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INTRODUCTION 
 

Gliomas are the most common primary tumors in the 

human central nervous system (CNS) with more than 

half of them being World Health Organization (WHO) 

grade IV glioblastomas multiforme (GBM) [1]. Because 

glioblastomas are highly heterogeneous and invasive, 

surgery alone cannot eradicate the tumor and therefore, 

subsequent radiotherapy and chemotherapy are still 
required [2]. Although temozolomide has been called 

the biggest advancement in GBM chemotherapy [3], its 

therapeutic effect is still not ideal. The median survival  

time of GBM patients is only 14 months after 

standardized treatment [4]. 

 

The application of immunotherapy in non-small cell 

lung cancer and melanoma has provided a potential new 

approach to treating GBM [5, 6]. Studies of the 

anatomical structure of the CNS endolymphatic duct 

have shown that the CNS is not an immune exempt area 

[7]. CNS tumors can also be infiltrated by peripheral 
lymphocytes, which can have a meaningful therapeutic 

effect on existing CNS tumors. Nonetheless, GBM 

immunosuppressive microenvironment limits treatment 
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ABSTRACT 
 

Foxp3+ regulatory T cells (Treg) play an important part in the glioma immunosuppressive microenvironment. This 
study analyzed the effect of Foxsp3 on the immune microenvironment and constructed a Foxp3-related immune 
prognostic signature (IPS)for predicting prognosis in glioblastoma multiforme (GBM). Immunohistochemistry (IHC) 
staining for Foxp3 was performed in 72 high-grade glioma specimens. RNA-seq data from 152 GBM samples were 
obtained from The Cancer Genome Atlas database (TCGA) and divided into two groups, Foxp3 High (Foxp3_H) and 
Foxp3 Low (Foxp3_L), based on Foxp3 expression. We systematically analyzed the influence of Foxp3 on the immune 
microenvironment. Least Absolute Shrinkage and Selection Operator (LASSO) Cox analysis was conducted for 
immune-related genes that were differentially expressed between Foxp3_H and Foxp3_L GBM patients. We found a 
differential expression of Foxp3 in high-grade glioma tissues. The presence of Foxp3 was significantly associated with 
poor OS. From the four-gene IPS developed, GBM patients were stratified into low-risk and high-risk groups in both 
the training set and validation sets. Furthermore, we developed a novel nomogram to evaluate the overall survival 
in GBM patients. This study offers innovative insights into the GBM immune microenvironment and these findings 
contribute to individualized treatment and improvement in the prognosis for GBM patients. 
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effect. The glioblastoma tumor uses a variety of 

immunosuppressive mechanisms to promote growth and 

progression. GBM cells can downregulate immune 

activity by secreting immunosuppressive factors such as 

IL-1, TGF-β, and CSF-1 [8, 9]. They can also limit the 

compromise the immunity by expressing CD95, CD70, 

PD-L1, and other immunosuppressive factors [10, 11]. 

A number of clinical trials against these targets have 

been applied to glioblastoma patients, but the 

therapeutic effect is not satisfactory. 

 

Foxp3+ regulatory T cells (Treg) play an important role 

in the glioma immunosuppressive microenvironment. 

Foxp3+ Tregs of glioma can bind to CD80 or CD86 via 

CTLA-4 to suppress T lymphocyte activity [12]. Foxp3 

can also induce HO-1 expression resulting in the 

suppression of T lymphocyte proliferation [13]. In 

gliomas, Treg can inhibit dendritic cells, antigen-

presenting cells, and other lymphocytes by inhibiting 

the secretion of IL-2, and IFN-γ, and promoting the 

secretion of TGF-β, IDO thus, creating an immuno-

suppressive microenvironment [14]. Although some 

studies have explored the immunosuppressive effect of 

Treg in glioma, the relationship between Foxp3 

expression and the immune response has not yet been 

discussed in GBM. 

 

In this study, we first performed an immuno-

histochemical examination for Foxp3 of tissue 

microarray slides of 72 high-grade glioma patients and 

analyzed the patients’ survival time. We then obtained 

RNA-seq data from The Cancer Genome Atlas (TCGA) 

and divided them into two groups based on Foxp3 

expression, Foxp3 High (Foxp3_H), and Foxp3 Low 

(Foxp3_L). The enrichment levels of the 29-immune 

signature (Supplementary Table 2) which represented 

diverse immune cell types, functions, and pathways in 

each GBM sample of the two groups were then 

quantified [15]. The gene expression profiles were also 

analyzed to identify differentially expressed immune 

genes (DEIGs) between Foxp3_H and Foxp3_L. 

Subsequently, we used the Least Absolute Shrinkage 

and Selection Operator (LASSO) Cox regression 

analysis to construct an immune prognostic signature 

(IPS). Finally, a robust predictive nomogram model was 

developed to estimate overall survival (OS) for patients 

with GBM. 

