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Abstract: As genomes of many plant species have been sequenced, demand for functional genomics
has dramatically accelerated the improvement of other omics including metabolomics. Despite a large
amount of metabolites still remaining to be identified, metabolomics has contributed significantly not
only to the understanding of plant physiology and biology from the view of small chemical molecules
that reflect the end point of biological activities, but also in past decades to the attempts to improve
plant behavior under both normal and stressed conditions. Hereby, we summarize the current
knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and
stress responses, focusing further on the contributions of metabolomics to practical applications
in crop quality improvement and food safety assessment, as well as plant metabolic engineering.
We also highlight the current challenges and future perspectives in this inspiring area, with the aim
to stimulate further studies leading to better crop improvement of yield and quality.

Keywords: primary and secondary metabolism; mQTL; mGWAS; metabolic engineering;
crop improvement

1. Introduction

Plants produce large numbers of metabolites of diversified structures and abundance that play
important roles in plant growth, development, and response to environments. These diverse small
molecular weight metabolites, the chemical base of crop yield and quality, are also valuable nutrition
and energy sources for human beings and live stocks [1]. Generally, these metabolites are classified into
primary and secondary metabolites. The former are indispensable for the growth and development of
a plant, while the latter are not essential but are crucial for a plant to survive under stress conditions
by maintaining a delicate balance with the environment. In addition, primary metabolites are highly
conserved in their structures and abundances while those of secondary metabolites differ widely
across plant kingdoms [2]. The diversity of plant metabolites and the likely complicated regulatory
mechanism highlight the necessity to explore the underlying biochemical nature [1].

The output of plant metabolomics depends largely on its methodologies and instrumentations
to comprehensively identify, quantify, and localize every metabolite. Actually, it is very challenging
because of the complexity of the diverse metabolic characteristics and abundances of molecules.
Fortunately, albeit the fact that accurate and exhausted analysis of the whole metabolome of a biological
sample seems currently impossible, methodologies and instrumentations of plant metabolomics
have been developing rapidly [3]. At present large scale analysis of highly complex mixtures
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are enabled by a series of integrated technologies and methodologies, such as non-destructive
NMR (nuclear magnetic resonance spectroscopy), mass spectrometry (MS) based methods including
GC–MS (gas chromatography–MS), LC–MS (liquid chromatography–MS) and CE–MS (capillary
electrophoresis–MS), and FI-ICR–MS (Fourier transform ion cyclotron resonance–MS) [4,5]. Assisted by
other technologies of sampling, metabolomics could be performed in the subcellular level and even in
a single cell [6–9]. These analytical approaches have shown their potential power in plant metabolomic
studies in many common plant species including staple food crops such as tomato, rice, wheat, and
maize for various purposes [10–13]. However, because of the intrinsic limitation of each analytical
platform, combined approaches are increasingly used in metabolomics analysis.

Although metabolomics is downstream of the other functional genomics (transcriptomics and
proteomics), the practical size of the metabolome of a species, unlike transcriptome or proteome, cannot
be speculated directly by known genomic information via central dogma. Therefore, metabolomics is
used to obtain a large amount of valuable information for the discovery of genes and pathways through
accurate and high throughput corollary peak annotation via snapshotting the plant metabolome [14].
It seems that there is a complicated regulatory network among these small molecules in plants, and by
detecting the interactions among these metabolites, metabolomic analysis contributes significantly to
the understanding of the relation between genotype and metabolic outputs by tackling key network
components [15]. Such kinds of metabolomic analysis, integrated with transcriptomic analysis, have
been successfully applied to investigate the coordinated rules of metabolic fluxes and metabolite
concentrations in plants [15,16]. Recently, high throughput and low-cost approaches have been used
to achieve huge omics data output in a short time, and further to reconstruct the metabolic models in
microbial organisms [17]. However, integration of sequential multiple omics data to understand plant
development remain challenging, since the relationship between each of the omics is complex and
not always linear. Nevertheless, plant metabolomics has become a powerful tool to explore various
aspects of plant physiology and biology, which broadens significantly our knowledge of the metabolic
and molecular regulatory mechanisms regulating plant growth, development and stress responses,
and the improvement of crop productivity and quality. In this review, we summarize our current
understanding of plant physiology and biology in the context of metabolites and metabolic networks.
The important roles of inherent genetic factors governing the natural metabolic variation among plants
are highlighted, the application of plant metabolomics in crop improvement, and its future prospective
are also discussed.

