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Abstract

Background: The Alternative Splicing Mutation Database (ASMD) presents a collection of all
known mutations inside human exons which affect splicing enhancers and silencers and cause
changes in the alternative splicing pattern of the corresponding genes.

Findings: An algorithm was developed to derive a Splicing Potential (SP) table from the ASMD
information. This table characterizes the influence of each oligonucleotide on the splicing
effectiveness of the exon containing it. If the SP value for an oligonucleotide is positive, it promotes
exon retention, while negative SP values mean the sequence favors exon skipping. The merit of the
SP approach is the ability to separate splicing signals from a wide range of sequence motifs enriched
in exonic sequences that are attributed to protein-coding properties and/or translation efficiency.
Due to its direct derivation from observed splice site selection, SP has an advantage over other
computational approaches for predicting alternative splicing.

Conclusion: We show that a vast majority of known exonic splicing enhancers have highly positive
cumulative SP values, while known splicing silencers have core motifs with strongly negative
cumulative SP values. Our approach allows for computation of the cumulative SP value of any
sequence segment and, thus, gives researchers the ability to measure the possible contribution of
any sequence to the pattern of splicing.

Background exonic splicing enhancers (ESE) and exonic splicing
One of the key regulators of alternative splicing is a large  silencers (ESS). These regulatory sequences have been
variety of short sequence motifs inside exons known as  characterized by several experimental techniques [1-5]

Page 1 of 6

(page number not for citation purposes)


http://www.biomedcentral.com/1756-0500/1/4
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Research Notes 2008, 1:4

and also by different computational approaches [6-14].
Despite this progress, one still can not predict predisposi-
tion to alternative splicing from genomic data. In this
respect, a set of mutations known to be associated with
alternative splicing effects (reviewed by [15,5]) is a valua-
ble raw material for the investigation of the fine regula-
tion of splicing. A novel database of these mutations,
named the Alternative Splicing Mutation Database
(ASMD), is described in the accompanying paper [16].
The ASMD represents a collection of human exon
sequences with internal mutations that change the bal-
ance of alternatively spliced mRNA isoforms or cause the
appearance of new mRNA isoforms. The ASMD includes
only those mutations that change exonic enhancers and
silencers and does not encompass those that change splice
sites. Here we present a novel statistical approach for
processing ASMD mutational datasets, converting them
into a table of "Splicing Potential" (SP) values for every
possible short oligonucleotide. If the SP value for an oli-
gonucleotide is positive, it promotes exon retention,
while negative SP values mean the sequence favors exon
skipping. SP appears to be a valuable tool for evaluating
the influence of a given sequence on splicing, for finding
and testing putative ESE and ESS motifs, and for predict-
ing the effect of a given mutation on splicing.

Algorithm for calculation of Splicing Potential

Our SP algorithm processes all oligonucleotides that
appear and disappear in the mutations described in the
ASMD. Due to the limited size of the current ASMD data-
set, we only calculate SP values for triplets. For example,
the mutation (G -> T) in the 14th exon of the gene BRCA1
(entry '10asmd') occurs in the exonic region gctGagt -> gct-
Tagt (mutation site is in the middle and is shown in capi-
tal letters). This mutation generates three new triplets (ctT,
tTa, and Tag) and, at the same time, eliminates three tri-
plets from the wild-type sequence (ctG, tGa, and Gag). The
splicing effect of this mutation is SE = -1, meaning that
this mutation causes the 14% exon to be skipped in all
gene transcripts. Because the wild-type triplets ctG, tGa,
and Gag strengthen splicing of the exon, the algorithm
increases their potential values by the value SP; = log, ,(w),
where w = 1+abs(SE) and index i is the case identifier. In
this example, SE is equal to -1, and thus w = 2. In our algo-
rithm, w is simply the weight factor that awards more
impact to those mutations that cause more dramatic
changes in splicing patterns. In addition, because of the
mutant triplets (ctT, tTa, and Tag) weaken the splicing of
the exon, the algorithm decreases their SP values by the
same value of SP; = -log; ,(w). The final potential value for
a particular triplet xyz is the sum of SP;(xyz) for all cases in
the ASMD where this triplet appears/disappears due to
mutations. Finally, to make the SP values independent of
the ASMD sample size, we normalize them by the stand-
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ard deviation of SP values (ogp). Thus, final SP values are
calculated by the formula:

SP(x)z) = sum(SP;(x12))/osp. (1)

We compared SP(xyz) with the coding potential, CP(xyz),
for the triplet xyz, which was calculated by one of the sim-
plest forms using equation:

