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Simple Summary: Advanced neuroimaging is gaining increasing relevance for the characteriza-
tion and the molecular profiling of brain tumor tissue. On one hand, for some tumor types, the
most widespread advanced techniques, investigating diffusion and perfusion features, have been
proven clinically feasible and rather robust for diagnosis and prognosis stratification. In addition,
2-hydroxyglutarate spectroscopy, for the first time, offers the possibility to directly measure a cru-
cial molecular marker. On the other hand, numerous innovative approaches have been explored
for a refined evaluation of tumor microenvironments, particularly assessing microstructural and
microvascular properties, and the potential applications of these techniques are vast and still to be
fully explored.

Abstract: In recent years, the clinical assessment of primary brain tumors has been increasingly
dependent on advanced magnetic resonance imaging (MRI) techniques in order to infer tumor patho-
physiological characteristics, such as hemodynamics, metabolism, and microstructure. Quantitative
radiomic data extracted from advanced MRI have risen as potential in vivo noninvasive biomarkers
for predicting tumor grades and molecular subtypes, opening the era of “molecular imaging” and
radiogenomics. This review presents the most relevant advancements in quantitative neuroimaging
of advanced MRI techniques, by means of radiomics analysis, applied to primary brain tumors,
including lower-grade glioma and glioblastoma, with a special focus on peculiar oncologic entities
of current interest. Novel findings from diffusion MRI (dMRI), perfusion-weighted imaging (PWI),
and MR spectroscopy (MRS) are hereby sifted in order to evaluate the role of quantitative imaging in
neuro-oncology as a tool for predicting molecular profiles, stratifying prognosis, and characterizing
tumor tissue microenvironments. Furthermore, innovative technological approaches are briefly
addressed, including artificial intelligence contributions and ultra-high-field imaging new techniques.
Lastly, after providing an overview of the advancements, we illustrate current clinical applications
and future perspectives.

Keywords: brain tumors; advanced MRI; molecular profiling; perfusion-weighted imaging; diffusion
MRI; magnetic resonance spectroscopy; radiomics; radiogenomics; quantitative imaging

1. Introduction

The 2016 World Health Organization (WHO) classification of central nervous system
(CNS) tumors [1] introduced molecular characterization as a crucial step in the diagnosis
of brain neoplasms, which are categorized both in grades reflecting their microscopical
features and in molecular subtypes. Infiltrating lower-grade gliomas (LGG, grade 2/3), i.e.,
astrocyte- and oligodendrocyte-derived tumors, currently include isocytrate dehydroge-
nase (IDH) mutant 1p/19q-codeleted (IDHmut1p19qcod) oligodendroglioma, IDH-mutant
1p/19q-intact (IDHmut1p19qint) astrocytoma, and IDH-wildtype (IDHwt) astrocytoma.
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Similarly, glioblastomas (GBM, grade 4) acknowledge IDHmut and IDHwt subtypes. The
molecular characterization of these tumors is crucial in the diagnostic workup, as the
molecular profile outweighs tumor grade for risk stratification [2], LGG-IDHwt showing a
prognosis almost similar to GBM-IDHwt, with GBM-IDHmut being less aggressive. Medul-
loblastomas, malignant embryonal tumors (grade 4) relatively common in the pediatric
population and arising in the posterior fossa, also acknowledge new molecular subtypes,
depending on WNT- and Sonic Hedgehog (SHH-)status [3]. In addition, the 2016 classifica-
tion introduced diffuse midline gliomas H3K27M-mutated (DMG-H3K27Mmut, grade 4),
a newly defined tumor type characterized by worse prognosis [4] than the other tumors
located in similar regions—mostly thalamus or posterior fossa.

Considering the limited possibility and the invasiveness of acquiring tissue samples
for histopathological evaluations and genetic profiling, the clinical assessment would
dramatically benefit from noninvasive in vivo biomarkers predicting tumor grades and
molecular subtypes at the time of diagnosis and reflecting biological changes over time. In
recent years, magnetic resonance imaging (MRI) has been increasingly employed for the
extraction of quantitative data reflecting underlying pathophysiological characteristics of
the neoplastic tissue—a method named “radiomics” [5–7].

Quantitative imaging-derived features for radiomic analyses can be extracted from
either conventional MRI (cMRI) or advanced MRI (aMRI, including diffusion MRI (dMRI)
and perfusion-weighted imaging (PWI)) maps, by using three-dimensional (3D) volumes of
interest (3D-VOIs) containing the whole tumor or two-dimensional (2D) in-plane regions of
interest (2D-ROIs) corresponding to “virtual samples” of tumor tissue. Radiomic features
include shape features describing the geometric appearance of the tumor, histogram-
derived statistics (“first-order” features) providing information about the distribution of
voxel intensities within the tumor (e.g., mean, median, percentiles, skewness), and textural
features (“second-order” features) quantifying the spatial patterns of voxel intensities
among adjacent voxels [8,9].

As a “rule of thumb”, molecular profiles bearing a worse prognosis exhibit more
“aggressive” aMRI markers [10–12], such as lower apparent diffusion coefficient (ADC)—
reflecting higher cellularity and extracellular matrix alterations [13]—and higher perfu-
sion/permeability parameters—corresponding to microvascular proliferation and leak-
age [10–14]. More in detail, dMRI features multiple techniques providing parameters that
quantify water displacement in the extracellular space (ADC), that estimate the preferen-
tial orientation of water motion (diffusion tensor imaging—DTI, and diffusion kurtosis
imaging—DKI) [15,16], and that quantify the reciprocal representation of different water
compartments (biophysical models) [17]. On the other hand, PWI includes three main
techniques (dynamic susceptibility contrast—DSC, dynamic contrast-enhanced—DCE,
and arterial spin labeling—ASL) that are variously based on exogenous (DSC, DCE) or
endogenous (ASL) tracers, and that provide insightful metrics reflecting tissue perfu-
sion/permeability: blood volume (DSC-cerebral blood volume (CBV)), blood flow (DSC-
and ASL-cerebral blood flow (CBF)), intravascular tracer (DCE-Vp), and parameters de-
scribing the tracer exchange between intravascular and extracellular space (DCE-Ktrans, -Ve,
-Kep) [14,18]. While dMRI and PWI infer tumor pathophysiological features by assessing
microstructural and perfusion/permeability tissue properties, novel magnetic resonance
spectroscopy (MRS) approaches enable the detection of specific diagnostic molecules, as
in the case of 2-hydroxyglutarate (2HG), which accumulates in brain tumors as a result
of IDH-mutation [19], thus representing the first instance of MRI directly measuring a
mutation marker in brain tumors.

In the first part of this review, we discuss the diagnostic performance of quantitative
data derived from PWI, ADC, and MRS in the molecular profiling of brain tumors, in-
cluding recently defined peculiar tumor entities. In the second part, we present novel and
promising aMRI approaches (DTI/DKI, biophysical models, tumor blood-oxygen-level-
dependent imaging (BOLD)) that may provide deeper insights regarding tumor extension,
microstructure, and microvasculature. In the third part, we briefly address new approaches
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based on ultra-high-field imaging and contributions from artificial intelligence. Lastly, we
conclude by discussing the clinical applicability and future directions.

2. IDH-Status Prediction in Gliomas through Perfusion and Diffusion Assessment

For glial tumors, isocytrate dehydrogenase (IDH) status is currently the most impor-
tant molecular feature to assess in gliomas, as the absence of IDH-mutation dramatically
worsens prognosis both in LGG and in GBM [2]. IDH-mutation is considered an early
event in gliomagenesis, and it results in the overproduction of 2HG, an oncometabolite
influencing cellular metabolism, genetic stability, and epigenetic phenomena [20]. IDH-
determination is a fundamental step in the diagnostic workup, as therapeutic decisions
such as the timing of radiation-treatment are influenced by IDH-status [21], and it is also
becoming of crucial importance to identify patients that may benefit from IDH-targeted
therapy [22]. A recent meta-analysis [23] listed the MRI hallmarks of IDHmut-gliomas:
preferential frontal lobe location, lower probability of contrast enhancement, well-defined
borders, T2-FLAIR (fluid-attenuated inversion recovery) mismatch (T2FM) sign, higher
ADC, lower fractional anisotropy (FA), and lower cerebral blood volume (CBV)—with high
summary sensitivity/specificity (0.86/0.87; area under the curve (AUC), 0.93) of MRI for
IDH-prediction. Multiple studies have assessed the diagnostic performance of aMRI for
IDH-status prediction, mainly on the basis of dMRI, PWI, or combination approaches.

Multiple studies assessed the capability of PWI for IDH-status determination in
LGG, with relative-CBV (rCBV) being the parameter most frequently employed. In a
cohort of 73 treatment-naïve LGG, Kickingereder and colleagues [24] demonstrated that
IDHmut-LGG were characterized by a decreased hypoxia-induced angiogenesis, as well
as reduced rCBV histogram metrics, and they reported an excellent performance of 90th
percentile-rCBV (AUC 0.92, PPV/NPV 0.89/078) for IDH-mutation prediction. Lee and
colleagues [25] also employed histogram-derived rCBV-metrics and found rCBV-skewness
being a significant predictor of IDHmut1p19qint-genotype among LGG (AUC 0.69). In
another study enrolling LGG-patients [26], an ROI-derived measure (rCBVmax, comparing
tumor-CBV to the contralateral white matter) also exhibited a good diagnostic performance
(AUC 0.82), and the authors proposed a threshold of <2.35 for high-sensitivity IDH-status
prediction (sensitivity/specificity 1.00/0.61 in their cohort), meaning that rCBVmax > 2.35
is highly indicative of IDHwt-status and, therefore, of worse prognosis.

In other articles, various measures derived from ADC-maps, including histogram-
derived metrics (e.g., mean, median, percentiles, skewness, entropy) and ROI-derived
values (e.g., mean, minimum, ratios), have been applied for the prediction of IDH-status
specifically on LGG. Across studies [25–28], 2D-ROI measures seemed to perform slightly
better than histogram-derived ones (AUC ranging 0.83–0.96 vs. 0.75–0.94, respectively), and
a 1.8 threshold for the ratio between the mean single-slice ADC and the normal-appearing
white matter (ADCmean/ADCNAWM) is to be considered the most reliable diffusion-metric
for IDH-status, as it demonstrated good diagnostic performance in two distinct stud-
ies [27,28] (sensitivity/specificity: ~0.83/~0.95 and 0.87/0.60, respectively). These studies,
particularly the one by Thust et al. [28], have relevant clinical implications, demonstrating
high accuracy of ADC-measurements manually performed with 2D-ROIs and, therefore, ap-
plicable in the clinical routine. In addition, moving from the evidence that IDHmut1p19qint-
LGG are the only LGG expected to contain large subvolumes with high ADC-values, other
authors [29] proposed an alternative index for their identification: the percentage of tumor
volume with ADC > 1.5× 10−3 mm2/s (VADC>1.5), which also demonstrated good accuracy
(~0.8 AUC in both their training and validation cohort).

The aforementioned studies, taken together, seem to advocate for a rather high reliabil-
ity of ADC and PWI for IDH-status prediction in LGG. However, many authors [11,25–27]
demonstrated that the diagnostic performance of aMRI for IDH-status in LGG signifi-
cantly increases when combined in multimodality analyses and/or with cMRI features.
ADC- and/or rCBV-measures have been variously combined with cMRI features—such
as tumor volume, enhancement, and location, and presence of calcifications, cysts, or
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T2FM—with very good to excellent diagnostic performance for IDH-determination (AUC
ranging 0.84–0.96 across studies). Maynard and colleagues [27], for instance, obtained
strong results on a large LGG cohort (study/test sample: 290/49 patients), by developing
two models based on ROI-derived ADCmean/ADCNAWM combined with the patient’s
age, tumor location and enhancement pattern, and presence of calcifications (model-A,
AUC 0.96) or cysts (model-B, AUC 0.94). Figure 1 shows two representative cases (one
IDHmut- and one IDHwt-LGG, respectively) for which diffusion and perfusion features
were evaluated through a clinically feasible single-slice ROI approach.
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Figure 1. Perfusion and diffusion assessment of lower-grade glioma (LGG). MRI datasets were retrieved from the archive of
our Institution. Diffusion MRI (dMRI) and perfusion-weighted imaging (PWI) features from one isocitrate dehydrogenase
mutant (IDHmut)-LGG (A) and one IDH wild type (IDHwt)-LGG (B) were evaluated through a clinically feasible single-slice
region of interest (ROI) approach. IDHwt-LGG exhibits more “aggressive” aMRI features, in particular a mean apparent
diffusion coefficient (ADCmean)/normal-appearing white matter (ADCNAWM) ratio lower than 1.8, the proposed cutoff for
IDHwt status prediction by Maynard et al. [27] and Thust et al. [28].