2. Using Plant Metabolic Phenotype to Reveal the Function of Genes in the Plant Genome

With the advance of sequencing technology, dozens of plant species have been sequenced.
To comprehensively understand functional genomics regarding plant development, the importance
of advanced tools of metabolomics, together with QTL (quantitative trait locus) analysis, GWAS
(genome-wide association study), and knock-out/down technology, has been increasingly recognized
within the plant science community.

2.1. From mQTL to mGWAS: Hunting for Candidate Genes Correlated to Metabolic Phenotype in
Genetic Variation

In plants, it is well known that QTLs are distributed in many regions of the chromosome and
large numbers of alleles occur in the process of domestication. Molecular breeding benefits from the
fragment with preponderant genes that leads to high productivity or quality. Compared with the
few participants and unfulfillable crosses-designed in human genetics, plants are more suitable for
linkage analysis. However, one of the limitations of complex QTL mapping is the acquirement of
precise phenotype data. Although high throughput plant phenotyping platforms and corresponding
plant phenomics have offered and integrated a set of novel technologies, more details of complex
plant phenotypes still need to be mined. More recently, some specific traits like metabolic variants in
large-scale omics data have been taken into analysis in human disease and mouse studies [18,19], and
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shows more advantages than classic macroscopical phenome in disease and pharmaceutical studies
because it provides much more information [20]. Therefore, using the metabolic phenotype to study
genetic variation may deepen our understanding of plant biology from a metabolomic viewpoint.
Table 1 summarizes currently conducted researches. In Arabidopsis, the analysis of 369 recombinant
inbred lines and 41 introgression lines indicated that the metabolite heterosis is primarily contributed
by epistasis [21]. In tomato, metabolite profiling in seeds of 76 introgression lines in two consecutive
harvest seasons revealed the presence of 30 metabolite quantitative trait loci (mQTLs) and
dissected partial mechanisms, underlying the variational contents of main primary metabolites [22].
Similar mQTL analyses have been performed in other plant species, such as wheat, rice, and
rape [23–25], however, genetic bases of the metabolomics diversity in plants remain to be further
uncovered. In QTL analysis, the heritability of given phenotype (broad-sense heritability) and the
r2 of the individual locus linked to a given phenotype (the effect size of locus), two important
parameters, are usually evaluated. In metabolome-based QTL study, primary metabolites often
have high heritability, and the secondary metabolite loci have higher r2 for a metabolic phenotype than
primary metabolites [26].

Table 1. Summary of mQTL (metabolite quantitative trait loci) and mGWAS (metabolome-based
genome-wide association study) studies in plant.

Species Tissue Population Type Method Metabolic Traits Ref.

mQTL study

Arabidopsis Harvested seed Recombinant inbred lines HPLC Tocopherol [27]
Arabidopsis Leaf Recombinant inbred lines GC–TOF-MS Metabolome [28]
Arabidopsis Seed Recombinant inbred lines LC–MS Flavinoids [29]

Arabidopsis Seedling Recombinant inbred lines
Introgression lines GC–TOF-MS Metabolome [21]

Brassica napus Leaf
Seed Doubled haploid lines HPLC Glucosinolates [25]

Maize Leaf Recombinant inbred lines
Natural accessions GC–TOF-MS Primary Metabolites [30]

Rice Seed Chromosomal segment
substitution lines LC-Q-TOF-MS Metabolome [24]

Rice Seed F2, F2-derived lines GC–MS Lipids [31]
Rice Flag leaf Germinating seed Recombinant inbred lines LC–EI–MS Metabolome [32]

Tomato Fruit Introgression lines GC–MS Metabolome [22]
Tomato Fruit Introgression lines GC–MS Metabolome [33]

Tomato Fruit Introgression lines GC–MS,
LC–MS Metabolome [34]

