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Brain derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of
schizophrenia. As BDNF regulates axonal and dendritic growth, altered BDNF levels in
schizophrenia patients might underlie changes in structural connectivity that have been
identified by magnetic resonance imaging (MRI). We investigated a possible correlation
between BDNF serum levels, fiber tract architecture, and regional grey matter volumes in
19 schizophrenia patients and a gender- and age-matched control group. Two patients
had to be excluded due to abnormalities in their MRI scans. Serum samples were
obtained to determine BDNF levels, and T1- as well as diffusion-weighted sequences
were acquired. We, then, investigated correlations between BDNF serum levels with
neuroimaging parameters, using Voxel-based Morphometry (VBM) and Tract-based
Spatial Statistics (TBSS). We found a significant negative correlation between BDNF
serum levels and FA values in the right inferior fronto-occipital fasciculus and the right
superior longitudinal fasciculus. These regions also showed a decrease in AD values in
schizophrenia patients. Grey matter volumes were reduced in patients but there was no
correlation between regional grey matter volumes and BDNF. The right superior
longitudinal fasciculus has been repeatedly identified to exhibit microstructural changes
in schizophrenia patients. Our findings of a negative correlation between BDNF and FA
values in patients might indicate that BDNF is upregulated to compensate decreased
structural connectivity as it induces neural plasticity and shows increased levels in
damaged tissue. These findings of our pilot study are encouraging leads for future
research in larger samples.

Keywords: schizophrenia, brain derived neurotrophic factor, diffusion tensor imaging, Tract-based Spatial
Statistics, neuroimaging, superior longitudinal fasciculus, dysconnectivity hypothesis
g February 2020 | Volume 11 | Article 311

https://www.frontiersin.org/article/10.3389/fpsyt.2020.00031/full
https://www.frontiersin.org/article/10.3389/fpsyt.2020.00031/full
https://www.frontiersin.org/article/10.3389/fpsyt.2020.00031/full
https://loop.frontiersin.org/people/621852
https://loop.frontiersin.org/people/594101
https://loop.frontiersin.org/people/171768
https://loop.frontiersin.org/people/5602
https://loop.frontiersin.org/people/1859
https://loop.frontiersin.org/people/94583
https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles
http://creativecommons.org/licenses/by/4.0/
mailto:christine.hammans@rwth-aachen.de
https://doi.org/10.3389/fpsyt.2020.00031
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2020.00031
https://www.frontiersin.org/journals/psychiatry
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2020.00031&domain=pdf&date_stamp=2020-02-21


Hammans et al. BDNF and White Matter Association
INTRODUCTION

Schizophrenia is a severe chronic neuropsychiatric disorder (1–
3) that shows a heritability of about 0.8 (4). More than 100
common variants associated with schizophrenia have been
identified so far. These variants map to a large range of diverse
genes. Given this diversity of the genes involved, a
comprehensive understanding of common pathophysiological
mechanisms is still lacking. However, recent studies have
highlighted an association with synaptic plasticity for many of
these susceptibility genes (5). Consequently, signaling pathways
involved in the formation and maintenance of synaptic
connections might constitute a common hub, over which all
these diverse gene variants exert identical or related
pathophysiological effects.

Theneurotrophins are a protein family thatmight play a key role
in this regard, as its members exert core functions in synapse
formation, axonal and dendritic outgrowth, and other
neuroplastic processes (6, 7). One of the members of the
neurotrophin family, brain-derived growth factor (BDNF), is
involved in the differentiation and growth of neurons (8). It
maintains neurons and induces plasticity of neurons in the
central nervous system, as well as in the peripheral nervous
system (8–11). It has various functions in the brain, for example,
themaintenance of cortical dendrites (12). BDNF is also involved in
neuronal processes associated with learning and memory (8, 13).
Mechanistically, BDNF influences neuronal plasticity by activating
intracellular signaling cascades viaTrkB receptors. These signalling
cascades activate the transcription of genes that induce cell
differentiation and survival of neurons (8), as well as axonal and
dendritic branching and growth (8, 9). In addition, TrkB receptor-
associated pathways affect glutamergic neurotransmission (11, 14),
which is hypothesized to be hypofunctional in schizophrenia (15).