CP(xyz) = log,o(Fc(xy2)/Fi(xyz))/oce (2)

where F_(xyz) is the frequency of the triplet xyz inside cod-
ing exonic regions, and F;(xyz) is the frequency of xyz
inside introns. Throughout this study we multiplied all SP
and CP values by 0.243, the o for the entire sample of
non-redundant human genes. If CP(xyz) has a positive
value, the xyz triplet is more abundant in exons versus
introns. When CP(xyz) is negative, the opposite is true and
xyz is more abundant in introns. There are several much
more advanced formulas for computing CP, which take
into account additional information such as reading
frames, exon length, overall genome composition, etc.
[17,18]. Usually these approaches use advanced statistics,
such as Markov models. However, for proper and ade-
quate comparison of our initial data of SP values versus
CP values we deliberately used formula (2). Both formula
(2) and (1) do not account for reading frames and other
genomic peculiarities. Such restrictions are appropriate
for the limited size of the current ASMD dataset.

The SP and CP values for all 64 triplets are shown in Table
1. The more positive the SP value of the triplet, the more
frequently its appearance is associated with retention of
the exon containing it. Conversely, the more negative the
SP value, the more frequently its inclusion is associated
with exon skipping. Table 1 reveals a considerable Pear-
son correlation (r = 0.59) between coding potential (CP)
and splicing potential (SP) values of triplets. A majority of
triplets with positive CP values (meaning that their fre-
quency in exons is greater than introns) also have positive
SP values, while triplets with negative CP values fre-
quently have negative SP values. However, the SP and CP
values of a given triplet can differ significantly (for
instance, see triplets ccg, ccc, gg¢, taa, att).

Testing of SP values of splicing enhancers and
silencers

Tables 2, 3, 4, 5 present cumulative SP values for a number
of known ESE and ESS sequences, calculated by summing
the SP values of all triplets composing them. Since the ESE
and ESS could have different lengths, we also calculated
the average SP value per triplet. For example, the first
motif in Table 2, aggacagagc, is composed of eight triplets
(agg, gga, gac, aca, cag, aga, gag, agc). The sum of the SP
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Table I: List of 64 triplets and their CP and SP values calculated for human genes.

Triplet CP SP, Triplet CP SP, Triplet CP SP, Triplet CP SP,
CGC 0.57 0.19 GCA 0.14 -0.03 GTC 0.05 0.0l cTT -0.13 -0.11
CGG 0.56 0.30 GCT 0.13 0.06 GTG 0.03 -0.08 CTA -0.13 -0.03
CCG 0.55 -0.02 CTG 0.13 0.03 AAC 0.03 0.06 TCT -0.15 -0.03
GCG 0.55 0.51 CCA 0.12 -0.03 GAT 0.02 0.25 TTG -0.17 -0.19
CGA 0.51 0.45 GAG 0.12 0.15 CTC 0.02 0.14 TGT -0.17 -0.40
ACG 0.43 0.18 TGC 0.12 -0.06 ATC 0.02 0.03 AAA -0.18 -0.05
TCG 0.40 0.56 GAA 0.11 0.18 ATG 0.01 -0.13 GTT -0.21 -0.23
CGT 0.30 0.28 TGG 0.10 0.17 ACA 0.00 -0.13 AAT -0.25 0.08
GCC 0.24 0.02 AAG 0.10 0.26 TGA 0.00 -0.09 GTA -0.26 -0.21
GAC 0.22 0.22 GGG 0.09 -0.54 TCA -0.03 0.0l ATT -0.31 0.14
GGC 0.21 0.38 AGA 0.08 0.07 GGT -0.04 -0.30 TAT -0.35 -0.33
GGA 0.19 0.38 CCT 0.06 0.13 TAC -0.06 -0.14 ATA -0.37 -0.05
CcCC 0.19 -0.16 CAA 0.06 -0.11 ACT -0.06 -0.13 TAG -0.38 -0.56
AGC 0.18 0.04 TCC 0.06 0.01 CAT -0.08 -0.03 TAA -0.40 0.34
ACC 0.16 0.04 CAC 0.05 -0.18 AGT -0.10 -0.10 TTA -0.41 -0.39
CAG 0.15 0.15 AGG 0.05 -0.01 TTC -0.11 0.38 TTT -0.47 -0.60

The triplets are sorted based on their CP value starting from the maximal one.

values of these triplets is 0.89 and the value per triplet is
0.89/8 =0.11.