Tomato Fruit Introgression lines GC–MS Primary Metabolites [35]
Tomato Fruit Introgression lines UPLC Secondary Metabolites [36]
Wheat Flag leaf Doubled haploid lines LC–ESI–MS Metabolome [23]
Wheat Flag leaf Doubled haploid lines GC–MS Metabolome [37]

mGWAS study

Arabidopsis Seed Natural accessions LC–MS Branched-chain amino acids [38]
Arabidopsis Leaf, Seedling Natural accessions LC–MS Glucosinolates [39]
Arabidopsis Leaf Natural accessions GC–TOF-MS Metabolome [40]

Maize Kernel Natural accessions UPLC–MS Metabolome [41]
Maize Grain Natural accessions HPLC Carotenoid [42]
Maize Grain Natural accessions HPLC Tocochromanol [43]
Maize Leaf Natural accessions GC–MS Metabolome [44]
Maize Leaf Natural accessions GC–MS Metabolome [45]
Maize Kernel Natural accessions LC–MS Metabolome [46]
Potato Tuber Natural accessions GC–MS Primary Metabolites [47]
Rice Leaf Natural accessions LC–QTOF-MS Secondary Metabolites [48]
Rice Leaf Natural accessions LC–MS Metabolome [49]
Rice Leaf Natural accessions LC–MS Phenolamides [50]

Tomato Fruit Natural accessions GC–MS Metabolome [51]

Besides linkage analysis, QTLs can also be identified through association analysis [52].
Compared with most artificial mapping populations that are constructed by crosses between
two parental accessions, association analysis populations are composed of large numbers of natural
accessions containing more genetic variants as well as potential for the identification of unknown
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phenotype-associated loci in the plant genome. Benefiting from the development of next-generation
sequencing technologies, metabolome-based GWAS (mGWAS) has been used to understand genetic
mechanisms underlying metabolic diversity and their associations with complex traits in plants.
Riedelsheimer et al. designed an mGWAS analysis using a set of 289 different maize inbred lines
with 118 biochemical compounds and was able to identify 26 distinct metabolites that are strongly
associated with single nucleotide polymorphism (SNPs) in maize, and pinpointed the key role of
a chromosome 9 localized cinnamoyl-CoA reductase in improving the quality of lignocellulosic
biomass [45]. In rice, a GWAS analysis using those metabolomic data obtained from 175 rice accessions
successfully identified 323 associations between 143 SNPs and 89 secondary metabolites, which
revealed two sorts of genetic machineries determining the natural variations in rice secondary
metabolite compositions [48]. Another matrix of 840 metabolite features obtained from a worldwide
collection of 524 rice accessions indicated that few loci with large effects control the levels of
secondary metabolites while several loci with small effects control the natural variation of primary
metabolites [49,53]. Nevertheless, although mGWAS identifies large-scale metabolite-related QTL,
which maybe widely used in future in plants, several drawbacks are also inescapable at present.
Firstly, limited to the present statistical algorithm, it is difficult to exactly identify the epistasis or
gene-environment interaction (G ˆ E) QTL. Secondly, limited to the precision especially in some region
of the chromosome with slow decay of linkage disequilibrium, and the labor and time-consuming
procedure, it is unrealistic for all of the hundreds of potential genes from one single analysis to be
verified by transgenic analysis. Fortunately, the same as with other traits like seed quality, as long as
the regions of interesting QTL are determined, these QTL could be further utilized for marker-assisted
selection breeding without the necessarily to find out the underlying gene(s) [54].