Altered serum levels of BDNF in patients compared to
healthy volunteers were shown for many different
neuropsychiatric diseases (e.g. Alzheimers, Epilepsy, Autism,
Depression or Bipolar Disorder) (7, 16–19). In particular,
meta-analyses showed a reduction of BDNF serum levels in
schizophrenia with moderate effect sizes and heterogeneity (20,
21). Most original studies reported decreased BDNF levels (22–
25) as well, while others, however, showed increases (26, 27) or
no significant differences in BDNF serum levels (28). One
potential explanation for these seemingly contradictory
findings is the circadian rhythm of BDNF secretion (29). As
not all studies determined BDNF serum levels at a standardized
time of the day, this might have influenced the results. In
addition, age, BMI, and duration of disease and medication
might influence the results (21, 30) as well. Furthermore, there
might be influencing factors not yet identified. Consequently,
BDNF might mediate its effects via more intricate mechanisms
than a mere reduction of overall levels.

These molecular mechanisms might—at least in part—
underlie distinct alterations in brain structure in schizophrenia.
Grey matter changes with mainly a fronto-temporo-thalamo-
basal ganglionary pattern have been robustly reported across
neuroimaging studies (31, 32). Improved imaging techniques,
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namely diffusion tensor imaging (DTI), in the last decade have
also found changes in fiber tract architecture in schizophrenia
patients. As schizophrenia has long been regarded as a disease of
altered neural connectivity (33), DTI opened a possibility to
study structural connectivity in vivo. Fiber tracts commonly
reported to be altered are located in the frontal and temporal
deep white matter, mainly within the dominant hemisphere (34–
36) but also bihemispheric (37–39). In addition, long fiber tracts
connecting regions of the frontal lobe, thalamus and cingulate
gyrus as well as hippocampus and amygdala, and occipital lobe
have been implicated to exhibit structural changes in
schizophrenia (35, 36). These fiber tracts are identified to play
a role in language and working memory, functions that are
altered in schizophrenia (40, 41)

In this pilot study, we wanted to explore whether there was an
association between micro- and mesostructural grey matter/fiber
tract changes and BDNF serum levels in schizophrenia.

Although studies on a possible association of BDNF and grey
matter have been previously published (42, 43), there are none
comparing BDNF levels and white matter (fiber tracts) in vivo.
Correlating BDNF levels with white matter fiber tracts and grey
matter could provide initial clues if there was a relation between
molecular parameters and the anatomical changes that are
observed in patients.

Therefore, we a) obtained serum samples to determine BDNF
concentrations; b) conducted MRI scans, including diffusion-
weighed sequences, to analyze changes in grey matter and
structural connectivity; and c) finally correlated BDNF serum
levels with imaging parameters to gather further information
about the impact of BDNF on the long fiber tracts.
MATERIALS AND METHODS

Subjects
The study protocol was approved by the institutional review board
of RWTH Aachen University Hospital, Aachen, Germany. A total
of 20 healthy volunteers (12 male and 8 female) recruited from the
local community and 19patientswith schizophrenia (11male and8
female) recruited at the Department of Psychiatry, Psychotherapy,
and Psychosomatics, RWTH Aachen University Hospital, were
enrolled in this study, as, inpart, previously reportedbyNeugebauer
and colleagues (44). Two of the patients had to be excluded due to
abnormalities in their MRI data sets (one because of grossly
enlarged lateral ventricles, most likely due to infantile hypoxia,
and another one due to technical artifacts).Written informed
consent was given by all participants prior to inclusion. The
participants were matched for age, gender, and BMI as those
criteria have been reported to exert an impact on BDNF levels as
well as all participants were right handed due to the effects of
handedness on neuroimaging parameters (30, 45–47). Inclusion
criteria for patients and healthy controls were as follows: 1. Age
between 18 and 55, 2. no history of a psychiatric disease for the
healthy volunteers; for the patients exclusively, diagnosis of
schizophrenia according to ICD-10 (F20.X) by an experienced
clinician at RWTH Aachen University Hospital, 3. Right
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handedness, 4. German as mother language, and 5. Central
European origin. Exclusion criteria were as follows for the
patients and healthy controls: 1. general exclusion criteria for
MRI, 2. known gross morphological cerebral abnormalities, 3.
gravidity, 4. drug use, 5. infectious or chronical illness.

For all patients on treatment, the equivalent dose of olanzapine
was estimated (Table 1) (48). The duration of disease was
recorded for each patient, and schizophrenia symptoms were
assessed with the Positive and Negative Syndrome Scale (PANSS).