Similarly to LGG, quantitative-aMRI has also been employed for IDH-prediction in co-
horts including GBM. Zhang and colleagues [30] explored several histogram-derived PWI-
metrics and identified 10th percentile AUC (area under the curve, a DCE-metric) (sensitiv-
ity/specificity/AUC 0.78/0.80/0.83) and 10th percentile-Ktrans (sensitivity/specificity/AUC
0.78/0.85/0.80) as the best predictors of IDH-status in a cohort including both LGG and
GBM. Other authors proposed cerebral blood flow (CBF) derived from ASL as an IDH-
predictor in cohorts including exclusively GBM [31] or both LGG and GBM [32]. The former
article used ROI-derived CBFmax from the enhancing tissue, with sensitivity/specificity
0.58/0.79; the latter employed VOI-extracted whole-tumor CBF, with higher sensitiv-
ity/specificity 0.77/0.88, and reported ASL-CBF superiority to other PWI-metrics. The
combined usage of aMRI markers seems to lead to better results also in GBM. A recent
study [33], for instance, compared ROI-derived tumoral-ADCmin, tumoral-CBVmax, and
peritumoral-CBVmax for IDH-prediction; the multimodal combination of several aMRI
markers improved the diagnostic performance (AUC 0.88–0.9 for combined approaches vs.
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0.7–0.89). Furthermore, consistently with “aggressive” aMRI markers usually reflecting a
worse prognosis, findings by Wu and colleagues [12] not only confirm lower ADC-values
in IDHwt-gliomas (including both LGG and GBM), but also suggest that, to some extent,
ADC may reflect tumor “aggressiveness” even regardless of genotyping; in their cohort,
IDHmut-gliomas exhibiting low ADC-values (rADCmean < 1.08) presented a prognosis
comparable to IDHwt-gliomas.

Overall, CBV- and ADC-based measurements are the most robust aMRI markers.
However, while ADC ROI-measurements were proven rather reproducible between scan-
ners and at different field strengths [34,35], the comparison of CBV-estimates (and cutoffs)
across different centers still suffers from a number of confounding variables. In particu-
lar, different institutions apply various countermeasures for leakage-effects—including
preload (at different dosages), lowering the flip angle, and/or post-processing leakage
correction—that may contribute to variability in CBV-estimation. This limitation of DSC is
well recognized, and there have been increasing efforts to move toward more standardized
protocols [36–38]. Furthermore, achieving a definitive multicentric consensus on DSC
would potentially enable the inclusion of PWI in the treatment response assessment for
clinical trials, which is currently based exclusively on cMRI findings and measurements,
according to 2010 Response Assessment in Neuro-Oncology (RANO) criteria [39]. In fact,
rCBV is currently the most validated aMRI-metric for distinguishing therapy effects such
as pseudoprogression or radiation-induced injury from progressive disease [36,38], and
DSC standardization would contribute to reduce the current variability in the proposed
cutoffs for differential diagnosis [40]. Conversely, although lower ADC values have been
associated with progressive disease compared to pseudoprogression, the use of ADC alone
is still controversial for this distinction due to the intrinsic glioma heterogeneity, with
regions of high cellularity mixed with areas of necrosis, edema, and microhemorrhage that
can be found both in pseudoprogression and in radiation-induced injury [40]. On the other
hand, the inclusion of diffusion-weighted imaging (DWI) in the response assessment of
antiangiogenic agents, such as bevacizumab, may improve the evaluation of therapy effects
such as pseudoresponse, in which a decrease in the enhancing area with progressively
growing restricted diffusion lesion burden is associated with a worse prognosis [40].

3. Spectroscopy Advancements: 2-Hydroxyglutarate Direct Detection to Demonstrate
IDH-Mutation

In recent years, 2HG-MRS allowed the measurement of 2HG accumulation as a
result of IDH-mutation, thus representing the first instance of MRI enabling the direct
detection of a molecular marker in neuro-oncology. Since the first pulsed sequence for
2HG measurement was optimized [19], this approach has been explored for IDH-status
prediction at time of diagnosis and for monitoring 2HG levels over time. According to a
recent meta-analysis by Suh and colleagues [41], across 14 studies, 2HG-MRS consistently
measured higher 2HG-accumulation in IDHmut-gliomas, with high diagnostic performance
for IDH-determination (summary AUC 0.96; pooled sensitivity/specificity 0.95/0.91).
2HG-peak was evaluated at 2.25 ppm, in the majority of cases, and cutoff values for 2HG-
peak varied from 0.897 to 2 mM. For instance, two studies [42,43] proposed thresholds
of 1 mM and 2 mM (respectively) for the identification of the 2HG-peak. Grouping
individual patients’ data provided by five out of the 14 studies included (173 patients),
Suh et al. [41] identified 1.76 mM as the optimal cutoff value for IDH-determination, with
sensitivity/specificity 0.75/0.94.

In addition to its diagnostic contribution, a potential role in treatment response as-
sessment has been proposed for of 2HG-MRS, as 2HG-levels decrease following cytotoxic
treatment [42,44] and increase sharply in case of tumor progression [42] in IDHmut-gliomas.
This application may be particularly relevant in the case of IDH-targeted drugs, such as
ivosidenib and vorasidenib [21], as 2HG-MRS would represent a unique tool for directly
measuring the drug-induced inhibition of IDH activity. Andronesi et al. [45] longitudinally
evaluated patients diagnosed with IDH1mut-gliomas and treated with IDH305 inhibitor, by
measuring 2HG concentration in tumor tissue pre and post treatment. 2HG-MRS demon-
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strated a rapid decrease of 2HG levels (70% decrease in 2HG/hCr ratio) after 1 week of
IDH1-inhibition.

However, MRS performance for 2HG-detection has been proven to depend on tumor
cellularity [42] and volume [46]. In addition, 2HG-MRS is a challenging technique to
implement, mostly due to a confounding spectral overlap between 2HG and several
other metabolites [47]. A possible solution may be represented by an “edited” MEGA-
PRESS (Mescher–Garwood point-resolved spectroscopy) 2HG-MRS sequence, recently
proposed [48] for the measurement of a secondary 2HG-peak at 4.02 ppm (Figure 2). The
secondary peak exhibits lower intensity but less degree of overlap, with very promising
results on the initial cohort of 24 LGG (sensitivity/specificity 1.0/1.0). A subsequent
prospective study involving 57 gliomas (both LGG and GBM) [49] discussed potential
optimal cutoffs for 2HG-peak, and confirmed the high diagnostic accuracy of MEGA-PRESS
2HG-MRS (sensitivity/specificity/AUC ranging 0.76–0.80/0.76–1.0/0.79–0.89).
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Evidence provided by these studies is overall very supportive of a central role of
2HG-MRS for diagnosis, prognosis stratification, and treatment response assessment in the
neuro-oncology scenario of the next decade. In particular, MEGA-PRESS seems to be a valid
option to overcome the technical obstacles of 2HG-MRS. One last concern deserving further
evaluation is raised by the notion of IDH2mut (more common in oligodendrogliomas) being
associated with a greater 2HG accumulation than IDH1mut (more common in astrocytomas),
which has a significant impact on 2HG-MRS measurements [50] and may have relevant
implications when selecting cutoffs for diagnosis.

4. 1p/19q Codeletion Determination for Oligodendrogliomas

Oligodendrogliomas are oligodendrocyte-derived tumors, whose current diagnosis
requires the demonstration of IDHmut1p19qcod molecular status [1], a molecular marker
associated with better prognosis and treatment response [51]. Some cMRI findings [52]
may direct toward the hypothesis of oligodendroglioma, involving, first of all, the presence
of two peculiar features: calcifications and cortical–subcortical involvement. Further-
more, oligodendrogliomas often exhibit an inhomogeneous signal, may present cystic
or hemorrhagic areas, and show absent/minimal contrast enhancement (patchy or dot-
like, when present). On aMRI, IDHmut1p19qcod represents an important exception to
the aforementioned “rule of thumb”, as they are characterized by intermediate diffu-
sion and perfusion/permeability features between IDHwt and IDHmut1p19qint despite
their better prognosis, as demonstrated by several studies [10,11,25,27–29]. More in de-
tail, oligodendrogliomas exhibit lower ADC and higher perfusion/permeability markers
compared to diffuse astrocytomas, and such aMRI markers do not vary between grade
2 and 3 IDHmut1p19qcod [10,11]. These findings, which are counterintuitive considering
their mild prognosis, have been attributed to some peculiar microscopic features of oligo-
dendrogliomas, which seem appreciable even in the lower grades. In fact, intralesional
calcifications and a relatively high cellularity, with cells showing a cluster growth pattern,
may be responsible for decreased ADC-values [53]. On the other hand, their flourishing
microvascular networks (“chicken-wire” networks) and the cortical involvement account
for higher perfusion/permeability metrics [10]. This mismatch between aMRI features
and prognosis in IDHmut1p19qcod can be misleading, as their aMRI behavior may mimic
higher-grade gliomas (HGG), as well as some cMRI findings such as contrast enhancement
and relatively indistinct margins [27].

A recent study [53] applied ADC and rCBV histogram metrics to 71 LGG and con-
firmed that IDHmut1p19qcod-LGG exhibit aMRI characteristics that are compatible with
a higher cellularity (ADCmean), microvascularity (rCBFmean), and vascular heterogeneity
(rCBVpeak) than IDHmut1p19qint-LGG, and it reported a good diagnostic performance
of the combination of such parameters for the detection of 1p19qcod-status (sensitiv-
ity/specificity/AUC 0.92/0.81/0.84). Despite their relevance, the impact of these results
is limited by the fact that the cohort did not include IDHwt-gliomas, which present with
more aggressive aMRI-metrics, often partially overlapping with oligodendrogliomas.

Similarly to IDH-profiling, an innovative approach for 1p19q-determination could
be provided by MRS. In fact, the loss of two enzymes located on chromosome-1p results
in a cystathionine accumulation, which can be measured by MRS after the subtraction of
the spectra obtained from an edit-on and an edit-off condition [54]. Cystathionine level on
MRS was proven significantly higher in IDHmut1p19qcod, designating this metabolite as a
potential marker for 1p19qcod, in case its diagnostic reliability will be assessed.

5. Additional Molecular Markers in GBM: Epidermal Growth Factor Receptor (EGFR)
Modifications and O6-Methylguanine DNA Methyltransferase (MGMT) Methylation

In addition to IDH-status, other molecular features hold a prognostic significance in GBM,
including EGFR modifications (mainly mutations or amplifications) and MGMT methylation.

Epithelial growth factor receptor (EGFR) is altered in ~60% of de novo GBM and ~10%
of secondary GBM [55]; its most common alteration (~33% of GBM) is EGFR variant-III
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(EGFvIII), presenting a mutation in the extracellular portion [56]. EGFR modifications
are believed to have a role in tumor invasiveness (regulating proliferation and motility of
tumor cells) and often occur in the infiltrating periphery of GBM, accounting for the fuzzier
appearance of tumor margins [55]. Despite not representing a diagnostic criterion for
WHO 2016 GBM classification, the identification of EGFR modifications (and specifically
EGFRvIII) may have prognostic and therapeutic implications (even though the exact
prognostic meaning of EGFRvIII is still controversial) [57–59]. EGFR alterations have
been associated with lower ADC [60], higher rCBV, and lower PSR (percentage signal
recovery, a DSC-derived metric reflecting contrast leakage) [61], as well as higher rVp
and rKtrans [62]. Considering these aMRI markers alone, across studies, rVp-derived
histogram metrics (mean, 90th percentile, 70th percentile) were the most accurate (AUC
~0.82) [62]. A recent study [63] on 129 GBM patients (discovery/replication cohort: 75/54)
developed a multiparametric model (featuring DSC, ADC, DTI, and cMRI histogram
analysis from tumor VOI) capable of predicting EGFRvIII (sensitivity/specificity/AUC 0.83–
0.79/0.86–0.90/0.85–0.86 for the two cohorts, respectively). Notably, this aMRI analysis
revealed a complex imaging signature of EGFRvIII-GBM that exhibits higher-rCBV and
lower-ADC both in the enhancing tissue and in nonenhancing peripheral tissue, but
also contains peculiar low-rCBV (hypovascular “prenecrotic”) foci within the enhancing
tissue. In another study [56] on 142 GBM patients (discovery/replication cohort: 64/78),
two manual ROIs were placed in nonenhancing T2/FLAIR alteration areas, respectively
adjacent to the enhancing tissue and distant from it. In EGFRvIII-GBM, the high peripheral
vascularization caused the “near”-ROI and the “far”-ROI to display very similar DSC
curves, whereas, in non-EGFRvIII-GBM, the curves diverged (the “near”-ROI exhibiting
higher vascularity). An index of separability between the two ROIs was obtained (by
representing the DSC curve vectors in a principal component analysis), which showed
high diagnostic performance for EGFRvIII-prediction (AUC 0.88). In a representative case
illustrated by the authors, the between-ROI difference was also appreciable with DSC
curve qualitative visualization. Notably, including DTI- and cMRI-derived measures in the
model did not significantly improve the diagnostic performance.

The methylation of the O6-methylguanine DNA methyltransferase promoter (MGMT
methylation) is an epigenetic modification that reduces the expression of MGMT, a DNA-
repair enzyme. MGMT methylation in GBM is a positive prognostic factor for treatment
response (with temozolomide and radiation-therapy), and it is also correlated to a better
prognosis regardless of treatment [64].

Multiple studies attempted to discriminate MGMT status on the basis of ADC values,
with very inconclusive results. In fact, some authors reported ADC measures being higher
in MGMT-methylated [65–67], others lower [68], and others found no between-group
difference [69]. Some authors [70] even found diverging results in the same GBM cohort,
with ADCmin being lower or higher depending upon the different approach for extracting
ADCmin (either an absolute minimum value or a “two-mixture distribution” histogram
analysis, respectively). This result was consistent with diverging results from previous
studies employing these two methods [65,68], suggesting that the different approach may
partially account for these controversial findings.

In one study [69], DCE and DTI metrics were extracted from a VOI of the enhanc-
ing tumor, and Ktrans exhibited significantly higher values in MGMT-methylated GBM
(sensitivity/specificity/AUC 0.56/0.85/0.76), whereas other aMRI metrics and cMRI fea-
tures did not differ between groups. Ktrans being higher in MGMT-methylated GBM is
surprising given that Ktrans is generally considered a marker of immature and “leaking”
neovascular structures, thus correlating with more aggressive tumors. It has been spec-
ulated that endothelial permeability in MGMT-methylated GBM could be related to a
better temozolomide penetration in the tumor [69]. This hypothesis would be consistent
with the notion of elevated Ktrans being correlated with better prognosis [71] and with
MGMT methylation being associated with pseudoprogression [72,73], a post-treatment
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phenomenon representing a positive prognostic factor [74,75] and supposedly reflecting
edematous and permeability alterations linked to treatment effectiveness [76].