2.2. Reverse Genetic Approaches for Exploring the Function of Enzyme in Certain Metabolic Pathways

Plant metabolic pathways are usually under multiple levels of regulation. Currently, our
understanding of plant metabolomes results mainly from studies in a few model plants, therefore,
pathways absent in those model plants are scarcely known. During the last decade, metabolomic
approaches combined with reverse genetic tools (such as RNAi and gene knockout) expanded
tremendously our understanding of biochemical reactions and metabolic pathways not reported in
those model plants [55]. Direct measurement of the alteration in the metabolome or specific metabolic
compositions of mutants can facilitate the functional annotation of the causing genes. In Arabidopsis,
phenylalanine ammonia-lyase (PAL) is encoded by four genes involved in the phenylpropanoid
pathway. Double mutant pal1pal2 that lacks three major flavonol glycosides showed over accumulation
of phenylalanine, perturbed metabolisms in other nonaromatic amino acids, as well as reduction in
lignin contents [56]. Exposing the gdh (glutamate dehydrogenase) triple mutant to continuous darkness
demonstrated that providing 2-oxoglutarate for the tricarboxylic acid cycle is the main physiological
function of NADH-GDH (NADH-dependent glutamate dehydrogenase), and that NADH-GDH
impacts remarkably on amino acid accumulation in both roots and leaves [57]. Fukushima et al.
established a database called Metabolite Profiling Database for Knock-Out Mutants in Arabidopsis
(MeKO) based on the metabolomic analysis on 50 Arabidopsis mutants, which includes images
of mutants, accumulation patterns of different metabolites, as well as their statistical results [58],
facilitating significantly the related studies in Arabidopsis. Metabolomic analyses with mutants rather
than silent mutation, such as transgenic or overexpression lines, can also achieve the same outcome.
In rice, constitutively overexpression of the Arabidopsis chloroplast NADK gene enhanced NADK
activity, accumulated the NADP(H) pool, increased electron transport and rates of CO2 assimilation,
and verified the critical role of NADP content in the photosynthetic electron transport rate in rice [59].
With the advancement of genome editing techniques, such as CRISPR/Cas9 [60], our understanding
of a specific enzyme in plant metabolism will be significantly promoted. In addition, because genome
editing is convenient and highly effective to generate multiple gene mutations simultaneously in
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plants [61], the interaction between two or more genes in a certain metabolic pathway can be readily
explored via analyzing the metabolic profile of multiple-gene mutants.

In the future, mGWAS or mQTL analysis, combined with reverse functional genomic strategies,
will more effectively uncover in depth the genetic and biochemical mechanisms governing metabolic
pathways in plants.

3. Metabolomics and Plant Development under Normal and Stress Conditions

Successful molecular breeding largely depends on the detailed understanding of the molecular
mechanisms underlying plant development obtained via systems biology approaches, including
metabolomics, under normal or stress conditions. Detection of metabolic changes in different
developmental stages contributes in finding characteristic metabolites (metabolic markers) for specific
developmental stages. Similarly, plant metabolomics can help plant breeders to identify resistant
biomarker metabolites that integrate the genetic background with the influence of the environment
under stress conditions, and the selected biomarker may be used as a diagnostic metabolite for plant
stress [62].

3.1. Spatial-Temporal Metabolic Profiling during Plant Development

The potential yield of a crop is controlled mainly by two factors, the rate of biomass accumulation
and the duration of growth. Exploring dynamic metabolic changes occurring during plant growth and
development may provide a new insight into the mechanisms of biomass accumulation at the metabolic
level. Previous functional genomics have focused mainly on kinetics of transcripts and proteins, much
less on the synchronously variable patterns of metabolites. Functional genomic analysis provides
information on spatial-temporal expression patterns of genes and proteins, while metabolic profiling
analysis adds informative metabolic data to functional genomic data to comprehend the whole picture
of plant development. Therefore, both targeted and non-targeted metabolomic strategies have been
applied in spatial-temporal metabolic profiling of developing plants. In rice, metabolomics analysis
revealed substantial variation in the abundance of phenolamides, which displays developmentally
controlled accumulation patterns [50]. In Arabidopsis, the change in the patterns of temporal-spatial
distribution of the Kreb’s cycle intermediates occurs obviously in the pre-senescent leaves, and the
accumulation of glucosinolates, raffinose, and galactinol occurs in the base region of leaves prior
to senescence [63]. As a major part of reproductive development, seed development initiates from
embryogenesis that is followed by a metabolically active period in which a massive synthesis of
reserve compounds occurs in the developing seeds, whose relative proportions vary depending on
the different crop seeds [33,64]. During seed development, metabolic change patterns are similar
at the accumulation stage but different at the seed desiccation stage in both monocot (rice) and
dicot (Arabidopsis and tomato), showing both conserved and divergent metabolic adaptation during
plant evolution [65]. Analysis of the spatio-temporal metabolic signature of plant development is
also capable to identify potential biomarkers for capturing the genetic and developmental intrinsic
characteristics. Such an approach has been successfully applied to study rice tillering (branching), in
which 21 metabolites captured almost 83% metabolic variation [66], and soybean developmental phase
transition from vegetative to reproductive stage, in which eight flavonoid kaempferol glycosides were
identified as potential growth markers [67].