Demographical and characteristic data as age, BMI, and
gender was analyzed using SPSS 25 (SPSS, Inc., Chicago, IL,
USA). We used t-tests to compare age and BMI and a X2 test to
compare gender ratios between groups as seen in Table 2.
Frontiers in Psychiatry | www.frontiersin.org 3
BDNF Serum Level Assessment
Blood samples were drawn from all participants at the same time (8
am) in the morning to account for circadian patterns of peripheral
BDNF levels (29, 49). Two serum gel tubes were drawn from each
participant and centrifuged at 2000 rpm for 10minutes. The serum
was pipetted into tubes and stored at –80°Celsius at theDepartment
ofPsychiatry, Psychotherapy, andPsychosomatics, RWTHAachen
University Hospital until further analysis. Standard enzyme linked
immunosorbent assays (ELISAs) (Quantikine ELISA, Human
BDNF Immunoassay, R&D Systems) (see Supplementary
Material) were used to detect the actual serum concentration
following the protocol provided by the manufacturer. All samples
were analyzed in duplicate in one parallel session. To check for a
normal distribution in the dataset, we used the Kolmogorov-
Smirnov Test. As this test indeed indicated a normal distribution,
wedecided touse a two-sample t-test with anuncorrectedp-value <
0.05 between BDNF and the two groups.

MRI Data Acquisition
All MRI images were collected using a Siemens Trio 3T MRI
scanner (Siemens Medical Systems, Erlangen, Germany) at the
Department of Psychiatry, Psychotherapy, and Psychosomatics,
RWTH Aachen University Hospital, immediately after the blood
draw. A 32–channel coil was used to obtain the images. The head
was immobilized using cushions to minimize head movement. In
a session lasting 30 to 45 minutes, diffusion-weighted data,
resting-state fMRI, and T1 anatomical sequences were acquired
from all participants.

The T1 protocol for the Magnetization Prepared Rapid
Acquisition Gradient Echo (MP-RAGE) sequence was as follows:
sagittal slices 176, slice thickness = 1mm, field of view (FoV) = 250
mm, resolutionmatrix size 256×256×176, isotropic resolutionof 1
mm, repetition time (TR)/echo time (TE)/inversion time (TI) =
1900 ms/2.52 ms/900 ms, flip angle (FP) = 9°, voxel size = 0.976 x
0.976 x 1 mm, duration = 7:49 min.

Diffusion-weighed sequences were acquired with 2.5 mm
isotropic resolution, b-value of 1500 and 64 directions, and one
non-diffusion image in each subject.
TABLE 1 | Detailed information on each patient's medication and duration
of disease.

Medication Dosage Olanzapine
equivalent
dose (48)

Duration
of

disease
(in

months)

Patient 1 Risperidone 4 mg 13,32 120
Patient 2 Amisulpride 200 mg 5,8 24
Patient 3 Citalopram 20 mg 20 21
Patient 4 Risperidone,

Aripiprazole
6 mg,
15 mg

30 120

Patient 5 Amisulpride 300 mg 8,7 24
Patient 6 Quetiapine 1200 mg 32,4 336
Patient 7 Promethazine (on

demand), Olanzapine
3x20 mg,
10 mg

10 192

Patient 8 Clozapine,
Aripiprazole

450 mg,
25 mg

39,25 214

Patient 9 Quetiapine 450 mg 12,15 72
Patient 10 Movicol,

Pantoprazole,
Metformin,
Sertindole,
Prothipendyl (on
demand)

1xd, 20 mg,
500 mg,
2 x 8 mg,
2 x 40 mg

16 144

Patient 11 Pregabalin,
Amisulpride,
Sertindole,
Lorazepam (on
demand)

200 mg,
1000 mg,
8 mg, 1 mg

8 144

Patient 12 Fluvoxamine,
Clozapine;
Amisulpride

25 mg,
425 mg,
600 mg

38,65 324

Patient 13 Clozapine,
Fluvoxamine,
Aripiprazole,
Pantoprazole

150 mg,
50 mg, 10 mg,

14,2 396

Patient 14 Fluvoxamine,
Clozapine,
Gastrozepin,
Paliperidone

25 mg,
250 mg,
50 mg,

250 mg/week

12,5 +
79,2857 =
91,7857

228

Patient 15 Amisulpride,
Olanzapine

400 mg,
20 mg

31,6 180

Patient 16 Clozapine,
Gastrozepin,
Amisulpride,
Azelastine

275 mg,
25 mg,
800 mg,
2x Hubs

13,75 + 23,2
= 36,95

36

Patient 17 Olanzapine;
Citalopram

10 mg; 20 mg 10 12
TABLE 2 | Statistical analysis of the participants (HS, healthy subjects; SP,
schizophrenia patients; N, number of subjects per group; BMI, Body Mass Index;
BDNF, brain derived neurotrophic factor; ± Standard deviation; SE, standard
error of the mean; PANSS - PANSS negative score, PANSS + - PANSS positive
score; PANSS G - PANSS general score; ∑PANSS - PANSS total score).