6. Novel GBM-Defining Genotypes: EGFR Amplification and Telomerase Reverse
Transcriptase (TERT) Mutation in IDHwt-Gliomas

In light of the cIMPACT-NOW Update 6 [77], the diagnostic criteria for GBM have
been further revised toward an even higher centrality of molecular profiling. On one
hand, the classic histopathological hallmarks (microvascular proliferation and necrosis) are
currently not sufficient for a diagnosis of GBM, as the absence of IDHwt-status defines a
novel subtype named IDHmut-astrocytoma grade 4. Conversely, the presence of peculiar
molecular features (IDHwt-status associated with EGFR amplification, TERT mutation, or
+7/−10 chromosome copy number changes) suffices for the definition of GBM, regardless
of microscopical features (that is, even though the microscopical evaluation advocates for
LGG). This is a rather recent definition, and only few studies addressed the identification
of these novel GBM-defining genotypes within IDHwt-LGG.

A retrospective qualitative evaluation on 71 LGG [78] reported EGFR amplification
being almost exclusively seen in IDHwt-LGG and significantly correlating with mild (not
avid) contrast enhancement, with >5% enhancing tumor, and with infiltrative/mixed
growth pattern. In addition, diffusion restriction was rare in this cohort, but exclusively
seen in EGFR-amplified IDHwt-LGG. Park and colleagues [79] extracted VOI-derived ADC,
DTI, DSC, and DCE parameters from 49 IDHwt-LGG, and identified lower ADCmean as
an independent predictor of EGFR amplification (AUC 0.75) and perfusion/permeability
parameters (nCBFmean, nCBVmean, and Vp-mean, where “n” stands for “normalized”) as
independent predictors of TERT mutation (AUC 0.85 for Vp-mean). These results are partic-
ularly promising, suggesting that aMRI may play a role in the in-vivo detection of these
novel GBM markers, not only aimed at an optimized diagnosis and risk stratification, but
also potentially at therapy guidance, as TERT- and EGFR-targeted therapy [80,81] have
been explored for gliomas.

7. Diffuse Midline Gliomas H3K27M-Mutated

DMG-H3K27Mmut are diffuse gliomas arising on the midline (Figure 3), often infra-
tentorial or thalamic and mostly seen in the pediatric population [1], and they include the
previously defined diffuse intrinsic pontine gliomas (DIPGs). DMG-H3K27Mmut diagnosis
requires the identification of K27Mmut of H3-histone, resulting in tumorigenesis through
a reduced activity of H3, modulating chromatin changes and gene expression [4]. The
identification of H3K27Mmut status is particularly relevant, since DMG-H3K27Mmut are
considered WHO grade 4 tumors, regardless of microscopic appearance, due to their poor
prognosis [4]. Features on cMRI may be variable and nondistinctive [82,83], exhibiting
mainly absent or partial/peripheral enhancement, frequently a solid appearance, and
rarely hemorrhagic areas.

Different studies achieved discordant results for H3K27M status determination through
aMRI quantitative analyses. Piccardo et al. [84] reported higher rCBVmax, lower rADCmin
(both determined through manual ROIs with a hotspot approach), and higher choline/creatine
ratio of DMG-H3K27Mmut compared to H3K27Mwt-gliomas arising from the midline (AUC
0.85/0.81/0.78 for the three metrics, respectively). Another article [85] proposed ADC
measures extracted from tumoral and peritumoral manual ROIs for H3K27Mmut-prediction,
with good diagnostic performance (AUC: ranging from 0.81–0.87 for single-ROIs; 0.87 com-
bining tumoral and peritumoral rADCmin). However, other authors [83,86] found no
association between low ADC-values and H3K27Mmut, and a recent meta-analysis [87] re-
ported that DMG-H3K27Mmut generally exhibit similar aMRI features (ADC and ASL-CBF)
to LGG rather than HGG and, therefore, are often distinguishable from medulloblastomas
but not from pilocytic astrocytomas. Similarly, findings from animal models suggest that
H3K27M status does not affect tumor permeability, as no association with Ktrans-variations
was found [88]. The inconsistency between studies may partially arise from the heterogene-



Cancers 2021, 13, 424 10 of 25

ity in the midline H3K27Mwt-gliomas enrolled, which may include both HGG and LGG.
Future studies should perhaps focus on the differentiation with midline H3K27Mwt-LGG,
as it determines a major prognostic difference.
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On the other hand, there is robust evidence that ADC correlates with survival in DIPG,
regardless of H3K27M-status [83,89,90], once again suggesting that dMRI may have an
independent prognostic value, as it reflects tumor biological features as cellular density
and extracellular matrix alterations.

According to cIMPACT-NOW Update 6 [77], another mutation in H3-histone (H3.3-
G34mut) has been proposed as a distinctive molecular marker of a novel tumor type,
diffuse glioma H3.3-G34mut, a pediatric cerebral hemispheric glioma bearing a similar
prognosis as DMG-H3K27Mmut [91,92]. Recent studies provided a description of some
H3.3-G34mut cMRI features [92], including inhomogeneous appearance, scarce/absent
contrast enhancement, and sometimes cystic components, but aMRI features of this new
tumor type are still to be assessed.

8. Medulloblastomas

The molecular classification of medulloblastomas (grade 4) currently acknowledges
four subtypes: WNT-activated, SHH-activated, and non-WNT/non-SHH subgroups in-
cluding “group 3” and “group 4” [1]. For medulloblastomas, molecular categories also
correspond to different prognoses, which vary from good (WNT-activated) to intermediate
(SHH-activated and group 4) to poor (group 3) [3]. Some cMRI characteristics may aid in
the subtype differentiation [93]: hemispheric localizations are exclusively seen in SHH-
activated, the absence of contrast-uptake is mostly described in group 4, and intratumoral
bleeding is thought to be more frequent in WNT-activated.

Few studies focused on the application of aMRI for the subtype identification of
medulloblastomas.

A recent study assessed the capability of MRS to distinguish medulloblastoma sub-
types [94] and found group 3/4 to reveal distinct spectral features when compared to
SHH-activated, including differences in taurine peaks (detectable in the former and absent
in the latter) and in lipid peaks (more prominent in the latter). These authors proposed
a model based on the measurements of five metabolites (taurine, lipid-13a, myo-inositol,
creatine, and aspartate) with very good diagnostic performance (AUC 0.88).

Other researchers systematically compared ROI-derived ADC-values from medul-
loblastomas in 93 pediatric patients [95], and they notably reported higher ADC-values for
group 3/4 and lower for WNT-activated, supposedly due to the anaplastic variant being
more represented for group 3/4 in their cohort and to a higher cellularity in WNT-activated
subtypes. However, ADC-values largely overlapped among tumor subtypes. On the
other hand, ADC histogram metrics (entropy and 90th percentile) were proven to correlate
with the histological proliferation marker Ki67, suggesting a potential role of ADC as an
independent prognostic factor in medulloblastomas [96]. In addition, various ROI-derived
and histogram-derived ADC-metrics were proven useful for the differential diagnosis be-
tween medulloblastoma and other infra-tentorial neoplasms such as pilocytic astrocytomas,
metastases, hemangioblastomas, and ependymomas [97–99]. Moreover, DTI histogram
metrics showed different values in medulloblastomas and pilocytic astrocytomas [100],
with mean diffusivity (MD) outperforming other DTI-metrics, consistently with the notion
of MD providing insights analogous to ADC regarding tumor microstructure. Lastly, a
recent meta-analysis [87], based on 14 studies, evaluated ROI-derived ADC and ASL-CBF
extracted from pediatric brain tumors with a “hotspot” approach and reported high accu-
racy (ADCmin = 0.97; nCBFmax = 0.83) in distinguishing low-grade lesions from high-grade
lesions (including medulloblastomas, fairly represented in their cohort).

9. DTI and DKI for Glioma Assessment

DTI is a dMRI technique that evaluates the orientation of water diffusion in biologic
tissues as a result of constraints represented by oriented cell membranes and myelin [15],
and it provides a number of metrics, including p (pure isotropic diffusion, reflecting dif-
fusion lacking a preferential direction), q (pure anisotropic diffusion, reflecting diffusion
with a preferential direction), FA (fractional anisotropy, reflecting the degree of anisotropic
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diffusion in a single direction compared to other directions), and MD. Despite its primary
function in neuro-oncology being to provide datasets to perform tractography, depicting
the trajectory of eloquent white-matter tracts in the presurgical brain mapping [101,102],
multiple studies advocate for a role of DTI in delineating tumor margins and in character-
izing tumor tissue. In gliomas, altered DTI-metrics showed high sensitivity in detecting
tumor infiltration beyond T2-signal alterations [103], and the correct identification of tumor
extension has implications in the planning of surgery and radiation treatment [10,104]. In a
recent work [103], p and q were employed to assess the volume of peripheral infiltration in
LGG, and they demonstrated a markedly increased infiltration in IDHwt-LGG compared
to IDHmut-LGG (with no difference for 1p19qcod-status), and the authors advocated for
decreased p and increased q in tumor-infiltrated areas reflecting a higher cell density in the
presence of intact axons. Other studies evaluated the diagnostic performance of DTI-metrics
for IDH-status determination, as higher FA-values are seen in IDHwt-gliomas [105,106],
potentially reflecting either cell atypia [106] or microvascular structures [105,107]. One
study [105] compared ADC- and FA-derived measures, obtained with a “hotspot” man-
ual ROI approach (after the visual identification of low-ADC and high-FA areas), and it
reported similar capability of IDH-prediction (AUC ranging 0.76–0.94) for LGG, whereas
only ADC (not FA) predicted IDH-status in GBM (AUC 0.66–0.70). Overall, the authors
suggested employing rADCmin rather than FA measures. Aliotta and colleagues [106]
confirmed a similar performance between ADC and FA for IDH-prediction, in a study
employing histogram metrics and few texture features, but demonstrated an improved di-
agnostic performance using an ADC + FA combination model (sensitivity/specificity/AUC
0.80/0.80/0.90). Interestingly, these authors also tested an estimated FA obtained from ac-
celerated scans (three directions), which also increased IDH-prediction accuracy compared
to ADC alone (with slightly worse results than classic FA). Other authors [108] obtained
higher accuracy (AUC 0.92–0.95) for distinguishing IDHwt- and IDHmut-LGG through a
machine-learning model based on FA and B0 texture features.

While ADC and DTI assume water displacement following a Gaussian distribu-
tion, DKI is a dMRI technique that measures the degree of directional non-Gaussian
diffusion [109], better representing the restricted component of diffusion in biological
tissue [110]. DKI-derived parameters reflect non-Gaussian diffusion along the principal
orientation (Ka, axial kurtosis), the secondary orientations (Kr, radial kurtosis), and as a
mean of the three directions (MK, mean kurtosis).

DKI has been widely applied to grade differentiation in gliomas, and a recent meta-
analysis [108] reported a good diagnostic performance of MK (across 12 studies, pooled
sensitivity/specificity/AUC 0.87/0.85/0.92) in distinguishing LGG from HGG, using a
cutoff value ranging from 0.5 to 0.6 across studies. As for IDH-determination, Ka seems
to be the most promising marker, according to two studies [110,111]. In the first [111],
in a cohort of 52 gliomas, Ka extracted from manual ROIs outperformed DTI-metrics
and other DKI-metrics in identifying IDHwt-status (with sensitivity/specificity/AUC
0.75/0.74/0.72). In addition, DKI-metrics (positively) and MD (negatively) were correlated
to Ki67 proliferation marker, whereas FA was not, suggesting that the measurement of non-
Gaussian diffusion may better reflect tumor cellularity. In the second [110], IDHwt-status in
66 gliomas was predicted through a combined model employing DTI- and DKI-metrics, as
well as clinical information, and Ka was the most important parameter for IDH-prediction.
Furthermore, metric extraction from multiple manual ROIs did not affect the accuracy
of the model (as opposed to whole-tumor VOI extraction), and actually the ROI-based
model performed better in their cohort (AUC 0.85 vs. 0.77). The authors speculated that Ka
may reflect axonal integrity and density, thus being lower in the case of infiltrative tumor
growth [110,112].

As for oligodendrogliomas (IDHmut1p19qcod), similarly to ADC and perfusion/permeability
metrics, this tumor type also seems to be particularly challenging to identify for DTI
and DKI analysis. In fact, IDHmut1p19qcod-LGG exhibit intermediate FA compared to
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IDHmut1p19qint- and IDHwt-gliomas [106], and DKI-metrics do not significantly vary
between IDHmut1p19qint and IDHmut1p19qdel [110].