Plant phenotype depends on the synthesis and accumulation of a series of metabolites in specific
organs, at specific developmental stages and upon random environmental signals [68], therefore,
various kinds of metabolites in the plant have organ/tissue-specific characteristics [50]. For example,
sphingolipids, a class of lipids critical for male reproductive development, is significantly different
between pollen and leaf tissues in Arabidopsis [69,70]. In young tomato seedlings, anthocyanins
accumulate in hypocotyls, while several flavonols and phenolic compounds pile up in cotyledons, and
some alkaloidal compounds build up in radicals/roots [68]. Since numerous biochemical components
vary at different cell levels or even at subcellular levels in the plant (there are approximately 40 different
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cell types in plants, even a plant organ such as a leaf may include about 15 different cell types) and
metabolic processes are regulated by asymmetric distribution of regulatory element (enzymes and
mRNA), therefore, high resolution of spatially resolved plant metabolomic technology is increasingly
required for such studies [71,72]. With the advantage of these technologies, metabolites can be traced
at high spatial resolution and used to demonstrate their regulation directly [73].The application of
spatially resolved metabolomic technology in plant development will be a great complement to the
conventional technologies based on chromatography and mass spectrometry or NMR.

3.2. Metabolic Responses of Plants to Stress

Plants frequently encounter various environmental stresses during their development processes
and plants have evolved a series of adaptive changes at both transcriptional and post-transcriptional
levels, leading to the reconfiguration of regulatory networks to maintain homeostasis [74].
Generally, environmental stresses are classified into two types: abiotic stress and biotic stress.
Abiotic stresses result from inappropriate levels of environmental factors, such as drought, flood,
extreme temperature, severe radiation, metal ion stress, nutrient limitation, and oxidative stress,
while biotic stresses come from pathogens and pests. Once plant receptors are stimulated by stress
signals, expression of stress responsive genes is activated and subsequently specialized metabolites
(especially some secondary metabolites) are biosynthesized to adapt to environmental stresses [75].
Rapid qualitative and quantitative analyses of metabolic responses of plants to environmental
perturbations will help us not only to identify phenotypic response to abiotic and biotic stresses
on plants and to screen for stress tolerant individuals, but also to reveal genetic and biochemical
mechanisms underlying the plant’s responses to stresses, to better understand the plant plasticity for
future genetic engineering of stress resistant/tolerant plants.