SP HS

N 17 20
Gender (M/F) 10/7 12/8
Age in years 36.47 ± 10.02 SE 2.43 35.25 ± 11.51 SE 2.57
BMI 27.19 ± 5.14 SE 1.25 24.37 ± 4.71 SE 1.05
BDNF 15447.12 pg/ml ± 6967.21

SE 1557.92
16189.96 pg/ml ± 7177.76

SE 1740.86
Duration of disease
in years

12.68 ± 9.92

PANSS + 15.47 ± 6.34
PANSS - 23.53 ± 9.84
PANSS G 44.35 ± 16.1
∑PANSS 24.65 ± 20.93
Olanzapine
Equivalent dose

24,65 ± 20,93
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MRI Analysis
The MRI images were inspected manually by an experienced
clinician to exclude inadequate data sets, e.g., due to gross
morphological structural abnormalities, technical and motion
artefacts. We had to exclude two data sets of schizophrenia
patients (one because of grossly enlarged lateral ventricles, most
likely due to infantile hypoxia, and another due to technical
artifacts). These two data sets were also excluded from the study
regarding BDNF correlation.
Voxel-Based Morphometry (VBM)
In brief, a VBM analysis was carried out as follows:

We used the Diffeomorphic Anatomical Registration
Through Exponentiated Lie Algebra (DARTEL) segmentation
algorithm of SPM 12 (50) for whole brain voxel-based
morphometry (VBM) analysis on the NIFTI files of both
schizophrenia patients and healthy controls. First, we
conducted a group comparison between patients and controls.
In a subsequent step, BDNFmedian values from two quantitative
measurements were calculated and potential correlations with
brain structural changes were investigated. All analyses were
thresholded at a p-value of 0.05.

A detailed protocol of this approach can be found in
Neugebauer et al. (44).
Tract-Based Spatial Statistics (TBSS)
The analysis of thediffusion-weigheddata setswas carriedout using
the standard FSL tool package (http://www.fmrib.ox.ac.uk/fsl/) for
TBSS according to the standard protocol (51, 52). At first, all
Siemens default output DICOM data sets were converted into
NIFTI files with the dcm2nii tool, and the DICOM headers were
used to determine the b-value and b-vector. “Then, voxel-wise
statistical analysis of the Fractional Anisotropy (FA) data was
carried out using TBSS [Tract-Based Spatial Statistics (51, 53),
part of FSL (52, 53)]. First, FA images were created by fitting a
tensor model to the raw diffusion data using FDT, and then brain-
extraction using BET (54). All of the subjects' FA data were then
aligned into a common space using the nonlinear registration tool,
FNIRT (55, 56), which uses a b-spline representation of the
registration warp field (57). Thereafter, the mean FA image was
created and thinned to create a mean FA skeleton (we used a
threshold for FA ≥ 0.2), which represents the centers of all tracts
common to the group. Each subject's aligned FA data was then
projectedonto this skeletonandthe resultingdata fed intovoxelwise
cross-subject statistics”.We used a threshold for FA≥ 0.2. Each step
of this protocol was reviewed visually. We performed Voxel-wise
group comparisons (healthy vs patients). BDNF regressions were
performed for FAmaps of both groups separately and one analysis
for both groups combined using FSL randomise (58). The same
protocol was carried out for Axial Diffusivity (AD), Mean
Diffusivity (MD), and Radial Diffusivity (RD). All analyses were
carried out usingTFCE(Threshold-FreeClusterEnhancement) at a
p-value < 0.05, corrected for family-wise error (FWE).
Frontiers in Psychiatry | www.frontiersin.org 4
RESULTS

BDNF Serum Levels
There was no significant difference between the BDNF serum
levels of the healthy volunteers and the schizophrenia patients
(p-value of 0.752). The mean BDNF level of the controls was
15447.12 pg/ml (SD 6967.21, SD mean 1557.92), and the mean
BDNF level of the patients was 16189.96 pg/ml (SD 7177.76, SD
mean 1740.86) (Table 2). There was one outliner in the patient
group, but even with this outliner removed, differences between
the two groups did not reach statistical significance.

