,131] suggest further importance of G4 structure-protein interactions in epigenetic
regulation [37,71–73]. It is of interest to note here that many of the G4 structure interacting proteins
possess the positively charged Arg-Gly-Gly (RGG/RG) motif containing domain, which is noted to be
important for G4 structure binding (Figure 3) [132–134].
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Figure 3. Ways of therapeutic intervention through G4 structure-binding small molecules. Stabilization
of G4 structure by means of ligands inhibits telomerase activity at telomeres, regulates expression of
genes at transcriptional and epigenetic levels. Proteins stabilizing G4 structure upon binding, allow
epigenetic modifiers to dock at the site, further regulating gene expression. Several dietary components
protect G4 structure from unwanted modifications by binding to the secondary structure. HDACs:
histone deacetlyases; DNMTs: DNA methyltransferases.
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4. Conclusions and Future Perspectives

For more than a decade G4 structures have been implicated in epigenetic modifications that
might impact state of chromatin resulting in altered gene regulation. Recent studies through more
direct studies show how G4 structures modify chromatin by not only change in histone and/or DNA
modification but also during replication. A growing number of reports suggest that G4 structure has
significant role to play in epigenetic control of genes involved in various neurological disorders as well
as cancer. Herein we have focused on these studies. This is discussed along with studies that have
focused on design and characterization of different classes of small molecule ligands that specifically
bind to G4 structures. However, the epigenetic effects of these ligands remain to be confirmed in more
physiologically relevant settings, such as in animal models.

Together, these bring forth the promise of the G4 structure binding ligands, including dietary
molecules, in affecting epigenetic mechanisms. This becomes particularly notable in cases where
changes in epigenetic pattern have been shown to play a role in diseases such as cancer and
neurodegenerative disorders. It is possible, therefore, that ligands that bind to G4 structures
reinstate/rescue aberrant epigenetic modifications in chromatin and thereby enable therapeutic
interventions. Mitochondrial DNA (mtDNA) G4 structures are another promising avenue for small
molecule therapeutics; although there is a lack of sufficient data in the field currently mtDNA G4
structures are increasingly under consideration as targets for therapeutic intervention in mitochondrial
diseases [135]. A recent study reported that RHPS4, a G4-binding ligand thought to localize to nuclear
G4s showed preferential binding to mtDNA G4 structures in both cancerous and non-cancerous cell
lines thereby opening new avenues to study mtDNA transcriptional and epigenetic regulation using
G4-binding molecules specific to mtDNA [136]. Although intracellular G4 structures are primarily
right-handed in orientation, left-handed G-quadruplexes have been observed in vitro [137]; however,
there is lack of sufficient evidence to validate their formation by nuclear or mitochondrial G-rich
sequences in cellulo. Both left and right handed G4 structures have been shown to form from the same
nucleic acid sequence mediated by small molecule binding [138]. Questions about the effect of G4
orientation and ‘handedness’ on genome structural dynamics need to be addressed to improve on the
structural sensitivity of G4-binding small molecules.

Although several G4 helicases and G4 binding proteins are known to be associated with genetic
diseases not much has been explored for therapeutic interventions. The current arsenal of G4 related
therapeutics comprise of G4 selective ligands, which are being attempted to be upgraded to locus
specific targeting and G4 DNA aptamers which can bind and inhibit G4 interacting proteins [139].
Aptamers based on promoter G4s are being focused on to serve as G4 decoys in several cases and also
being considered as a drug delivery tool as in case of AS1411-drug conjugate nanoparticles [140].

The multitude of data on the biological significance of G4 and G4 structure interacting proteins
could also be utilized to design novel drug molecules. Small peptides or peptidomimetics with better
stability could be designed to bind and stabilize G4 structures as well as mediate epigenetic changes at
locus of interest. This strategy combined with conventional G4 ligands or alone, could be effective
in inducing desired epigenetic modification to counter a particular disease state. It could also be
specifically delivered to cancer cells using above mentioned aptamer based delivery systems [140].
However, detailed knowledge of protein structure and the interacting G4 structures is still required
to develop molecules which can both bind and recruit epigenetic factors. Perhaps tailoring this for
a specific locus would be equally important. In conclusion, the G4 structure has been deemed as
a promising target in anti-cancer therapy for long now—its emerging role in epigenetic control of
pharmacogenes could be a new-found angle in this battle.
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