10. Biophysical Models: Toward Microstructural dMRI

Novel dMRI approaches are being developed, based on “biophysical models”, which
assume a certain underlying tissue microstructure defined a priori, and which are orga-
nized in multiple water compartments [17]. These techniques provide unprecedented
insights into tissue biology, potentially providing additional information for tumor char-
acterization. Neurite orientation dispersion and density imaging (NODDI) is a relatively
new model segregating the diffusion signal from intraneurite (FICV, intracellular volume
fraction), extraneurite (FECV, extracellular volume fraction), and free water (FISO, fraction
of isotropic Gaussian diffusion) compartments [112,113]. In their study on 192 glioma
patients, Figini et al. [114] compared the ability of predicting IDH status of NODDI-, DTI-,
and DKI-metrics extracted from single-plane ROIs. In their cohort, NODDI had no advan-
tages over the remaining techniques, with similar diagnostic performance (AUC ranging
0.72–0.76) when distinguishing IDHwt- from IDHmut-LGG, whereas kurtosis anisotropy
was the only metric displaying different values in IDHwt- and in IDHmut-GBM. Despite
these findings not seeming to advocate for a dramatic contribution of NODDI in the
assessment of brain tumors, it should be pointed out that this model might not be the
most adequate for tumor characterization, due to its a priori constraints that were set in
order to represent normal brain tissue rather than neoplastic tissue. Indeed, some au-
thors already reported on NODDI being inaccurate when applied to certain pathological
conditions, particularly in the case of gliomas, where neurite density contrast should not
be interpreted as due to neurites [115]. However, a possible application of NODDI in
neuro-oncology could lie in the evaluation of the peritumoral tissue. A recent study [116]
demonstrated that quantitative NODDI-metrics extracted along the trajectory of white-
matter peritumoral tracts are more sensitive than DTI-metrics in detecting white-matter
microstructural alterations and contribute to characterizing infiltrative and/or vasogenic
edema. The role of NODDI in the distinction between infiltrative and vasogenic edema
was also previously suggested by other authors, either through a visual inspection of
NODDI color maps [117] or through the extraction of quantitative NODDI metrics [118].
Indeed, Kadota et al. [118] reported a very good diagnostic performance (AUC 0.87) of
the peritumoral FECV in differentiating GBM and solitary metastasis, supporting the hy-
pothesis of infiltrative edema being characterized by a higher FECV than vasogenic edema,
as also previously suggested by other studies [115]. Unlike NODDI, other biophysical
models—such as vascular, extracellular, and restricted diffusion for cytometry in tumors
(VERDICT)—were specifically designed to represent neoplastic tissue. VERDICT [119]
assumes an anisotropic vascular compartment, an extracellular compartment with isotropic
hindered diffusion, and an intracellular compartment with restricted diffusion, and it also
estimates cell radius. Originally optimized for prostate neoplasms, it was recently applied
to gliomas [120]. A recent study [120] employed a clinically feasible VERDICT sequence (5
min 30 s) and compared VERDICT-metrics in IDHmut-LGG and IDHwt-HGG. A significant
difference in the “intracellular compartment” was found between groups, with this metric
being higher in IDHwt-HGG, whereas no significant ADC differences were seen in this
cohort. No between-group differences were found in cell radius from histopathology nor
VERDICT, whereas another study [121] described a difference in VERDICT radius between
GBM and LGG. Despite further studies potentially validating a hypothetical role of cell
radius in diagnosis, the major potential application of this metric could be in the treatment
response assessment, moving from the notion of cell shrinkage being an early marker of
tumor cell death, as already demonstrated by applying VERDICT to animal models [121].
Lastly, while the majority of biophysical models postulate water compartments to be im-
permeable, filter-exchange imaging (FEXI) is a novel technique that disentangles the signal
effects ascribable to water exchange across membranes and to restricted diffusion, thereby
estimating an apparent exchange rate (AXR) between water compartments [122,123]. In a
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recent article, Lampinen et al. [124] employed FEXI to demonstrate differences in water
exchange between astrocytomas and meningiomas, suggesting that AXR could provide
novel insights into the degree of cell membrane permeability, which may vary between
different tumor types.

11. BOLD Imaging to Evaluate Tumor Microvascularization and Oxygen Metabolism

Blood-oxygen-level-dependent imaging (BOLD) is an aMRI technique exploiting
the paramagnetic properties of deoxyhemoglobin to infer data regarding blood oxygena-
tion [125]. In the presurgical workup of brain tumors, this property is applied in functional-
MRI (fMRI) studies aimed at identifying eloquent cortical areas to be spared during the
surgical resection [126–128]. While fMRI is based on the assumption that neural activa-
tion is coupled with a hemodynamic response (neurovascular coupling) in the healthy
gray matter, tumor-infiltrated tissue may exhibit neurovascular uncoupling due to an
impaired cerebrovascular reactivity, and BOLD itself can be employed to detect areas of
uncoupling [129].

Another study [130] further proved that quantitative BOLD is capable of providing
useful insights regarding tumor-induced vascular abnormalities, in particular detecting
areas of tumor-like BOLD alterations beyond cMRI-defined tumor margins. The authors
proposed BOLD alterations as a marker to reveal tumor-infiltrated tissue and to detect post-
surgical residual disease. In addition, they reported IDHmut-gliomas harboring R132H-
mutation (R132H+-IDHmut, a mutation associated with better prognosis) exhibiting a
remarkably inferior BOLD alteration extension (measured by means of an index named
“BOLD-only fraction” of the tumor—BOF) than R132H−-gliomas. BOF had an excellent
diagnostic accuracy in discriminating R132H-status (AUC 0.98) in this cohort of 39 diffuse
gliomas, advocating for a role of BOLD in molecular profiling.

Stadlbauer and colleagues [131–133] employed a novel multiparametric approach—
combining DSC, BOLD datasets, and ADC—to assess tumor oxygen metabolism and char-
acterize microvascularization by estimating a number of insightful quantitative metrics
including oxygen extraction fraction (OEF), cerebral metabolic rate of oxygen (CMRO2),
radius (RU) and density (NU) of microvessels, microvessel type indicator (MTI, distin-
guishing between predominantly arteriolar and predominantly venular microvasculature),
micro- and macrovascular transit time heterogeneity (VTH), and mitochondrial oxygen
tension (mitoPO2). LGG exhibit higher OEF and lower CMRO2, while HGG showed lower
OEF, higher CMRO2, and higher neovascularization markers (NU, RU, MTI, CBV); these
findings were interpreted as LGG requiring an increased oxygen extraction (OEF) to meet
the increased metabolic needs in the absence of neovascularization, while, in HGG, the
additional oxygen demand (CMRO2) drives neoangiogenesis, supplying oxygen without a
higher extraction [131]. In addition, the authors reported a good diagnostic performance of
these metrics for IDH-prediction (AUC: 0.90 for MTI in all grades; 0.85 for MTI in HGG;
0.82 for CMRO2 in LGG). In another study by the same research group [132], the reciprocal
variations of these metrics were employed to characterize six main tumor microenviron-
ments in IDHwt-GBM: necrosis, hypoxia with defective neovasculature, hypoxia with
functional neovasculature, normoxia with functional neovasculature, glycolysis without
neovasculature, and glycolysis with functional neovasculature. Two main tumor types
were identified depending on the degree of representation of “glycolysis with functional
neovasculature” (G + NV) microenvironment: a “glycolytic-dominated” phenotype with
functional neovasculature (G + NV ranging 34–86% of tumor volume, Figure 4), and a
“necrotic/hypoxic-dominated” phenotype with defective neovasculature (G + NV 0.9–18%).
These two tumor types exhibited a significant difference in progression-free survival, con-
firming that aMRI markers (in this case reflecting neoangiogenesis and oxygen-metabolism)
may represent prognostic factors independent from molecular profiles (the study included
only IDHwt-GBM). As a confirmation of the potential role of BOLD for molecular profiling
and prognosis stratification, other authors [134] reported rOEF and R2′ (a BOLD-metric
reflecting vascular oxygen-saturation) as being capable of discerning EGFR-amplification
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in gliomas (AUC 0.70 and 0.72, respectively), and both metrics were significant predictors
of overall survival.
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Figure 4. Clustering of tumor microenvironments (TMEs) in a IDH1wt-glioblastoma (GBM). Maps representing advanced
MRI (aMRI) markers of oxygen metabolism and neovascularization were calculated (upper row), and specific TMEs
were identified on the basis of reciprocal variations of aMRI markers voxel-wise (lower row: TME map and scatter plot).
According to glycolysis, hypoxia, and neovasculature markers, this GBM was classified as showing a “glycolytic-dominated”
phenotype with functional neovasculature, a phenotype associated with better prognosis. Reproduced with permission
from Stadlbauer et al. [132].

12. Frontiers of Ultra-High-Field Imaging

MRI field strengths of 7 Tesla (7T) or more, namely, “ultra-high-field”, are character-
ized by peculiar physical characteristics, including enhanced susceptibility and chemical
shift effects, T1 relaxation time modifications, and a higher signal-to-noise ratio (SNR) [135].

Susceptibility-based techniques such as susceptibility-weighted imaging (SWI), quan-
titative susceptibility mapping (QSM), and BOLD are more sensitive at ultra-high-field,
and their application to brain tumors may aid the evaluation of neovasculature, the dis-
tinction between microhemorrhage and calcifications (by means of QSM, with potential
clinical relevance for differential diagnosis between GBM and oligodendrogliomas), and
the presurgical brain mapping with fMRI [135–137].

One technique that benefits from enhanced chemical shift effects is chemical exchange
saturation transfer (CEST), whose contrast reflects the exchange between free protons and
bound protons, mostly depending on protein concentration in the biological tissue and
other microenvironmental factors [138]. CEST imaging provides novel insights into the
tumor microenvironment, with potential diagnostic applications that are yet to be fully
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explored. A recent study [138], for instance, reported histogram-based CEST-metrics as
excellent predictors of IDH-status in gliomas (with AUC as high as 0.98, depending on the
metric). Furthermore, one peculiar application of CEST imaging is the imaging of injected
glucose (glucoCEST and dynamic glucose-enhanced imaging—DGE) to assess its uptake
in the neoplastic tissue [139,140], potentially representing a future alternative to positron
emission tomography (PET).

The increase in T1 relaxation time, on the other hand, is a favorable condition not only
for time-of-flight (TOF) angiography, but also for ASL, thus suggesting that ultra-high-field
may offer additional advantages for the evaluation of tumor perfusion [135,141].

A higher SNR not only results in a spatial-resolution improvement, but also allows
for a better sensitivity for the detection of metabolite peaks in MRS, and it enables for
imaging based on nuclei other than hydrogen (X-nuclei) [135,137], including sodium-23
(23Na) [142], chlorine-35 (35Cl) [143], potassium-39 (39K) [144], and oxygen-17 (17O) [145].
While the imaging of some X-nuclei (e.g., 23Na) has also been proven feasible at 3 T [146]
(but still greatly benefits from ultra-high-field), other X-nuclei have been only imaged
at 7 T. X-nuclei MRI has the potential to provide unprecedented information regarding
tissue electrolyte homeostasis, which is yet to be explored. The 23Na signal, for instance,
probes tissue viability, and was found increased in tumors due to membrane depolar-
ization in the cell division initiating phase (intracellular-23Na) and to extracellular space
expansion (extracellular-23Na) [137]. Nagel and colleagues reported total 23Na being ele-
vated in all tumors, while the relaxation-weighted 23Na signal was specifically increased
in GBM [142], and they proposed a 23Na inversion-recovery (IR) sequence that selec-
tively images intracellular-23Na [143]. Overall, 23Na-MRI shows a potential application
for neoplastic tissue characterization, and 23Na-IR may aid the distinction between in-
filtration (intracellular 23Na-elevation) and edema (extracellular 23Na-elevation) in the
peritumoral tissue. Lastly, 17O-MRI gives the unique opportunity to directly measure
oxygen metabolism (CMRO2) in brain tumors after the patient inhales 17O, which is used
as a tracer, being very rare in the natural atmosphere [145].

13. Contributions from Artificial Intelligence

In recent years, machine learning (ML) has been applied to neuroimaging analyses for
a number of applications, including tumor segmentation, a mandatory step for all radiomic
studies willing to assess quantitative features from whole-tumor VOIs. Segmentation con-
sists of obtaining 3D VOIs of the tumor from cMRI images, and it is traditionally performed
manually by trained personnel. Tumor VOIs can then be registered to other cMRI or aMRI
datasets in order to extract quantitative values, including histogram metrics and texture
features. However, the need for human intervention comes at great cost; the segmenta-
tion procedure is highly time-consuming, requires training, and is ultimately operator-
dependent [147]. To address these limitations, deep learning (DL) methods through con-
volutional neural networks (CNNs) have been proposed to perform automated tumor
segmentation [148]. While “classic” ML requires “manually engineered” features as inputs,
DL approaches autonomously learn to select useful features for the task, thereby bypassing
the need for human intervention [149]. Extensive literature regarding possible strategies
for DL segmentation has been produced [148–152], which already reached very satisfactory
results in the most recent studies [148], and models showing good performance are already
available open-access (e.g., https://github.com/NeuroAI-HD/HD-GLIO) [153,154]. Au-
tomated segmentation will make the extraction of quantitative MRI-metrics dramatically
easier, less time-consuming, and more consistent across operators and institutions. In
addition, if implemented on clinical picture archiving and documentation systems (PACS),
it would enable a more accurate evaluation of lesional burden at diagnosis and residual
disease after surgery.

Multiple studies explored the value of DL approaches for predicting prognosis, tumor
grades, and molecular profiles, and for distinguishing progressive-disease from pseudo-
progression after treatment [155]. In a recent study on 259 patients, Chang et al. [156]
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employed a CNN model based on cMRI datasets for the molecular profiling of both LGG
and HGG, and they reported a very high accuracy for the prediction of IDH-, 1p19q-,
and MGMT-status (0.94/0.92/0.83, respectively). Another study [157] identified an AI-
computed radiomic signature that successfully stratified GBM patients in low and high
risk, with a significant difference in overall survival, and including clinical data in the
model allowed for an even better stratification. Verma and colleagues [158] also adopted an
AI model to predict the prognosis of treatment-naïve GBM on the basis of cMRI-extracted
advanced radiomic features. Furthermore, these authors assessed the correspondence
between radiomic features and histopathologic findings in order to characterize tumor
tissue microenvironment. Their analyses revealed how radiomics heterogeneity mark-
ers reflect tumor heterogeneity in the high-risk GBM, corresponding to a heterogeneous
microenvironment of the hypoxic niche (in the peri-necrotic area) and to a tumor niche
enriched in hyperplastic blood vessels.