Regional Grey Matter Volumes and Their
Correlations With BDNF Serum Levels
There were no significant correlations between regional grey
matter volumes and BDNF serum levels.

As described previously, we found significant reductions of
grey matter volume in schizophrenia patients in a widespread
fronto-temporo-parietal network (44).

White Matter Changes and Their
Correlations With BDNF Serum Levels
There were no significant differences between the healthy
volunteers and schizophrenia patients regarding the group
comparison of FA maps as well as MD and RD maps with a
threshold of ≥ 0.2 and a p-value of 0.05 TFCE corrected. However,
patients showed lower AD values in the right inferior fronto-
occipital fasciculus and right superior longitudinal fasciculus, the
same region where FA values correlated negatively with BDNF
serum levels in patients (Figure 1).

Significant negative correlations between BDNF serum levels
and FA values in schizophrenia patients were detected in the
right inferior fronto-occipital fasciculus and the right superior
longitudinal fasciculus (Figure 2).
DISCUSSION

Our pilot study was one of the first to explore potential correlations
between BDNF serum levels and meso- and macroscopic imaging
parameters in schizophrenia patients. Our findings could provide
first hints at potential molecular mechanisms underlying these
brain structural changes in patients.

Neuroanatomical Changes in Patients
Compared to Healthy Controls
We detected a decrease in AD in the right superior longitudinal
fasciculus and right inferior fronto-occipital fasciculus in our
patients, whereas RD did not change significantly. In general, AD is
seen as a maker for axonal integrity (59, 60), whereas RD is seen as a
marker for myelin integrity (61, 62). It is certainly challenging to infer
from changes in DTI parameters on microstructural changes,
especially in a small sample like ours. Nevertheless, it is tempting to
speculate on theneurobiological underpinnings, as our study showed a
decrease ofAD inpatients in the superior longitudinal fasciculus (SLF)
February 2020 | Volume 11 | Article 31
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and right inferior fronto-occipital fasciculus.Wewould interpret these
reduced AD values as suggestive of a possible axonal pathology in
schizophrenia patients. In particular, the SLF and the inferior fronto-
occipital fasciculus are two areas that were previously shown to be
altered in patients with schizophrenia (37, 63). Most studies found a
decrease in FAvalues in thesefiber tracts in schizophrenia patients (37,
63). However, only few studies (64–69) have investigated changes of
AD and RD in schizophrenia so far. Their results were heterogenous.
Someshowednodifference inADvaluescompared tohealthycontrols,
whileothers showedan increaseofADvaluesaccompaniedbyreduced
FA values and increased RD values, which were interpreted as an
indication for decreased myelinization of axons (70, 71).

In contrast to these prior studies, we found a decrease of AD
values in schizophrenia patients. We interpreted it as possible
alterations in axonal integrity. As schizophrenia is hypothesized
to be a disease of impaired neural connectivity (72–75), changes in
AD, hence, could indicate alterations in structural connectivity.
Frontiers in Psychiatry | www.frontiersin.org 5
Studies on the underlying histology (76, 77) showed that there is
indeeddecreased axonal tropism inbrainsof schizophreniapatients
(78). In summary, we hypothesize that our results of reduced AD
values in schizophrenia patients hint towards axonal changes as the
“smallest common denominator” for schizophrenia patients.

The GMV in schizophrenia patients was reduced compared
to healthy controls. These changes have repeatedly been
interpreted as an indicator of perikaryal atrophy as a result of
inactivity due to impaired synaptic plasticity (79, 80).