3.2.1. Abiotic Stress

In nature, adverse environmental conditions usually consist of several different factors, and
one stress is usually accompanied with or followed by another [76]. To clarify the contribution of
individual stress, a controlled variable method was introduced and plants were subjected to a single
primary stress factor to simplify the system [77]. Symptoms and main metabolic changes observed in
single abiotic stress have been previously reviewed [78–80]. However, in nature, plants often encounter
not only one single stress, since once a single stress occurs, it will be followed by other stresses.
For example, salinity stress frequently causes osmotic stress, and flooding often leads to low-oxygen
stresses [79]. Here we summarize the effects of multiple combinatorial stresses on plants, which are
more similar to the natural environment. To better dissect the plant metabolic regulatory networks
and their functions in the responses to complex abiotic stresses, integrated multiple-omics analysis
is required [81–84]. When maize plants are subjected to water stress and salinity stress separately or
concurrently, levels of six metabolites (citrate, fumarate, phenylalanine, valine, leucine, isolecuine)
in leaves only change significantly under combined stresses, indicating a crosstalk effect in multiple
stresses, but the potential of using those six metabolites as stress markers has not been concluded [85].
As global warming is approaching, heat and drought stresses become big challenges to sustain grain
yields. A recent work on rice floral organ development provided mechanistic understandings of the
responses of rice floral organs to combined stresses, in which integrative analyses on metabolomics
and transcriptomic features of floral organs revealed that sugar starvation is the determinant of the
failure of reproductive success under heat and drought stress in rice [86]. Heat-sensitive (Moroberekan)
anther has lower levels of sucrose and myo-inositol but higher level of galactinol and raffinose, while
heat-tolerant (N22) anther has lower abundances of glucose-6-P and fructose-6-P [86]. Consistent with
metabolomic changes in anther, Moroberekan rice has significantly up-regulated expression of the
intercellular sugar transport regulation gene Carbon Starved Anthers (CSA) [87], while N22 rice shows
the enhanced expression of MST8, a sugar transporter gene, and INV4, a cell wall invertase gene [86,87].
In Arabidopsis, GC–MS profiling combined with transcriptomic analysis of leaves revealed a synergistic
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stress response of the joint treatment of darkness and high temperature, which is attenuated by low
temperature. Because protein degradation occurs rapidly, amino acid catabolism comes to be the main
cellular energy supply in the absence of photosynthesis, as evidenced by the conditional connections
between amino acid metabolism and the Kreb’s cycle [82]. The combined cold and dehydration stresses
in rice cause the up-regulation of carbohydrate metabolism associated genes, which is consistent with
the buildup of glucose, fructose, and sucrose in the aerial parts of the plant [83]. Several sugars such as
sucrose, raffinose, maltose, and glucose frequently accumulate in plant cells suffering combinatory
stresses, perhaps protecting plants via osmotic adjustment from oxidative damage that usually follows
most stress conditions [88,89]. Combined stresses normally result in a more extreme condition than
that of each individual stress alone, and therefore has profound effects on central metabolisms such as
sugars and their phosphates and sulfur-containing compounds [82,88,89]. Interestingly, the combined
elevated CO2 and salinity stress exerts a milder effect on the metabolic physiology of the plants than
that of salinity stress alone [84], indicating that there is a complicated crosstalk between different
stresses, which merits further investigations. In addition, a recent study revealed that secondary
metabolism is also involved in the plant’s tolerance to the combinatorial drought and salinity stresses,
in which the tolerant Tibetan wild barley (XZ25 and XZ16) displays transcriptomic alterations in the
levels of secondary metabolism pathway genes and lower DNA damage, as compared with control
barley cv CM72, together with an increase of flavonoids and phenols [90].

3.2.2. Biotic Stress

To combat attacks from pathogens and pests, plants use complex chemical machinery as a major
defense. Similar to distinctive responses to diverse abiotic stresses, metabolic responses of plants
to biotic stresses depend also highly on tissues, species, and plant-pathogen or pest interactions.
Consequently, the identified compounds from biotic stressed plants help in searching for novel defense
compounds, and meanwhile serve as important plant defensive state markers [91]. Increasing numbers
of metabolites have been identified and regarded as biotic stress tolerant or sensitive metabolic
biomarkers in diverse plant species. For example, 16 fatty acids (such as unsaturated linoleic acid)
together with two amino acids (glutamine and phenylalanine) were identified as the major components
of the resistance features of gall midge resistant rice varieties [92]. When subjected to BLB (bacterial
leaf blight) caused by Xanthomonas oryzae pv. oryzae (Xoo), sensitive and tolerant rice cultivars display
contrasting changes in several specific metabolites, such as acetophenone, xanthophylls, alkaloids,
carbohydrates, and lipids [93]. The agent of rice blast disease, Magnaporthe grisea, another devastating
pathogen of rice, can also infect other important crops, including wheat, barley, and purple false
brome grass [94]. Metabolomic analysis revealed identical changes in metabolic patterns in barley,
rice, and purple false brome grass, in which malate, polyamines, quinate, and non-polymerized lignin
precursors accumulate during infection by M. oryzae [95]. The accumulation of phenylpropanoid and
phenolic compounds is also reported in response to F. graminearum in wheat [96]. Phenylpropanoids,
the precursors of lignin, constitute an important component of plant stress defense mechanism, which
modulate cell wall composition and stiffness in root. The thickened cell wall may help to defend against
pathogen infection in the plant. In the future, metabolomics will focus on a better understanding of
the chemical machinery operating in plants responding to both abiotic and biotic stresses and the
improvement of plant resistance, thus reducing crop yield lost under stress conditions.