Table 2 presents a list of experimentally-determined non-
redundant ESE sequences that have also been evaluated
by another computational approach in Down et al. [9].
We do not consider ESEs with ambiguous bases in their
internal regions (for instance, tgcngyy sequence) because
even a single nucleotide substitution in the analyzed
motif could dramatically change its cumulative SP value.
All ESEs in Table 2 have high, positive, cumulative SP val-
ues. Their average cumulative SP value per triplet is 0.17.

Table 3 presents the consensus sequences of computer-
predicted and verified ESE motifs obtained with the RES-
CUE-ESE method [11]. Eight out of ten of these RESCUE-
ESE sequences also have positive cumulative SP values.
Yet, the average SP per triplet (0.07) of these ten RESCUE-
ESEs is much less than that of the experimentally-deter-
mined ESEs (0.17). Two out of ten RESCUE-ESE
sequences have negative SP values (motifs #2 and #7,
Table 3). Through the use of a different computational
approach utilizing a machine learning strategy, these two

Table 2: SP values of experimentally-determined exonic splicing
enhancers.

No ESE Cum SP value SP per triplet SR protein

| aggacagagc 0.89 0.11 ASF/SF2
2 aggacgaagc 1.71 0.21 ASF/SF2
3 rgaagaac 0.97 0.16 ASF/SF2
4 acgcgca 1.04 0.21 ASF/SF2
5 cctegtec 1.13 0.19 SRp20

6 acgaggay 1.39 0.23 9G8

7 aggagat 0.85 0.17 SC35

motifs have also been shown to insignificantly impact
splicing, or have "negative status," according to Down, et
al. [9]. We also processed the total list of 238 putative RES-
CUE-ESE human splicing enhancers from the Hollywood
exon annotation database [19]. The average SP value per
triplet for this list is 0.08. 200 ESEs from this list have pos-
itive cumulative SP values and 38 are negative.

Table 4 presents experimentally verified ESS sequences
from the RegRNA database [20]. We do not include very
long (>50 nt) and very short (<5 nt) ESSs. We also
excluded a controversial GAAGAAGA silencer motif
because it overlaps with the well-known ESE motif
AAGAA, as well as ESE #5 from Table 3. Table 4 demon-
strates that three out of five of these ESSs have negative
cumulative SP values. However, all ESSs from this list have
core sequences (shown in bold) with highly negative
cumulative SP values (shown in the last column in Table
4).

Table 3: SP values of RESCUE-predicted exonic splicing
enhancers.

No RESCUE-ESE Cum SP SP per triplet
| atcttc 0.27 0.07
2 actaca -0.43 -0.11
3 ttggat 0.60 0.15
4 gaatca 0.30 0.08
5 gaagaa 0.69 0.17
6 ttcaga 0.62 0.15
7 gacaaa -0.07 -0.02
8 ctgaag 0.38 0.10
9 aatcca 0.09 0.02
10 aacttc 0.20 0.05
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Table 4: SP values of experimentally-determined exonic splicing silencers.

No Name ESS Cum SP value SP per triplet Core Cum SP value
| R0624 agatcctagactagagcect -0.12 -0.01 -1.31
2 R0628 ccaagtcaaaatttac -1.09 -0.08 -1.12
3 R0629 tgtggg -0.86 -0.22 -0.86
4 R0632 agatccattcgattagtgaa 1.18 0.06 -1.23
5 R0634 taagtgttctgagct 0.34 0.03 -0.82

Finally, Table 5 presents a list of 21 in vitro selected puta-
tive ESSs published by Wang et al. [10]. Eighteen ESSs
from this table have negative SP values, while two
sequences have slightly positive SP values and only one
sequence (ESS4) stands apart with a highly positive SP
value (0.16 per triplet). The average cumulative SP for this
group of 21 putative ESS is -0.17.

All in all we see a strong tendency for ESE to have positive
cumulative SP-values and for core sequences of ESS to
have negative cumulative SP-values. Therefore, this
approach could be used for evaluation of a broad range of
sequences for their contribution to the pre-mRNA splicing
process.

Testing the ability of SP to distinguish exons and
introns

The capability of the SP and CP to distinguish between
exons and introns has been examined. The complete sets
of triplets composing each single exon and intron have
been obtained (a sequence of L nucleotides is represented

Table 5: SP values of in vitro selected exonic splicing silencers.