A Potential Role for BDNF in Fiber Tract
Changes of Schizophrenia Patients
Our finding of a negative correlation between BDNF serum levels
and the FA values of patients in the right inferior fronto-occipital
fasciculus and the superior longitudinal fasciculus (SLF) might
seem contrary to the current understanding of BDNF values in
schizophrenia. One might expect a positive correlation of BDNF
FIGURE 1 | Lower AD values in patients maps in the right superior longitudinal fasciculus and right inferior fronto-occipital fasciculus (in red).
FIGURE 2 | Negative correlation between BDNF serum levels and FA maps of patients in the right inferior fronto-occipital fasciculus and the right superior
longitudinal fasciculus. Clusters identifying Voxels with significant negative correlations between FA and BDNF are highlighted in red.
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and FA values, as BDNF is known to induce physiological
differentiation and growth of neurons (8), especially in axonal
and dendritic outgrowth as well as the maintenance of these
cellular structures (6, 7, 12). The function of BDNF in a
pathophysiological framework such as schizophrenia though
should be met with caution, as for example, genome wide
association studies in schizophrenia have shown variants in
multiple genes regulating neuronal and synaptic plasticity and
dendritic growth. As a result, it is commonly expected that these
biological functions are mediated by dys-/hypofunctional signaling
pathways in schizophrenia (5). Hence, seeing increased dendritic
growth and synaptic plasticity as a result of upregulated BDNF in
schizophrenia patients and therefore resulting in a positive
correlation with FA seems unlikely. We would hypothesize that a
negative correlation of BDNF and FA values in the SLF is an
indicator for an ongoing response mechanism due to alterations in
synaptic, dendritic, and axonal plasticity but that this response
mechanism is not able to accomplish a physiological response as
BDNF downstream signaling is impaired and therefore BDNF is
incapable of inducing neuronal plasticity and further dendritic
growth. Our own findings of a negative correlation between
BDNF serum levels and FA values in the SLF of schizophrenia
patients might reflect this dysfunctional neurotrophic mechanism.
Due to its neurotrophic effects mentioned above, increased BDNF
concentrations have been reported in brain regions with tissue
damage, indicating a role for BDNF inneuronal repairmechanisms
(9, 12, 81). Consequently, structural impairments of the SLF could
lead to a compensatory increase of BDNF levels, however,
potentially due to a disruption of neurotrophic downstream
signaling cascades (5), this obviously does not lead to a restitution
of this tissue. These findings would indicate that dysregulated
BDNF levels in schizophrenia patients might point to impaired
repair mechanisms with elevated serum concentrations as a
response to altered structural connectivity, rather than an early
step in the causal chain that leads to these alterations inconnectivity.
In addition, the SLF has been repeatedly indicated as altered in
schizophrenia patients by various studies (63, 82); Studies found
that FA values were decreased in the SLF (83–85) in patient
populations. This was interpreted by the authors as a potential
mesostructural correlation of altered neural plasticity.

Decreased AD values were found in the same region as the
negative correlation between FA values and BDNF levels. We,
thus, hypothesize that changes in AD are the smallest common
dominator in schizophrenia patients, whereas our findings of a
Frontiers in Psychiatry | www.frontiersin.org 6
negative correlation of BDNF and FA values are a result of
increased BDNF levels due to more global fiber tract changes, as
FA is a summative parameter for microstructural integrity (e.g.,
axonal diameter and packing density, myelination, etc.) (86, 87).

In summary, we hypothesize that BDNF levels increase as
response to altered white matter possible axonal damage. The
upregulated BDNF then tries to induce plasticity by activating its
TrkB pathway, but as mentioned in literature, this signaling
cascade is believed to be altered in patients with schizophrenia
(26, 88, 89) so that BDNF cannot induce its effects of plasticity
anymore (Figure 3).

There is also another important mechanism related to the
pathophysiology of schizophrenia in which BDNF is involved in
—glutamatergic neurotransmission. BDNF exerts its effects via
two different pathways: TrkB and p57. Through TrkB activation,
glutamate secretion and NMDA receptor function is modulated
(14, 90). As stated in the disconnection hypothesis, modulation
of synaptic plasticity through NMDA receptors is abnormal, so
the growth of dendritic spines and axonal myelination is
disrupted (33, 91). These dysfunctions might be associated
with altered BDNF levels, as BDNF influences and—with
higher levels— increases NMDA receptor-dependent
myelination of axons (91). As we found a negative correlation
between BDNF levels and FA maps in schizophrenia patients, it
could be, as mentioned above, consecutive to altered structural
connectivity in the SLF as a kind of feedback mechanism. The
SLF is a central fiber tract connecting the frontal, temporal,
occipital, and parietal lobe and has an impact in memory and
spatial information processing (41), functions that are impaired
in schizophrenia (84) and are also connected to BDNF. Through
the TrkB receptor cascade, BDNF stimulates long time
potentiation (LTP) in hippocampal neurona, which, in turn, is
well known to play a key role in learning and memory (92). In
addition, modification of glutamate levels influences
characteristic positive and negative symptoms as well as
disturbances in working memory (93).