14. Conclusions

In the current neuro-oncology scenario, tumor classifications are constantly updated
in order to match the latest pieces of evidence regarding the different prognosis and
treatment response of tumor entities. aMRI quantitative analyses are a noninvasive source
of numerous in vivo biomarkers providing unprecedented insights regarding neoplastic
tissue biology and pathophysiology, including tumor microstructure, microvasculature,
metabolism, and electrolyte homeostasis.

On one hand, extensive literature has confirmed the role of the most “robust” aMRI-
metrics (e.g., ADC and CBV) for the evaluation of tumor aggressiveness, for the prediction
of specific molecular signatures that are crucial for diagnosis, and, to some degree, even
for prognostic stratification. In this regard, several studies have assessed the reliability
of hand-drawn ROIs to sample tumoral and peritumoral aMRI-metrics in order to orient
the diagnosis toward a specific molecular type. In addition, multimodality evaluation
outperforms single-metric approaches for predicting molecular status. Overall, considering
that these aMRI-techniques are widely employed throughout neuroradiological centers
and that ROI-based measurements are easy to perform on clinical PACS, a multimodality
approach assessing quantitative ADC- and CBV-values alongside with cMRI features seems
an applicable approach in the current clinical routine.

On the other hand, results from multiple studies advocate for 2HG-MRS assuming
an increasingly central role in the next decade not only for the IDH-status assessment at
the time of diagnosis (which is fundamental according to the current clinical workup of
gliomas), but also for treatment response assessment, specifically for directly evaluating the
effects of the IDH-targeted therapy, which represents an encouraging therapeutical option.

Furthermore, the refined characterization of tumoral features and microenvironments
enabled by more advanced approaches (e.g., NODDI, VERDICT, tumor-BOLD, 23Na-
imaging) opens up the possibility of numerous applications, and their reliability for molec-
ular profiling is still to be explored. Interestingly, shreds of evidence suggest that aMRI
metrics providing such detailed and pioneering insights into tumor pathophysiology may
bear prognostic value per se, regardless of the correspondence to specific molecular types.
Future studies will address the multiple potential underlying diagnostic/prognostic impli-
cations of these novel methods, in order to select which novel techniques will have a role
in the future clinical practice.

Lastly, the increasing adoption of AI-based models will not only pave the way for
a more accurate diagnostic and prognostic assessment, but also explore the usefulness
of higher-order cMRI radiomic features, which may better correlate with microscopic
findings, representing an alternative to novel aMRI markers for the characterization of
tumor tissue microenvironments.
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44. Andronesi, O.C.; Loebel, F.; Bogner, W.; Marjańska, M.; Heiden, M.G.V.; Iafrate, A.J.; Dietrich, J.; Batchelor, T.T.; Gerstner, E.R.;
Kaelin, W.G.; et al. Treatment response assessment in IDH-mutant glioma patients by noninvasive 3D functional spectroscopic
mapping of 2-Hydroxyglutarate. Clin. Cancer Res. 2016, 22, 1632–1641. [CrossRef]

45. Andronesi, O.C.; Arrillaga-Romany, I.C.; Ly, K.I.; Bogner, W.; Ratai, E.M.; Reitz, K.; Iafrate, A.J.; Dietrich, J.; Gerstner, E.R.;
Chi, A.S.; et al. Pharmacodynamics of mutant-IDH1 inhibitors in glioma patients probed by in vivo 3D MRS imaging of
2-hydroxyglutarate. Nat. Commun. 2018, 9, 1–9. [CrossRef]

46. De La Fuente, M.I.; Young, R.J.; Rubel, J.; Rosenblum, M.; Tisnado, J.; Briggs, S.; Arevalo-Perez, J.; Cross, J.R.; Campos, C.; Straley,
K.; et al. Integration of 2-hydroxyglutarate-proton magnetic resonance spectroscopy into clinical practice for disease monitoring
in isocitrate dehydrogenase-mutant glioma. Neuro Oncol. 2016, 18, 283–290. [CrossRef]

47. Bai, J.; Varghese, J.; Jain, R. Adult glioma WHO classification update, genomics, and imaging:What the radiologists need to know.
Top. Magn. Reson. Imaging 2020, 29, 71–82. [CrossRef]

48. Branzoli, F.; Di Stefano, A.L.; Capelle, L.; Ottolenghi, C.; Valabrègue, R.; Deelchand, D.; Bielle, F.; Villa, C.; Baussart, B.; Lehéricy,
S.; et al. Highly specific determination of IDH status using edited in vivo magnetic resonance spectroscopy. Neuro-Oncology 2018,
20, 907–916. [CrossRef]

49. Nguyen, T.B.; Melkus, G.; Taccone, M.; Moldovan, I.D.; Ghinda, D.; Gotfrit, R.; Torres, C.H.; Zakhari, N.; Chakraborty, S.; Woulfe,
J.; et al. Preoperative determination of isocitrate dehydrogenase mutation in gliomas using spectral editing MRS: A Prospective
study. J. Magn. Reson. Imaging 2020. [CrossRef]

50. Emir, U.E.; Larkin, S.J.; De Pennington, N.; Voets, N.L.; Plaha, P.; Stacey, R.; Al-Qahtani, K.; McCullagh, O.J.S.; Schofield, C.J.;
Clare, S.; et al. Noninvasive quantification of 2-hydroxyglutarate in human gliomas with IDH1 and IDH2 mutations. Cancer Res.
2016, 76, 43–49. [CrossRef]

51. Kristensen, B.; Priesterbach-Ackley, L.; Petersen, J.; Wesseling, P. Molecular pathology of tumors of the central nervous system.
Ann. Oncol. 2019, 30, 1265–1278. [CrossRef] [PubMed]

52. Smits, M. Imaging of oligodendroglioma. Br. J. Radiol. 2016, 89, 20150857. [CrossRef] [PubMed]
53. Latysheva, A.; Emblem, K.E.; Brandal, P.; Vik-Mo, E.O.; Pahnke, J.; Røysland, K.; Hald, J.K.; Server, A. Dynamic susceptibility

contrast and diffusion MR imaging identify oligodendroglioma as defined by the 2016 WHO classification for brain tumors:
Histogram analysis approach. Neuroradiology 2019, 61, 545–555. [CrossRef] [PubMed]

54. Branzoli, F.; Pontoizeau, C.; Tchara, L.; Di Stefano, A.L.; Kamoun, A.; Deelchand, D.K.; Valabrègue, R.; Lehéricy, S.; Sanson,
M.; Ottolenghi, C.; et al. Cystathionine as a marker for 1p/19q codeleted gliomas by in vivo magnetic resonance spectroscopy.
Neuro-Oncology 2019, 21, 765–774. [CrossRef] [PubMed]

55. Kazerooni, A.F.; Bakas, S.; Rad, H.S.; Davatzikos, C. Imaging signatures of glioblastoma molecular characteristics: A radio-
genomics review. J. Magn. Reson. Imaging 2020, 52, 54–69. [CrossRef] [PubMed]

56. Bakas, S.; Akbari, H.; Pisapia, J.; Martinez-lage, M.; Rathore, S.; Dahmane, N.; Rourke, D.M.O. In Vivo detection of EG-FRvIII in
glioblastoma via perfusion magnetic resonance imaging signature consistent with deep peritumoral infiltration: The Φ index.
Clin. Cancer Res. 2018, 23, 4724–4734. [CrossRef]

57. Birkó, Z.; Nagy, B.; Klekner, Á.; Virga, J. Novel molecular markers in glioblastoma—Benefits of liquid biopsy. Int. J. Mol. Sci. 2020,
21, 7522. [CrossRef]

58. Heimberger, A.B.; Hlatky, R.; Suki, D.; Yang, D.; Weinberg, J.; Gilbert, M.; Sawaya, R.; Aldape, K. Prognostic effect of epidermal
growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin. Cancer Res. 2005, 11, 1462–1466. [CrossRef]

59. Siegal, T. Clinical impact of molecular biomarkers in gliomas. J. Clin. Neurosci. 2015, 22, 437–444. [CrossRef]
60. Young, R.J.; Gupta, A.; Shah, A.; Graber, J.; Schweitzer, A.; Prager, A.; Shi, W.; Zhang, Z.; Huse, J.; Omuro, A. Potential

role of preoperative conventional MRI including diffusion measurements in assessing epidermal growth factor receptor gene
amplification status in patients with glioblastoma. Am. J. Neuroradiol. 2016, 13, 2271–2277. [CrossRef]

61. Gupta, A.; Young, R.J.; Shah, A.D.; Schweitzer, A.D.; Graber, J.J.; Shi, W.; Zhang, Z.; Huse, J.; Omuro, A.M.P. Pretreatment
dynamic susceptibility contrast MRI perfusion in glioblastoma: Prediction of EGFR gene amplification. Clin. Neuroradiol. 2015,
25, 143–150. [CrossRef] [PubMed]

62. Arevalo-Perez, J.; Thomas, A.A.; Kaley, T.J.; Lyo, J.K.; Peck, K.K.; Holodny, A.; Mellinghoff, I.K.; Shi, W.; Zhang, Z.; Young,
R.J. T1-weighted dynamic contrast-enhanced MRI as a noninvasive biomarker of epidermal growth factor receptor VIII status.
Am. J. Neuroradiol. 2015, 36, 2256–2261. [CrossRef] [PubMed]

63. Akbari, H.; Bakas, S.; Pisapia, J.M.; Nasrallah, M.P.; Rozycki, M.; Martinez-Lage, M.; Morrissette, J.J.D.; Dahmane, N.; O’Rourke,
D.M.; Davatzikos, C. In vivoevaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI
signature. Neuro Oncol. 2018, 20, 1068–1079. [CrossRef] [PubMed]

http://doi.org/10.1200/JCO.2016.67.1222
http://www.ncbi.nlm.nih.gov/pubmed/28248126
http://doi.org/10.3171/2016.10.JNS161793
http://www.ncbi.nlm.nih.gov/pubmed/28298040
http://doi.org/10.1158/1078-0432.CCR-15-0656
http://doi.org/10.1038/s41467-018-03905-6
http://doi.org/10.1093/neuonc/nov307
http://doi.org/10.1097/RMR.0000000000000234
http://doi.org/10.1093/neuonc/nox214
http://doi.org/10.1002/jmri.27366
http://doi.org/10.1158/0008-5472.CAN-15-0934
http://doi.org/10.1093/annonc/mdz164
http://www.ncbi.nlm.nih.gov/pubmed/31124566
http://doi.org/10.1259/bjr.20150857
http://www.ncbi.nlm.nih.gov/pubmed/26849038
http://doi.org/10.1007/s00234-019-02173-5
http://www.ncbi.nlm.nih.gov/pubmed/30712139
http://doi.org/10.1093/neuonc/noz031
http://www.ncbi.nlm.nih.gov/pubmed/30726924
http://doi.org/10.1002/jmri.26907
http://www.ncbi.nlm.nih.gov/pubmed/31456318
http://doi.org/10.1158/1078-0432.CCR-16-1871
http://doi.org/10.3390/ijms21207522
http://doi.org/10.1158/1078-0432.CCR-04-1737
http://doi.org/10.1016/j.jocn.2014.10.004
http://doi.org/10.3174/ajnr.A3604
http://doi.org/10.1007/s00062-014-0289-3
http://www.ncbi.nlm.nih.gov/pubmed/24474262
http://doi.org/10.3174/ajnr.A4484
http://www.ncbi.nlm.nih.gov/pubmed/26338913
http://doi.org/10.1093/neuonc/noy033
http://www.ncbi.nlm.nih.gov/pubmed/29617843


Cancers 2021, 13, 424 21 of 25

64. Hegi, M.E.; Diserens, A.-C.; Gorlia, T.; Hamou, M.-F.; De Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani,
L.; et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 2005, 352, 997–1003. [CrossRef]
[PubMed]

65. Jeong, Y.; Choi, J.W.; Roh, H.G.; Lim, S.D.; Koh, Y.-C. Imaging parameters of high grade gliomas in relation to the MGMT
promoter methylation status: The CT, diffusion tensor imaging, and perfusion MR imaging. Neuroradiology 2012, 54, 555–563.
[CrossRef]

66. Romano, A.; Calabria, L.F.; Tavanti, F.; Minniti, G.; Rossi-Espagnet, M.C.; Coppola, V.; Pugliese, S.; Guida, D.; Francione,
G.; Colonnese, C.; et al. Apparent diffusion coefficient obtained by magnetic resonance imaging as a prognostic marker in
glioblastomas: Correlation with MGMT promoter methylation status. Eur. Radiol. 2013, 23, 513–520. [CrossRef]

67. Sunwoo, L.; Choi, S.H.; Park, C.-K.; Kim, J.W.; Yi, K.S.; Lee, W.J.; Yoon, T.J.; Song, S.W.; Kim, J.E.; Kim, J.Y.; et al. Correlation of
apparent diffusion coefficient values measured by diffusion MRI and MGMT promoter methylation semiquantitatively analyzed
with MS-MLPA in patients with glioblastoma multiforme. J. Magn. Reson. Imaging 2013, 37, 351–358. [CrossRef]