Name ESS Cum SP value SP per triplet
ESSI TTTGTTCCGT -0.77 -0.10
ESS2 GGGTGGTTTA -2.28 -0.28
ESS3 GTAGGTAGGT -2.16 -270
ESS4 TTCGTTCTGC 1.32 0.16
ESS5 GGTAAGTAGG -0.79 -0.10
ESS6 GGTTAGTTTA -2.80 -0.35
ESS7 TTCGTAGGTA -0.07 -0.01
ESS8 GGTCCACTAG -1.22 -0.15
ESS9 TTCTGTTCCT 0.28 0.03

ESSI0 TCGTTCCTTA 0.63 0.08

ESSI | GGGGTTGGGA -1.80 -0.22

ESSI2 GTTTGGGGGT -2.77 -0.35

ESSI3 TATAGGGGGG -3.10 -0.39

ESSI14 GGGGTTGGGA -1.80 -0.22

ESSI5 TTTCCTGATG -0.01 0.00

ESSI6 TGTTTAGTTA =291 -0.36

ESSI17 TTCTTAGTTA -1.43 -0.18

ESS18 GTAGGTTTG -2.10 -0.30

ESSI19 GTTAGGTATA -2.08 -0.26

ESS20 TAATAGTTTA -1.51 -0.19

ESS21 TTCGTTTGGG -0.17 -0.02

by (L-2) triplets). The average SP and CP values of exons
and introns were calculated by summing the all triplet val-
ues and dividing by the number of triplets. The distribu-
tions of average SP and CP values per length for exons (red
curve) and introns (blue curve) are shown in Fig. 1.
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Figure |

Distribution of exons and introns by average SP val-
ues (A) and average CP values (B). Values were calcu-
lated for 90,178 constitutive human exons (blue curve) and
the same number of introns form non-redundant human
gene sample (red). Values for 9,768 skipped exons (green
curves) were normalized to the number of constitutive
exons exons (multiplied by 90178/9768 ratio). Vertical axis —
number of exons or introns with particular average SP or CP
values.
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The overlapping area of the peaks represented by exon
(blue) and intron (red) curves from Fig. 1 is 1.5 times
smaller for the average SP values (46% overlap) than for
the average CP values (68% overlap). Moreover, the SP
values are significantly less variable than the CP values,
which enhances the discriminating ability of SP in statis-
tical tests (such as the t-test).

We also examined the distribution of average SP and CP
values in the alternatively spliced exons of humans. Fig. 1
shows the distribution of average SP and CP values in a
special case of alternative splicing - skipped exons with
high skipping/retaining ratio (shown as green curves). Fig.
1A demonstrates that average SP values of skipped exons
is very similar to constitutive exons (95% of curves over-
lapping), yet the curve for skipped exons has a slight, con-
sistent shift toward the intron curve for every data point.
The corresponding data for average CP-value curves (Fig.
1B) are not as smooth. There are several intersections
between the average CP curves for skipped and constitu-
tive exons. Thus the CP data is less amenable to interpre-
tation.

Discussion

Splicing Potential is a statistical approach for evaluating
the involvement of oligonucleotides in splicing that is
based solely on the ASMD dataset. HIt For each mutation
we study the entire group of triplets overlapping this
mutation because we do not know their individual contri-
butions to splicing. Plausibly, a number of the triplets in
these groups have no significant effect on splicing. These
sequences produce statistical "noise," appearing in our
processing algorithm in one set of instances as splicing
enhancers (having positive SP; values) and in other cases
as splicing silencers (with negative SP; values). Collecting
more data on splicing mutations should statistically
resolve such irrelevant oligonucleotides, bringing their SP
values closer to zero.

Enlarging the ASMD dataset will present the opportunity
to compute the SP values for larger oligonucleotides. To
generate a reliable SP table for 4-mer nucleotides we need
to know at least 250 mutations that affect splicing; for 5-
mers, 800 mutations; and for 6-mers, at least 3000 muta-
tions. It is well known that the predictive power of the
coding potential (CP) increases dramatically with longer
oligonucleotides: (n+1)-mers are always much better than
n-mers, and 6-mers are the most commonly used oligonu-
cleotides in real-world computations [21]. By analogy, we
expect that the predictive power of SP will dramatically
increase when SP values for longer oligonucleotides (up
to 6-mers) have been computed.

We currently operate with the small set of 115 mutations
in the ASMD. Even this limited dataset demonstrated an
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impressive trend in distinguishing between exonic and
intronic sequences and also a very small, yet consistent,
difference between constitutive and skipping exons. The
SP values of triplets obtained on only 115 mutations is 1.5
times better at the separation of exons and introns com-
pared to the analysis of triplet frequencies using Coding
Potential. Further expansion of the ASMD dataset should
dramatically increase the accuracy of the SP values and
add power to this new tool for the prediction of exon/
intron gene structures and, hopefully, alternative splicing.

Supplementary Methods can be found in Additional filel.
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