4. Application of Plant Metabolomics in Plant Society Other than Basic Research

4.1. Safety Assessment of Genetically Modified (GM) Crops

The application of genetic engineering to produce genetically modified (GM) crops is considered
one of the most developed leading agro-biotechnologies. Though GM crops have been proven to have
huge economic potential considering their effects on value-added traits such as tolerance to herbicide,
resistance to insects, faster or delayed ripening, high levels of antioxidants and other nutrients,
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authorization and commercialization of GM crops have always been controversial among both the
scientific community and the public sector over their potential risks to the environment and human
health [97]. Therefore, risk assessments of GM plants and derived products are very strict in many
countries and regions including the European Union. Metabolomics provides an additional dimension
to GM crop analysis, allowing the detection of both intended and unintended effects that might take
place in GM crops because of genetic modification at the metabolic level. This facilitates greatly the
substantial equivalence evaluation of GM crops. Case studies comparing metabolic changes between
GM crops and their non-transgenic counterparts have covered almost all important agricultural crops,
such as rice, maize, soybean, pea, wheat, potato, tomato, barely, and so on, which have confirmed
detectable alterations of their metabolites due to transgenic modifications [97,98]. However, results
also show that other factors such as environmental conditions usually exert greater influences on
metabolic compositions than genetic modification [99]. Therefore, in this case, metabolomics studies
comparing GM crops with their non-GM counterpart lines are often combined with parallel studies
using different culture conditions, in different geographical locations, and over multiple years, to
corroborate the authentic effect of genetic modification [99]. Recently, natural variation has been taken
into consideration for the substantial equivalent assessment of GM crops. If the variations between
a GM crop and its non-GM counterpart parent lines fall in the range of natural variation, then it
is considered to be safe at metabolic level [100]. However, for detecting unintended effects caused
by genetic modification in GM crops, non-targeted metabolomics seemed to be more powerful than
targeted metabolomics [101]. Nevertheless, the applications of non-targeted metabolomics in GM
crops have not been validated and approved yet within the global regulatory framework for GM
food safety assessment [97]. In the future, to facilitate the molecular characterization of GM crops at
the metabolomic level, multiple metabolomic platforms to detect as many as possible metabolites in
a sensitive and robust manner [102], and the exploration of the metabolomic variation in more and
more crops rather than just rice [10] and maize [12], such as soybean [103,104] are needed.

4.2. Metabolomics and Crop Improvement

Crop breeding depends largely on phenotypic selection in plots or genomic selection by genetic
markers. This is hindered by great hurdles, for example, marker effects for selecting complex traits
vary frequently among populations [105]. Metabolomics combined with other omics will allows
us to solve key issues of agronomic performance that remained unsettled previously. Efforts can be
directed to crop plants that have detailed information on performance in large-scale environments [106].
The information resulting from mQTL and mGWAS allows us to analyze the nature of quantitative
traits of interest. Plant metabolomic technology can provide information not only on the numbers
of identified metabolites but also their correlations with each other and with agronomic important
traits, thus it could lead to the development of more rational models to link specific metabolite or
pathway with yield or quality associated traits. Even more promising is the possibility of studying the
relationship between metabolite variations and the resulting phenotypes [107]. Notably, the ongoing
efforts elucidating the metabolic responses to various stresses imply that metabolomics-assisted
breeding could also be useful in obtaining crops more resistant to stresses [108]. The important role of
metabolomics in crop improvement will become increasingly evident in the future.