68. Pope, W.; Lai, A.; Mehta, R.; Kim, H.J.; Qiao, J.; Young, J.; Xue, X.; Goldin, J.; Brown, M.S.; Nghiemphu, P.L.; et al. Apparent
Diffusion coefficient histogram analysis stratifies progression-free survival in newly diagnosed bevacizumab-treated glioblastoma.
Am. J. Neuroradiol. 2011, 32, 882–889. [CrossRef]

69. Ahn, S.S.; Shin, N.-Y.; Chang, J.H.; Kim, S.H.; Kim, E.H.; Kim, D.W.; Lee, S.-K. Prediction of methylguanine methyltransferase
promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging.
J. Neurosurg. 2014, 121, 367–373. [CrossRef]

70. Rundle-Thiele, D.; Day, B.W.; Stringer, B.W.; Fay, M.; Martin, J.; Jeffree, R.L.; Thomas, P.; Bell, C.; Salvado, O.; Gal, Y.; et al.
Using the apparent diffusion coefficient to identifying MGMT promoter methylation status early in glioblastoma: Importance of
analytical method. J. Med. Radiat. Sci. 2015, 62, 92–98. [CrossRef]

71. Mills, S.J.; Patankar, T.A.; Haroon, H.A.; Balériaux, D.; Swindell, R.; Jackson, A. Do cerebral blood volume and contrast transfer
coefficient predict prognosis in human glioma? Am. J. Neuroradiol. 2006, 27, 853–858. [PubMed]

72. Brandes, A.A.; Tosoni, A.; Franceschi, E.; Sotti, G.; Frezza, G.; Amistà, P.; Morandi, L.; Spagnolli, F.; Ermani, M. Recurrence pattern
after temozolomide concomitant with and adjuvant to radiotherapy in newly diagnosed patients with glioblastoma: Correlation
with MGMT promoter methylation status. J. Clin. Oncol. 2009, 27, 1275–1279. [CrossRef] [PubMed]

73. Weller, M.; Tabatabai, G.; Kästner, B.; Felsberg, J.; Steinbach, J.P.; Wick, A.; Schnell, O.; Hau, P.; Herrlinger, U.; Sabel, M.C.; et al.
MGMT promoter methylation is a strong prognostic biomarker for benefit from dose-intensified temozolomide rechallenge in
progressive glioblastoma: The DIRECTOR Trial. Clin. Cancer Res. 2015, 21, 2057–2064. [CrossRef] [PubMed]

74. Bronk, J.K.; Guha-Thakurta, N.; Allen, P.K.; Mahajan, A.; Grosshans, D.R.; McGovern, S.L. Analysis of pseudoprogression after
proton or photon therapy of 99 patients with low grade and anaplastic glioma. Clin. Transl. Radiat. Oncol. 2018, 9, 30–34.
[CrossRef]

75. Dworkin, M.; Mehan, W.; Niemierko, A.; Kamran, S.C.; Lamba, N.; Dietrich, J.; Martinez-Lage, M.; Oh, K.S.; Batchelor, T.T.; Wen,
P.Y.; et al. Increase of pseudoprogression and other treatment related effects in low-grade glioma patients treated with proton
radiation and temozolomide. J. Neuro-Oncol. 2019, 142, 69–77. [CrossRef]

76. Strauss, S.B.; Meng, A.; Ebani, E.J.; Chiang, G.C. Imaging glioblastoma posttreatment: Progression, pseudoprogression, pseudore-
sponse, radiation necrosis. Radiol. Clin. N. Am. 2019, 57, 1199–1216. [CrossRef]

77. Louis, D.N.; Wesseling, P.; Aldape, K.; Brat, D.J.; Capper, D.; Cree, I.A.; Eberhart, C.; Figarella-Branger, D.; Fouladi, M.; Fuller,
G.N.; et al. CIMPACT-NOW update 6: New entity and diagnostic principle recommendations of the CIMPACT-Utrecht meeting
on future CNS tumor classification and grading. Brain Pathol. 2020, 30, 844–856. [CrossRef]

78. Bale, A.T.; Jordan, J.T.; Rapalino, O.; Ramamurthy, N.; Jessop, N.; DeWitt, J.C.; Nardi, V.; Alvarez, M.M.-L.; Frosch, M.; Batchelor,
T.T.; et al. Financially effective test algorithm to identify an aggressive, EGFR-amplified variant of IDH-wildtype, lower-grade
diffuse glioma. Neuro Oncol. 2019, 21, 596–605. [CrossRef]

79. Park, Y.W.; Ahn, S.; Park, C.J.; Han, K.; Kim, E.H.; Kang, S.-G.; Chang, J.H.; Kim, S.H.; Lee, S.-K. Diffusion and perfusion MRI
may predict EGFR amplification and the TERT promoter mutation status of IDH-wildtype lower-grade gliomas. Eur. Radiol.
2020, 1. [CrossRef]

80. Takahashi, M.; Miki, S.; Fukuoka, K.; Yasukawa, M.; Hayashi, M.; Hamada, A.; Mukasa, A.; Nishikawa, R.; Tamura, K.; Narita, Y.;
et al. OS01.5 development of TERT-targeting therapy using eribulin mesylate in mouse glioblastoma model. Neuro-Oncology
2017, 19. [CrossRef]

81. Furnari, F.B.; Cavenee, W.K. Targeting EGFR for treatment of glioblastoma: Molecular basis to overcome resistance. Curr. Cancer
Drug Targets 2012, 12, 197–209. [CrossRef]

82. Qiu, T.; Chanchotisatien, A.; Qin, Z.; Wu, J.; Du, Z.; Zhang, X.; Gong, F.; Yao, Z.; Chu, S. Imaging characteristics of adult H3
K27M-mutant gliomas. J. Neurosurg. 2019, 133, 1662–1670. [CrossRef] [PubMed]

83. Aboian, M.S.; Solomon, D.A.; Felton, E.; Mabray, M.C.; Villanueva-Meyer, J.E.; Mueller, S.; Cha, S. Imaging characteristics of
pediatric diffuse midline gliomas with histone H3 K27M mutation. Am. J. Neuroradiol. 2017, 38, 795–800. [CrossRef] [PubMed]

84. Piccardo, A.; Tortora, D.; Mascelli, S.; Severino, M.; Piatelli, G.; Consales, A.; Pescetto, M.; Biassoni, V.; Schiavello, E.; Massollo,
M.; et al. Advanced MR imaging and 18F-DOPA PET characteristics of H3K27M-mutant and wild-type pediatric diffuse midline
gliomas. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1685–1694. [CrossRef]

http://doi.org/10.1056/NEJMoa043331
http://www.ncbi.nlm.nih.gov/pubmed/15758010
http://doi.org/10.1007/s00234-011-0947-y
http://doi.org/10.1007/s00330-012-2601-4
http://doi.org/10.1002/jmri.23838
http://doi.org/10.3174/ajnr.A2385
http://doi.org/10.3171/2014.5.JNS132279
http://doi.org/10.1002/jmrs.103
http://www.ncbi.nlm.nih.gov/pubmed/16611778
http://doi.org/10.1200/JCO.2008.19.4969
http://www.ncbi.nlm.nih.gov/pubmed/19188675
http://doi.org/10.1158/1078-0432.CCR-14-2737
http://www.ncbi.nlm.nih.gov/pubmed/25655102
http://doi.org/10.1016/j.ctro.2018.01.002
http://doi.org/10.1007/s11060-018-03063-1
http://doi.org/10.1016/j.rcl.2019.07.003
http://doi.org/10.1111/bpa.12832
http://doi.org/10.1093/neuonc/noy201
http://doi.org/10.1007/s00330-020-07090-3
http://doi.org/10.1093/neuonc/nox036.004
http://doi.org/10.2174/156800912799277557
http://doi.org/10.3171/2019.9.JNS191920
http://www.ncbi.nlm.nih.gov/pubmed/31731269
http://doi.org/10.3174/ajnr.A5076
http://www.ncbi.nlm.nih.gov/pubmed/28183840
http://doi.org/10.1007/s00259-019-04333-4


Cancers 2021, 13, 424 22 of 25

85. Chen, H.; Hu, W.; He, H.; Yang, Y.; Wen, G.; Lv, X. Noninvasive assessment of H3 K27M mutational status in diffuse midline
gliomas by using apparent diffusion coefficient measurements. Eur. J. Radiol. 2019, 114, 152–159. [CrossRef]

86. Jaimes, C.; Vajapeyam, S.; Brown, D.; Kao, P.-C.; Ma, C.; Greenspan, L.; Gupta, N.; Goumnerova, L.; Bandopadhayay, P.;
Dubois, F.; et al. MR Imaging correlates for molecular and mutational analyses in children with diffuse intrinsic pontine glioma.
Am. J. Neuroradiol. 2020, 41, 874–881. [CrossRef]

87. Hales, P.W.; D’Arco, F.; Cooper, J.; Pfeuffer, J.; Hargrave, D.; Mankad, K.; Clark, C. Arterial spin labelling and diffusion-weighted
imaging in paediatric brain tumours. NeuroImage Clin. 2019, 22, 101696. [CrossRef]

88. Subashi, E.; Cordero, F.J.; Halvorson, K.G.; Qi, Y.; Nouls, J.C.; Becher, O.J.; Johnson, G.A. Tumor location, but not H3.3K27M, sig-
nificantly influences the blood–brain-barrier permeability in a genetic mouse model of pediatric high-grade glioma. J. Neuro Oncol.
2015, 126, 243–251. [CrossRef]

89. Poussaint, T.Y.; Vajapeyam, S.; Ricci, K.I.; Panigrahy, A.; Kocak, M.; Kun, L.E.; Boyett, J.M.; Pollack, I.F.; Fouladi, M. Apparent
diffusion coefficient histogram metrics correlate with survival in diffuse intrinsic pontine glioma: A report from the Pediatric
Brain Tumor Consortium. Neuro Oncol. 2016, 18, 725–734. [CrossRef]

90. Lober, R.M.; Cho, Y.J.; Tang, Y.; Barnes, P.D.; Edwards, M.S.; Vogel, H.; Fisher, P.G.; Monje, M.; Yeom, K.W. Diffusion-weighted
MRI derived apparent diffusion coefficient identifies prognostically distinct subgroups of pediatric diffuse intrinsic pontine
glioma. J. Neuro-Oncol. 2014, 117, 175–182. [CrossRef]

91. Vettermann, F.J.; Felsberg, J.; Reifenberger, G.; Hasselblatt, M.; Forbrig, R.; Berding, G.; La Fougère, C.; Galldiks, N.; Schittenhelm,
J.; Weis, J.; et al. Characterization of diffuse gliomas with histone H3-G34 mutation by MRI and dynamic 18F-FET PET.
Clin. Nucl. Med. 2018, 43, 895–898. [CrossRef] [PubMed]

92. Yoshimoto, K.; Hatae, R.; Sangatsuda, Y.; Suzuki, S.O.; Hata, N.; Akagi, Y.; Kuga, D.; Hideki, M.; Yamashita, K.; Togao, O.; et al.
Prevalence and clinicopathological features of H3.3 G34-mutant high-grade gliomas: A retrospective study of 411 consecutive
glioma cases in a single institution. Brain Tumor Pathol. 2017, 34, 103–112. [CrossRef] [PubMed]

93. Dangouloff-Ros, V.; Varlet, P.; Levy, R.; Beccaria, K.; Puget, S.; Dufour, C.; Boddaert, N. Imaging features of medulloblastoma:
Conventional imaging, diffusion-weighted imaging, perfusion-weighted imaging, and spectroscopy: From general features to
subtypes and characteristics. Neurochirurgie 2018. [CrossRef] [PubMed]

94. Blüml, S.; Margol, A.S.; Sposto, R.; Kennedy, R.J.; Robison, N.J.; Vali, M.; Hung, L.T.; Muthugounder, S.; Finlay, J.L.; Erdreich-
Epstein, A.; et al. Molecular subgroups of medulloblastoma identification using noninvasive magnetic resonance spectroscopy.
Neuro-Oncology 2016, 18, 126–131. [CrossRef] [PubMed]

95. Reddy, N.; Ellison, D.W.; Soares, B.P.; Carson, K.A.; Huisman, T.A.G.M.; Patay, Z. Pediatric Posterior Fossa Medulloblastoma: The
role of diffusion imaging in identifying molecular groups. J. Neuroimaging 2020, 30, 503–511. [CrossRef]

96. Schob, S.; Beeskow, A.; Dieckow, J.; Meyer, H.J.; Krause, M.; Frydrychowicz, C.; Hirsch, F.-W.; Meyer, H.J. Diffusion profiling of
tumor volumes using a histogram approach can predict proliferation and further microarchitectural features in medulloblastoma.
Child’s Nerv. Syst. 2018, 34, 1651–1656. [CrossRef]

97. Wang, W.; Cheng, J.; Zhang, Y.; Wang, C. Use of apparent diffusion coefficient histogram in differentiating between medulloblas-
toma and pilocytic astrocytoma in children. Med. Sci. Monit. 2018, 24, 6107–6112. [CrossRef]

98. Payabvash, S.; Tihan, T.; Cha, S. Differentiation of cerebellar hemisphere tumors: Combining apparent diffusion coefficient
histogram analysis and structural MRI features. J. Neuroimaging 2018, 28, 656–665. [CrossRef]

99. Zitouni, S.; Koc, G.; Doganay, S.; Saracoglu, S.; Gumus, K.Z.; Ciraci, S.; Coskun, A.; Unal, E.; Per, H.; Kurtsoy, A.; et al. Apparent
diffusion coefficient in differentiation of pediatric posterior fossa tumors. Jpn. J. Radiol. 2017, 35, 448–453. [CrossRef]