 

RESULTS 
 

Foxp3 expression is associated with prognosis 

 

Clinicopathological details of patients in the prognosis 

cohort and their association with Foxp3 expression are 

summarized in Supplementary Table 1. IHC staining for 

Foxp3 was positive in 34 (47.2%) patients and negative 

in 38 (52.8%) patients. Foxp3 expression was very 

different in high-grade glioma tissues (Figure 1A). In 

the survival analysis, Foxp3 positivity was significantly 

associated with poor OS (p=0.04) (Figure 1B). 

 

Immunogenomic analyses between Foxp3_H and 

Foxp3_L 

 

The 152 patients in this study were equally divided into 

two groups: Foxp3_H and Foxp3_L, of 76 patients 

 

 
 

Figure 1. Foxp3 expression in high-grade gliomas from SYSUCC and survival analysis. (A) Foxp3 expression in 72 high-grade 

gliomas from SYSUCC, black arrows show the positive cells. The scale bar represents 50 μm. (B) Comparison of survival prognosis between 34 
Foxp3-positive patients and 38 Foxp3-negative patients from SYSUCC (Log-Rank test). 
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each. The ssGSEA score [16, 17] was applied to 

examine 29 sets of immune-associated genes 

(Supplementary Table 2) [15] representing different 

immune cell types, functions, and pathways in each 

GBM sample of the dataset. From the ssGSEA results, 

we found that immune cells, functions, and pathways 

were enriched in Foxp3_H (Figure 2A).  

 

We then analyzed the expression of HLA genes and 

immune checkpoint genes. It was found that the 

expression of HLA genes was higher in Foxp3_H than 

Foxp3_L, except HLA-L, HLA-J, HLA-DRB5, and 

HLA-A (ANOVA test, P<0.05) (Figure 2B). Most 

immune checkpoint genes expressed were significantly 

higher in the Foxp3_H group, except PD-L1 (ANOVA 

test, P<0.05) (Figure 2E). These results indicated that 

patients in Foxp3_H suffered from an immuno-

compromising condition. This implied that the Foxp3_L 

might better respond to immune checkpoint inhibitors 

than the Foxp3_H. 

 

Survival analyses showed that clinical outcomes were 

distinct between Foxp3_H and Foxp3_L (Figure 2C). 

The Foxp3_L had a better survival prognosis than the 

Foxp3_H (Log-Rank test, P=0.002). Additionally, we 

compared the immune score, stromal score, ESTIMATE 

score, and the tumor purity between Foxp3_H and 

Foxp3_L. We found that the immune scores (Kruskal–

Wallis test, P < 0.001), ESTIMATE scores (Kruskal–

Wallis test, P < 0.001), and stromal scores (Kruskal–

Wallis test, P < 0.05) were higher in the Foxp3_H group 

whereas the tumor purity was higher in the Foxp3_L 

group (Kruskal–Wallis test, P < 0.001) (Figure 2D). 

Overall, these results indicated that Foxp3_H had more 

immune and stromal cells, while Foxp3_L had more 

tumor cells. 

 

 
 

Figure 2. Immunogenomic analyses of Foxp3_H (n=76) and Foxp3_L (n=76) from TCGA. (A)The enrichment levels of the 29-
immune signatures by ssGSEA score in each GBM sample. ESTIMATE was used to evaluate tumor purity, stromal score, and immune score. (B) 
Comparison of the expression levels of HLA genes between Foxp3_H and Foxp3_L using ANOVA test. (C) Comparison of survival prognosis 
between Foxp3_H and Foxp3_L from TCGA using the Log-Rank test. (D) Comparison of the Immune score, Stromal score, ESTIMATE score, 
Tumor purity between Foxp3_H, and Foxp3_L using Kruskal–Wallis test. (E) Comparison of immune checkpoint gene expression levels 
between Foxp3_H and Foxp3_L using ANOVA test. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Identification of differentially expressed immune 

genes 

 

Data were analyzed using Rstudio software (Version 

1.2.5001) to confirm the DEGs between Foxp3_H and 

Foxp3_L. A total of 294 genes were identified by the 

criteria of log2 |fold change| ≥1 and FDR <0.05; among 

them, 261 genes were upregulated and the other 33 

genes were downregulated (Supplementary Figure 1).  

 

Ninety-one differentially expressed immune genes 

(DEIGs) were then selected using the ImmPort database 

[18] (Figure 3A, 3B). The DEIGs were uploaded to the 

Metascape website to identify Gene Ontology (GO) Terms 

and Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathways. The terms were considered significant and 

grouped into clusters when P <0.01 and the numbers of 

enriched genes ≥3, respectively based on their membership 

similarities. The terms with the best p-values were chosen 

from each of the 20 clusters, with not more than 15 terms 

per cluster and 250 terms in total. The DEIGs were mainly 

enriched in GO:0006958: complement activation, classical 

pathway, GO:0006910: phagocytosis, recognition, 

GO:0031295: T cell co-stimulation (GO terms), and 

hsa04060: cytokine-cytokine receptor interaction (KEGG) 

(Figure 3C). Each node represented an enriched term and 

was first colored by its cluster ID (Figure 3D) and then by 

its P-value (Figure 3E).  