4.3. Plant Improvement by Metabolic Engineering

Since plants are capable of designing and producing multifarious chemical compounds that serve
mankind as foods and medicines, effective engineering of metabolic pathways in plants associated
with modern biotechnology will bring more benefits to human beings [109]. As a successful example,
golden rice that accumulates higher levels of vitamin A proves that the nutrient content of a crop plant
can be improved by metabolic engineering [110]. However, due to the limitation of current knowledge
about metabolic control, it is quite challenging to rationally engineer complicated metabolic networks.
Recent technological advances in plant metabolomics and other “omics” offer golden opportunities to



Int. J. Mol. Sci. 2016, 17, 767 9 of 16

dissect the remarkable complicacy of the plant biochemical capacity and facilitate a better investigation
into plant metabolic systems to increase the potential of practical applications through precise metabolic
engineering [111]. Based on knowledge of sugar biosynthesis and accumulation pathways, yields of
endogenous sugars, such as higher-value sugars and simple sugar derivatives, have been successfully
increased via plant metabolic engineering [112]. Knowledge-based metabolic engineering strategies,
generating large datasets and rational models of metabolic pathways via large scale gathering and
mining of various omics data, will continuously help to refine the input and output of engineering
plants [113].

5. Conclusions and Future Perspectives

With the growing interest in the use of metabolomic technologies for a wide range of biological
targets, plant metabolomics have dramatically improved in recent years. The combination of the
capabilities of available analytical platforms for the analyses of complex samples, together with
the integration of metabolomics with other “omics” and functional genetics, is able to provide
novel insights into genetic and biochemical aspects of cellular function and metabolic network
regulation [114]. Plant metabolomics, alone or combined with functional genomics, has been applied
in many fields. Even though it has some limitations currently, it is no doubt an important tool that is
revolutionizing plant biology and crop breeding.

The full elucidation of biochemical and genetic mechanisms underlying plant developmental
and stress responsive biology depends largely on the comprehensive investigations using systematic
omics techniques, which is the foundation for the application of metabolomics in plant science.
Among them metabolomics is of particular importance, because the metabolites are more relevant
to the plant phenotype (both physiological and pathological phenotypes) as compared with DNAs,
RNAs or proteins [115]. Therefore, future studies in this area will focus on both directions: one is
the improvement of the metabolomic platform to facilitate the accurate and effective identification
and quantification of as many as possible metabolites (mainly secondary metabolites), the precise
interpretation of generated data, and the rapid integration with other omics platforms; the other is the
comprehensive investigation into molecular and biochemical mechanisms of metabolic variations in plants
(mainly crops) using both non-targeted and targeted approaches, to expand and enrich the understanding
of plant metabolism in growth and development under both normal and stressed conditions, and the
application of metabolomics to plant breeding (Figure 1) for better crop yield and quality.
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capabilities of available analytical platforms for the analyses of complex samples, together with the 
integration of metabolomics with other “omics” and functional genetics, is able to provide novel 
insights into genetic and biochemical aspects of cellular function and metabolic network  
regulation [114]. Plant metabolomics, alone or combined with functional genomics, has been applied 
in many fields. Even though it has some limitations currently, it is no doubt an important tool that is 
revolutionizing plant biology and crop breeding. 

The full elucidation of biochemical and genetic mechanisms underlying plant developmental 
and stress responsive biology depends largely on the comprehensive investigations using systematic 
omics techniques, which is the foundation for the application of metabolomics in plant science. 
Among them metabolomics is of particular importance, because the metabolites are more relevant to 
the plant phenotype (both physiological and pathological phenotypes) as compared with DNAs, 
RNAs or proteins [115]. Therefore, future studies in this area will focus on both directions: one is the 
improvement of the metabolomic platform to facilitate the accurate and effective identification and 
quantification of as many as possible metabolites (mainly secondary metabolites), the precise 
interpretation of generated data, and the rapid integration with other omics platforms; the other is 
the comprehensive investigation into molecular and biochemical mechanisms of metabolic variations 
in plants (mainly crops) using both non-targeted and targeted approaches, to expand and enrich the 
understanding of plant metabolism in growth and development under both normal and stressed 
conditions, and the application of metabolomics to plant breeding (Figure 1) for better crop yield  
and quality. 

 

Figure 1. The schematic presentation of plant metabolomics and its application in plant improvement. 
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