100. Wagner, M.W.; Narayan, A.K.; Bosemani, T.; Huisman, T.A.; Poretti, A. histogram analysis of diffusion tensor imaging parameters
in pediatric cerebellar tumors. J. Neuroimaging 2015, 26, 360–365. [CrossRef]

101. Castellano, A.; Bello, L.; Michelozzi, C.; Gallucci, M.; Fava, E.; Iadanza, A.; Riva, M.; Casaceli, G.; Falini, A. Role of diffusion
tensor magnetic resonance tractography in predicting the extent of resection in glioma surgery. Neuro Oncol. 2011, 14, 192–202.
[CrossRef] [PubMed]

102. Bello, L.; Gambini, A.; Castellano, A.; Carrabba, G.; Acerbi, F.; Fava, E.; Giussani, C.; Cadioli, M.; Blasi, V.; Casarotti, A.; et al.
Motor and language DTI fiber tracking combined with intraoperative subcortical mapping for surgical removal of gliomas.
NeuroImage 2008, 39, 369–382. [CrossRef] [PubMed]

103. Aliotta, E.; Batchala, P.P.; Schiff, D.; Lopes, B.M.; Druzgal, J.T.; Mukherjee, S.; Patel, S.H. Increased intratumoral infiltration in IDH
wild-type lower-grade gliomas observed with diffusion tensor imaging. J. Neuro Oncol. 2019, 145, 257–263. [CrossRef] [PubMed]

104. Bonm, A.V.; Ritterbusch, R.; Throckmorton, P.; Graber, J.J. Clinical imaging for diagnostic challenges in the management of
gliomas: A review. J. Neuroimaging 2020, 30, 139–145. [CrossRef]

105. Tan, W.L.; Huang, W.-Y.; Yin, B.; Xiong, J.; Wu, J.S.; Geng, D.Y. Can diffusion tensor imaging noninvasively detect IDH1 gene
mutations in astrogliomas? A retrospective study of 112 cases. Am. J. Neuroradiol. 2014, 35, 920–927. [CrossRef]

106. Aliotta, E.; Nourzadeh, H.; Batchala, P.; Schiff, D.; Lopes, M.B.S.; Druzgal, T.J.; Mukherjee, S.; Patel, S.H. Molecular subtype
classification in lower-grade glioma with accelerated DTI. Am. J. Neuroradiol. 2019, 40, 1458–1463. [CrossRef]

107. Xiong, J.; Tan, W.-L.; Pan, J.-W.; Wang, Y.; Yin, B.; Zhang, J.; Geng, D. Detecting isocitrate dehydrogenase gene mutations in
oligodendroglial tumors using diffusion tensor imaging metrics and their correlations with proliferation and microvascular
density. J. Magn. Reson. Imaging 2016, 43, 45–54. [CrossRef]

http://doi.org/10.1016/j.ejrad.2019.03.006
http://doi.org/10.3174/ajnr.A6546
http://doi.org/10.1016/j.nicl.2019.101696
http://doi.org/10.1007/s11060-015-1969-9
http://doi.org/10.1093/neuonc/nov256
http://doi.org/10.1007/s11060-014-1375-8
http://doi.org/10.1097/RLU.0000000000002300
http://www.ncbi.nlm.nih.gov/pubmed/30358620
http://doi.org/10.1007/s10014-017-0287-7
http://www.ncbi.nlm.nih.gov/pubmed/28447171
http://doi.org/10.1016/j.neuchi.2017.10.003
http://www.ncbi.nlm.nih.gov/pubmed/30170827
http://doi.org/10.1093/neuonc/nov097
http://www.ncbi.nlm.nih.gov/pubmed/26254476
http://doi.org/10.1111/jon.12704
http://doi.org/10.1007/s00381-018-3846-2
http://doi.org/10.12659/MSM.909136
http://doi.org/10.1111/jon.12550
http://doi.org/10.1007/s11604-017-0652-9
http://doi.org/10.1111/jon.12292
http://doi.org/10.1093/neuonc/nor188
http://www.ncbi.nlm.nih.gov/pubmed/22015596
http://doi.org/10.1016/j.neuroimage.2007.08.031
http://www.ncbi.nlm.nih.gov/pubmed/17911032
http://doi.org/10.1007/s11060-019-03291-z
http://www.ncbi.nlm.nih.gov/pubmed/31531788
http://doi.org/10.1111/jon.12687
http://doi.org/10.3174/ajnr.A3803
http://doi.org/10.3174/ajnr.A6162
http://doi.org/10.1002/jmri.24958


Cancers 2021, 13, 424 23 of 25

108. Abdalla, G.; Dixon, L.; Sanverdi, E.; Machado, P.M.; Kwong, J.S.W.; Panovska-Griffiths, J.; Rojas-Garcia, A.; Yoneoka, D.; Veraart,
J.; Van Cauter, S.; et al. The diagnostic role of diffusional kurtosis imaging in glioma grading and differentiation of gliomas from
other intra-axial brain tumours: A systematic review with critical appraisal and meta-analysis. Neuroradiology 2020, 62, 791–802.
[CrossRef]

109. Wu, E.X.; Cheung, M.M. MR diffusion kurtosis imaging for neural tissue characterization. NMR Biomed. 2010, 23, 836–848.
[CrossRef]

110. Chu, J.-P.; Song, Y.-K.; Tian, Y.-S.; Qiu, H.-S.; Huang, X.-H.; Wang, Y.-L.; Huang, Y.-Q.; Zhao, J. Diffusion kurtosis imaging in
evaluating gliomas: Different region of interest selection methods on time efficiency, measurement repeatability, and diagnostic
ability. Eur. Radiol. 2020, 1–11. [CrossRef]

111. Zhao, J.; Wang, Y.-L.; Li, X.-B.; Hu, M.-S.; Li, Z.-H.; Song, Y.-K.; Wang, J.-Y.; Tian, Y.-S.; Liu, D.-W.; Yan, X.; et al. Comparative
analysis of the diffusion kurtosis imaging and diffusion tensor imaging in grading gliomas, predicting tumour cell proliferation
and IDH-1 gene mutation status. J. Neuro-Oncol. 2018, 141, 195–203. [CrossRef] [PubMed]

112. Tariq, M.; Schneider, T.; Alexander, D.C.; Wheeler-Kingshott, C.A.G.; Zhang, H. Bingham–NODDI: Mapping anisotropic
orientation dispersion of neurites using diffusion MRI. NeuroImage 2016, 133, 207–223. [CrossRef] [PubMed]

113. Zhang, H.; Schneider, T.; Wheeler-Kingshott, C.A.; Alexander, D.C. NODDI: Practical In Vivo neurite orientation dispersion and
density imaging of the human brain. NeuroImage 2012, 61, 1000–1016. [CrossRef] [PubMed]

114. Figini, M.; Riva, M.; Graham, M.S.; Castelli, G.M.; Fernandes, B.; Grimaldi, M.; Baselli, G.; Pessina, F.; Bello, L.; Zhang, H.; et al.
Prediction of isocitrate dehydrogenase genotype in brain gliomas with MRI: Single-shell versus multishell diffusion models.
Radiology 2018, 289, 788–796. [CrossRef] [PubMed]

115. Wen, Q.; Kelley, D.A.; Banerjee, S.; Lupo, J.M.; Chang, S.M.; Xu, D.; Hess, C.P.; Nelson, S.J. Clinically feasible NODDI characteriza-
tion of glioma using multiband EPI at 7 T. NeuroImage Clin. 2015, 9, 291–299. [CrossRef]

116. Pieri, V.; Sanvito, F.; Riva, M.; Petrini, A.; Rancoita, P.M.V.; Cirillo, S.; Iadanza, A.; Bello, L.; Castellano, A.; Falini, A. Along-tract
statistics of neurite orientation dispersion and density imaging diffusion metrics to enhance MR tractography quantitative
analysis in healthy controls and in patients with brain tumors. Hum. Brain Mapp. 2020, 1–19. [CrossRef]

117. Caverzasi, E.; Papinutto, N.; Castellano, A.; Zhu, A.H.; Scifo, P.; Riva, M.; Bello, L.; Falini, A.; Bharatha, A.; Henry, R. Neurite
orientation dispersion and density imaging color maps to characterize brain diffusion in neurologic disorders. J. Neuroimaging
2016, 26, 494–498. [CrossRef]

118. Kadota, Y.; Hirai, T.; Azuma, M.; Hattori, Y.; Khant, Z.A.; Hori, M.; Saito, K.; Yokogami, K.; Takeshima, H.; Hirai, T.; et al.
Differentiation between glioblastoma and solitary brain metastasis using neurite orientation dispersion and density imaging.
J. Neuroradiol. 2020, 47, 197–202. [CrossRef]

119. Panagiotaki, E.; Walker-Samuel, S.; Siow, B.; Johnson, S.P.; Rajkumar, V.; Pedley, R.B.; Lythgoe, M.F.; Alexander, D.C. Noninvasive
quantification of solid tumor microstructure using VERDICT MRI. Cancer Res. 2014, 74, 1902–1912. [CrossRef]

120. Zaccagna, F.; Riemer, F.; Priest, A.N.; McLean, M.A.; Allinson, K.; Grist, J.T.; Dragos, C.; Matys, T.; Gillard, J.H.; Watts, C.;
et al. Non-invasive assessment of glioma microstructure using VERDICT MRI: Correlation with histology. Eur. Radiol. 2019,
29, 5559–5566. [CrossRef]

121. Roberts, T.A.; Hyare, H.; Agliardi, G.; Hipwell, B.; D’Esposito, A.; Ianus, A.; Breen-Norris, J.O.; Ramasawmy, R.; Taylor, V.;
Atkinson, D.; et al. Noninvasive diffusion magnetic resonance imaging of brain tumour cell size for the early detection of
therapeutic response. Sci. Rep. 2020, 10, 1–13. [CrossRef] [PubMed]

122. Nilsson, M.; Lätt, J.; Westen, D.; Brockstedt, S.; Lasič, S.; Ståhlberg, F.; Topgaard, D. Noninvasive mapping of water diffusional
exchange in the human brain using filter-exchange imaging. Magn. Reson. Med. 2012, 69, 1572–1580. [CrossRef] [PubMed]

123. Bai, R.; Li, Z.; Sun, C.; Hsu, Y.-C.; Liang, H.; Basser, P. Feasibility of filter-exchange imaging (FEXI) in measuring different
exchange processes in human brain. NeuroImage 2020, 219, 117039. [CrossRef] [PubMed]

124. Lampinen, B.; Szczepankiewicz, F.; van Westen, D.; Englund, E.M.; Sundgren, P.C.; Latt, J.; Ståhlberg, F.; Nilsson, M. Optimal
experimental design for filter exchange imaging: Apparent exchange rate measurements in the healthy brain and in intracranial
tumors. Magn. Reson. Med. 2017, 77, 1104–1114. [CrossRef] [PubMed]

125. Arthurs, O.J.; Boniface, S. How well do we understand the neural origins of the FMRI BOLD signal? Trends Neurosci. 2002,
25, 27–31. [CrossRef]

126. Bizzi, A. Presurgical mapping of verbal language in brain tumors with functional MR imaging and MR tractography. Neuroimag-
ing Clin. N. Am. 2009, 19, 573–596. [CrossRef]

127. Castellano, A.; Cirillo, S.; Bello, L.; Riva, M.; Falini, A. Functional MRI for surgery of gliomas. Curr. Treat. Options Neurol. 2017,
19, 34. [CrossRef]

128. Sanvito, F.; Caverzasi, E.; Riva, M.; Jordan, K.M.; Blasi, V.; Scifo, P.; Iadanza, A.; Crespi, S.A.; Cirillo, S.; Casarotti, A.; et al.
FMRI-targeted high-angular resolution diffusion MR tractography to identify functional language tracts in healthy controls and
glioma patients. Front. Neurosci. 2020, 14, 225. [CrossRef]

129. Pillai, J.J.; Zacà, D. Comparison of BOLD cerebrovascular reactivity mapping and DSC MR perfusion imaging for prediction of
neurovascular uncoupling potential in brain tumors. Technol. Cancer Res. Treat. 2012, 11, 361–374. [CrossRef]

130. Englander, Z.; Horenstein, C.I.; Bowden, S.G.; Chow, D.; Otten, M.L.; Lignelli, A.; Bruce, J.N.; Canoll, P.; Grinband, J. Extent of
BOLD vascular dysregulation is greater in diffuse gliomas without isocitrate dehydrogenase 1 R132H mutation. Radiology 2018,
287, 965–972. [CrossRef]

http://doi.org/10.1007/s00234-020-02425-9
http://doi.org/10.1002/nbm.1506
http://doi.org/10.1007/s00330-020-07204-x
http://doi.org/10.1007/s11060-018-03025-7
http://www.ncbi.nlm.nih.gov/pubmed/30414095
http://doi.org/10.1016/j.neuroimage.2016.01.046
http://www.ncbi.nlm.nih.gov/pubmed/26826512
http://doi.org/10.1016/j.neuroimage.2012.03.072
http://www.ncbi.nlm.nih.gov/pubmed/22484410
http://doi.org/10.1148/radiol.2018180054
http://www.ncbi.nlm.nih.gov/pubmed/30277427
http://doi.org/10.1016/j.nicl.2015.08.017
http://doi.org/10.1002/hbm.25291
http://doi.org/10.1111/jon.12359
http://doi.org/10.1016/j.neurad.2018.10.005
http://doi.org/10.1158/0008-5472.CAN-13-2511
http://doi.org/10.1007/s00330-019-6011-8
http://doi.org/10.1038/s41598-020-65956-4
http://www.ncbi.nlm.nih.gov/pubmed/32514049
http://doi.org/10.1002/mrm.24395
http://www.ncbi.nlm.nih.gov/pubmed/22837019
http://doi.org/10.1016/j.neuroimage.2020.117039
http://www.ncbi.nlm.nih.gov/pubmed/32534125
http://doi.org/10.1002/mrm.26195
http://www.ncbi.nlm.nih.gov/pubmed/26968557
http://doi.org/10.1016/S0166-2236(00)01995-0
http://doi.org/10.1016/j.nic.2009.08.010
http://doi.org/10.1007/s11940-017-0469-y
http://doi.org/10.3389/fnins.2020.00225
http://doi.org/10.7785/tcrt.2012.500284
http://doi.org/10.1148/radiol.2017170790