Comparison of AD, MD, and RD With
BDNF Levels
AD, MD, and RD values did not significantly correlate with
BDNF values of patients and healthy subjects. This can be
interpreted in different ways. FA is a summative parameter for
microstructural integrity (e.g., axonal diameter and packing
density, myelination, etc.) (86, 87), in general, that is sensitive
FIGURE 3 | Description of the potential failure to induce neuronal plasticity in schizophrenia.
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to a variety of microstructural changes. Neuroimaging findings,
in turn, have been reported to exhibit higher variance in
schizophrenia patients than in healthy control groups (36, 94).
This heterogeneity within the patient group, in turn, might
obscure changes in other DTI parameters, especially since the
sample enrolled in our pilot study was comparatively small. It
will be an important issue for future studies with larger samples
to achieve a better characterization of the microstructural
changes that correlated with BDNF serum levels.

No Correlation of Grey Matter and
BDNF Values
In addition, we did not find any correlation between BDNF and
grey matter changes as suggested by earlier publications (42, 43).
Our findings suggest that changes in BDNF serum levels in
schizophrenia are mainly associated with pathologies in axons,
dendrites, and/or myelination (9). Consequently, our findings
would support a role for dysfunctional BDNF signaling as a failed
repair mechanism in schizophrenia with consequences for neural
connectivity (33, 95).
LIMITATIONS

One major limitation of our study is certainly the comparatively
small sample size. The small number also does not allow any sub-
analyses that might yield important insights into the exact
relationship between BDNF serum levels and brain structural
changes. However, it deserves to be pointed out that our project
was intended as a pilot study and is, to the best of our knowledge,
the first to examine potential correlations between BDNF serum
levels and white matter changes in schizophrenia. Consequently,
little is known about a relationship between BDNF and white
matter microstructure in actual schizophrenia patients. More
studies with larger sample sizes are needed to corroborate our
findings further.

Our study is based on a one-time assessment and did not
realize a longitudinal approach. It might be that medication (20,
84) has an impact on brain volume and white matter integrity, as
well as BDNF levels. Another contributing factor exerting an
effect on brain anatomy, and most likely, BDNF levels, certainly
is duration of the disease (96). There are a number of studies
investigating a possible association of brain volume loss and
antipsychotic medication (32, 97–99). One of the largest
longitudinal datasets suggests a correlation between cumulative
antipsychotic medication and progressive brain volume loss (97)
as does a follow-up study on the same cohort (32). This has led to
the idea of a causal relationship between antipsychotic
medication and neuroanatomical changes in schizophrenia.
However, other publications have discussed that notion
critically (99). Studies regarding a correlation of white matter
integrity and antipsychotic treatment Xiao et al. (100), Huang
et al. (101) Cho et al. (102), Zeng et al. (84), McNabb et al. (66)
described heterogenous results. Most report an effect of
antipsychotic treatment on white matter, but have yielded
different findings regarding the directionality of these changes
Frontiers in Psychiatry | www.frontiersin.org 7
(84, 100, 102). One study, for example, found improved white
matter integrity after antipsychotic treatment (84), while another
described an opposite association (102). Thus, it seems unclear at
this point what effects antipsychotic treatment might have on
white matter in schizophrenia patients. Nevertheless, we
certainly cannot rule out a possible influence of antipsychotic
medication on our findings. Also, the broad distribution in age
(30, 103) and BMI in this small sample size might have
influenced our results as well as there might be factors we are
not yet aware of that might influence BDNF serum levels. It also
remains opaque if the relationship between BDNF serum levels
and white matter changes is present at the onset of schizophrenia
or if such a relationship manifests throughout the course of the
disease (104).
CONCLUSION

To the best of our knowledge, this is the first study to investigate
potential correlations between brain structural changes and
BDNF serum levels in schizophrenia. We found a negative
correlation between BDNF levels and FA values in the SLF, a
fiber tract that connects frontal with temporal and also parietal
and occipital regions and has been repeatedly implicated in
schizophrenia. This negative correlation might reflect impaired
repair mechanisms in schizophrenia patients. The lack of
significant correlations between BDNF serum levels and grey
matter changes highlights the importance of BDNF for synaptic
plasticity, while it does not seem to have a significant
pathophysiological effect for cell migration of perikaryal
structure. Future studies enrolling larger collectives will have to
corroborate these findings.
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