Cancers 2021, 13, 424 24 of 25

131. Stadlbauer, A.; Zimmermann, M.; Kitzwögerer, M.; Oberndorfer, S.; Rössler, K.; Dörfler, A.; Buchfelder, M.; Heinz, G. MR
imaging–derived oxygen metabolism and neovascularization characterization for grading and IDH gene mutation detection of
gliomas. Radiology 2017, 283, 161422–161809. [CrossRef] [PubMed]

132. Stadlbauer, A.; Zimmermann, M.; Doerfler, A.; Oberndorfer, S.; Buchfelder, M.; Coras, R.; Kitzwögerer, M.; Roessler, K.
Intratumoral heterogeneity of oxygen metabolism and neovascularization uncovers 2 survival-relevant subgroups of IDH1
wild-type glioblastoma. Neuro-Oncology 2018, 20, 1536–1546. [CrossRef] [PubMed]

133. Stadlbauer, A.; Mouridsen, K.; Doerfler, A.; Hansen, M.B.; Oberndorfer, S.; Zimmermann, M.; Buchfelder, M.; Heinz, G.; Roessler,
K. Recurrence of glioblastoma is associated with elevated microvascular transit time heterogeneity and increased hypoxia.
Br. J. Pharmacol. 2018, 38, 422–432. [CrossRef] [PubMed]

134. Tatekawa, H.; Hagiwara, A.; Yao, J.; Oughourlian, T.C.; Ueda, I.; Uetani, H.; Raymond, C.; Lai, A.; Cloughesy, T.F.; Nghiemphu,
P.L.; et al. Voxel-wise and patient-wise correlation of 18F-FDOPA PET, rCBV, and ADC in treatment-naïve diffuse gliomas with
different molecular subtypes. J. Nucl. Med. 2020, 120, 247411. [CrossRef] [PubMed]

135. Ladd, M.E.; Bachert, P.; Meyerspeer, M.; Moser, E.; Nagel, A.M.; Norris, D.G.; Schmitter, S.; Speck, O.; Nagel, A.M.; Zaiss, M. Pros
and cons of ultra-high-field MRI/MRS for human application. Prog. Nucl. Magn. Reson. Spectrosc. 2018, 109, 1–50. [CrossRef]
[PubMed]

136. Barisano, G.; Sepehrband, F.; Ma, S.; Jann, K.; Cabeen, R.P.; Wang, D.J.; Toga, A.W.; Law, M. Clinical 7 T MRI: Are we there yet? A
review about magnetic resonance imaging at ultra-high field. Br. J. Radiol. 2019, 92, 20180492. [CrossRef]

137. Balchandani, P.; Naidich, T.P. Ultra-high-field MR neuroimaging. Am. J. Neuroradiol. 2014, 36, 1204–1215. [CrossRef]
138. Paech, D.; Windschuh, J.; Oberhollenzer, J.; Dreher, C.; Sahm, F.; Meissner, J.-E.; Goerke, S.; Schuenke, P.; Zaiss, M.; Regnery, S.; et al.

Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation-compensated
multipool CEST MRI at 7.0 T. Neuro Oncol. 2018, 20, 1661–1671. [CrossRef]

139. Schuenke, P.; Koehler, C.; Korzowski, A.; Windschuh, J.; Bachert, P.; Ladd, M.E.; Mundiyanapurath, S.; Paech, D.; Bickelhaupt, S.;
Bonekamp, D.; et al. Adiabatically prepared spin-lock approach for T1ρ-based dynamic glucose enhanced MRI at ultrahigh fields.
Magn. Reson. Med. 2017, 78, 215–225. [CrossRef]

140. Herz, K.; Lindig, T.; Deshmane, A.; Schittenhelm, J.; Skardelly, M.; Bender, B.; Ernemann, U.; Scheffler, K.; Zaiss, M. T1ρ-
based dynamic glucose-enhanced (DGEρ) MRI at 3 T: Method development and early clinical experience in the human brain.
Magn. Reson. Med. 2019, 82, 1832–1847. [CrossRef]

141. Trattnig, S.; Springer, E.; Bogner, W.; Hangel, G.; Strasser, B.; Dymerska, B.; Lima Cardoso, P.; Robinson, S.D. Key clinical benefits
of neuroimaging at 7 T Europe PMC Funders Group. Neuroimage 2018, 168, 477–489. [CrossRef] [PubMed]

142. Nagel, A.M.; Bock, M.; Hartmann, C.; Gerigk, L.; Neumann, J.-O.; Weber, M.-A.; Bendszus, M.; Radbruch, A.; Wick, W.; Schlemmer,
H.-P.; et al. The potential of relaxation-weighted sodium magnetic resonance imaging as demonstrated on brain tumors. Investig.
Radiol. 2011, 46, 539–547. [CrossRef] [PubMed]

143. Nagel, A.M.; Lehmann-Horn, F.; Weber, M.-A.; Jurkat-Rott, K.; Wolf, M.B.; Radbruch, A.; Umathum, R.; Semmler, W. In Vivo 35 Cl
MR Imaging in Humans: A Feasibility Study. Radiology 2014, 271, 585–595. [CrossRef] [PubMed]

144. Umathum, R.; Rösler, M.B.; Nagel, A.M. In Vivo 39 K MR imaging of human muscle and brain. Radiology 2013, 269, 569–576.
[CrossRef]

145. Hoffmann, S.H.; Radbruch, A.; Bock, M.; Semmler, W.; Nagel, A.M. Direct 17O MRI with partial volume correction: First
experiences in a glioblastoma patient. Magma Magn. Reson. Mater. Phys. Biol. Med. 2014, 27, 579–587. [CrossRef]

146. Neto, L.P.N.; Madelin, G.; Sood, T.P.; Wu, C.-C.; Kondziolka, D.; Placantonakis, D.; Golfinos, J.G.; Chi, A.; Jain, R. Quantitative
sodium imaging and gliomas: A feasibility study. Neuroradiology 2018, 60, 795–802. [CrossRef]

147. Weltens, C.; Menten, J.; Feron, M.; Bellon, E.; Demaerel, P.; Maes, F.; Bogaert, W.V.D.; van den Schueren, E. Interobserver variations
in gross tumor volume delineation of brain tumors on computed tomography and impact of magnetic resonance imaging.
Radiother. Oncol. 2001, 60, 49–59. [CrossRef]

148. Lotan, E.; Jain, R.; Razavian, N.; Fatterpekar, G.; Lui, Y.W. State of the art: Machine learning applications in glioma imaging.
Am. J. Roentgenol. 2019, 212, 26–37. [CrossRef]

149. Shaver, M.M.; Kohanteb, P.A.; Chiou, C.; Bardis, M.; Chantaduly, C.; Bota, A.D.; Filippi, C.; Weinberg, B.D.; Grinband, J.; Chow,
D.S.; et al. Optimizing neuro-oncology imaging: A review of deep learning approaches for glioma imaging. Cancers 2019, 11, 829.
[CrossRef]

150. Nalepa, J.; Marcinkiewicz, M.; Kawulok, M. Data augmentation for brain-tumor segmentation: A review. Front. Comput. Neurosci.
2019, 13, 83. [CrossRef]

151. Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The
multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 2015, 34, 1993–2024. [CrossRef]

152. Bakas, S.; Akbari, H.; Sotiras, A.; Bilello, M.; Rozycki, M.; Kirby, J.S.; Freymann, J.B.; Farahani, K.; Davatzikos, C. Advancing The
cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 2017, 4, 170117.
[CrossRef] [PubMed]

153. Isensee, F.; Jäger, P.F.; Kohl, S.A.A.; Petersen, J.; Maier-Hein, K.H. Automated design of deep learning methods for biomedical
image segmentation. 2019. Available online: https://arxiv.org/abs/1904.08128 (accessed on 31 December 2020).

http://doi.org/10.1148/radiol.2016161422
http://www.ncbi.nlm.nih.gov/pubmed/27982759
http://doi.org/10.1093/neuonc/noy066
http://www.ncbi.nlm.nih.gov/pubmed/29718366
http://doi.org/10.1177/0271678X17694905
http://www.ncbi.nlm.nih.gov/pubmed/28273720
http://doi.org/10.2967/jnumed.120.247411
http://www.ncbi.nlm.nih.gov/pubmed/32646876
http://doi.org/10.1016/j.pnmrs.2018.06.001
http://www.ncbi.nlm.nih.gov/pubmed/30527132
http://doi.org/10.1259/bjr.20180492
http://doi.org/10.3174/ajnr.A4180
http://doi.org/10.1093/neuonc/noy073
http://doi.org/10.1002/mrm.26370
http://doi.org/10.1002/mrm.27857
http://doi.org/10.1016/j.neuroimage.2016.11.031
http://www.ncbi.nlm.nih.gov/pubmed/27851995
http://doi.org/10.1097/RLI.0b013e31821ae918
http://www.ncbi.nlm.nih.gov/pubmed/21577129
http://doi.org/10.1148/radiol.13131725
http://www.ncbi.nlm.nih.gov/pubmed/24495267
http://doi.org/10.1148/radiol.13130757
http://doi.org/10.1007/s10334-014-0441-8
http://doi.org/10.1007/s00234-018-2041-1
http://doi.org/10.1016/S0167-8140(01)00371-1
http://doi.org/10.2214/AJR.18.20218
http://doi.org/10.3390/cancers11060829
http://doi.org/10.3389/fncom.2019.00083
http://doi.org/10.1109/TMI.2014.2377694
http://doi.org/10.1038/sdata.2017.117
http://www.ncbi.nlm.nih.gov/pubmed/28872634
https://arxiv.org/abs/1904.08128


Cancers 2021, 13, 424 25 of 25

154. Kickingereder, P.; Isensee, F.; Tursunova, I.; Petersen, J.; Neuberger, U.; Bonekamp, D.; Brugnara, G.; Schell, M.; Kessler, T.; Foltyn,
M.; et al. Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: A
multicentre, retrospective study. Lancet Oncol. 2019, 20, 728–740. [CrossRef]

155. Zlochower, A.; Chow, D.S.; Chang, P.; Khatri, D.; Boockvar, J.A.; Filippi, C. Deep learning AI applications in the imaging of
glioma. Top. Magn. Reson. Imaging 2020, 29, 115-00. [CrossRef] [PubMed]

156. Chang, P.; Grinband, J.; Weinberg, B.D.; Bardis, M.; Khy, M.; Cadena, G.; Su, M.-Y.; Cha, S.; Filippi, C.G.; Bota, D.; et al. Deep-
learning convolutional neural networks accurately classify genetic mutations in gliomas. Am. J. Neuroradiol. 2018, 39, 1201–1207.
[CrossRef] [PubMed]

157. Lao, J.; Chen, Y.; Li, Z.-C.; Li, Q.; Zhang, J.; Liu, J.; Zhai, G. A deep learning-based radiomics model for prediction of survival in
glioblastoma multiforme. Sci. Rep. 2017, 7, 1–8. [CrossRef]

158. Verma, R.; Correa, R.; Hill, V.B.; Statsevych, V.; Bera, K.; Beig, N.; Mahammedi, A.; Madabhushi, A.; Ahluwalia, M.; Tiwari, P.
Tumor habitat–derived radiomic features at pretreatment MRI that are prognostic for progression-free survival in glioblastoma
are associated with key morphologic attributes at histopathologic examination: A feasibility study. Radiol. Artif. Intell. 2020,
2, e190168. [CrossRef]

http://doi.org/10.1016/S1470-2045(19)30098-1
http://doi.org/10.1097/RMR.0000000000000237
http://www.ncbi.nlm.nih.gov/pubmed/32271288
http://doi.org/10.3174/ajnr.A5667
http://www.ncbi.nlm.nih.gov/pubmed/29748206
http://doi.org/10.1038/s41598-017-10649-8
http://doi.org/10.1148/ryai.2020190168

	Introduction 
	IDH-Status Prediction in Gliomas through Perfusion and Diffusion Assessment 
	Spectroscopy Advancements: 2-Hydroxyglutarate Direct Detection to Demonstrate IDH-Mutation 
	1p/19q Codeletion Determination for Oligodendrogliomas 
	Additional Molecular Markers in GBM: Epidermal Growth Factor Receptor (EGFR) Modifications and O6-Methylguanine DNA Methyltransferase (MGMT) Methylation 
	Novel GBM-Defining Genotypes: EGFR Amplification and Telomerase Reverse Transcriptase (TERT) Mutation in IDHwt-Gliomas 
	Diffuse Midline Gliomas H3K27M-Mutated 
	Medulloblastomas 
	DTI and DKI for Glioma Assessment 
	Biophysical Models: Toward Microstructural dMRI 
	BOLD Imaging to Evaluate Tumor Microvascularization and Oxygen Metabolism 
	Frontiers of Ultra-High-Field Imaging 
	Contributions from Artificial Intelligence 
	Conclusions 
	References