 

 
 

Figure 3. Identification of Foxp3-associated differentially expressed immune genes. (A) Heatmap of immune genes differentially 

expressed between Foxp3_H (n=76) and Foxp3_L (n=76). (B) Volcano plot of 91 immune genes differentially expressed between Foxp3_H and 
Foxp3_L. (C) Heatmap of enriched terms across input gene lists, colored by P-values. (D) Enriched terms are colored by cluster ID, where 
nodes that share the same cluster ID are typically close to each other in DEIGs. (E) Enriched terms are colored by P-value, where terms 
containing more genes have a more significant P-value in DEIGs.  
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Construction of the Foxp3-related immune 

prognostic signature 

 

LASSO Cox regression analysis was used to construct 

an IPS for the training set (Figure 4A–C). Risk scores 

were calculated for each sample (risk score= 

CXCL5*0.077+IGHV3-11*0.317+TNFSF14*0.296+ 

LGR6*0.054). Patients in the training set were 

divided into a low-risk group and a high-risk group 

based on the optimal cut-off value (0.6979717) 

calculated through the “survminer” R package. The 

outcomes of patients with a high-risk score were 

worse than those with a low-risk score, as suggested 

by Kaplan–Meier analysis (Figure 4D). The Receiver 

Operating Characteristic (ROC) curve analysis of the 

IPS in the training set indicated a promising 

prognostic ability for OS (Figure 4E). Figure 4F 

shows the results of risk score distribution and gene 

expression patterns in the training set.  

 

Validation of the immune prognostic signature 

 

To verify the prognostic value of the IPS, the same 

formula was applied to the validation set. Patients in 

the validation set were divided into high- and low-

risk by the cut-off value obtained from the 

corresponding cohort. Similar to the results of the 

outcomes in the training set, the patients with a high-

risk score tended to have worse OS (Figure 4G). The 

ROC analysis displayed high sensitivity and 

specificity of the IPS (Figure 4H). The Area Under 

the Curve (AUC) values for predicting 1- and  

2-year patient survival were 0.633 and 0.695, 

respectively, demonstrating the high predictive value 

of the IPS. Figure 4I shows the results of risk score 

distribution and gene expression patterns in the 

validation set. The prognostic value of the IPS in the 

total set containing the training, validation, and WHO 

grade III gliomas sets is shown in Supplementary 

Figure 2.  

 

Establishment of an IPS-based nomogram model 

 

The univariate Cox analysis revealed that the IPS was 

significantly associated with OS (Hazard ratio: 1.167, 

95% confidence interval: 1.076−1.267, P < 0.001). 

The multivariate Cox analysis showed that the IPS 

could serve as an independent prognostic factor 

(Hazard ratio: 1.199, 95% confidence interval: 

1.101−1.305, P < 0.001) (Figure 5A). Finally, we 

established an IPS-based nomogram model (Figure 

5B). The C-index (0.674) showed the specific 

discrimination ability of the nomogram model. 
Calibration plots of observed vs. predicted 

probabilities of 1-, 2-, and 3-year OS demonstrated 

favorable concordance (Figure 5C). 

DISCUSSION 
 

Foxp3, a unique marker of natural regulatory T cells 

(nTregs) and adaptive/induced regulatory T cells 

(a/iTregs) [19], is a protein involved in immune system 

responses [20]. Foxp3+ Tregs are considered to 

constitute an essential part of the immunosuppressive 

microenvironment of gliomas [21]. However, the 

mechanism regulating the interaction of Foxp3 with the 

immune microenvironment is yet to be established. 

 

Of all the GBMs, we found that mesenchymal 

glioblastomas have higher expression of Foxp3 than 

proneural and classical tumors (Supplementary Figure 

3A). Kaffes et al. also demonstrated that mesenchymal 

glioblastomas are characterized by an increased immune 

cell presence [22]. No significant difference was 

observed between different IDH status in GBM 

(Supplementary Figure 3B). 

 

In the present study, although we found that immune 

cells, functions, and pathways were enriched in 

Foxp3_H, the patients still had a worse prognosis. In 

contrast, He et al. found that triple-negative breast 

cancer patients with high immune status had a better 

prognosis [15]. In the analysis of HLA expression, we 

found that most HLA genes were expressed higher in 

Foxp3_H. Previous studies have shown that HLA 

expression was correlated with tumor grade and 

histological type [23]. Fan et al. found that glioma 

patients with low HLA-DR expression were more likely 

to benefit from immunotherapy [24]. Hence, 

immunotherapy might be more effective in patients of 

Foxp3_L. 
 

The glioma immunosuppressive microenvironment 

might be responsible for these observations. We found 

that the expression of BTLA, CD27, ICOS, LAG-3, 

TIM-3, and IDO1 was higher in Foxp3_H (Figure 2E). 

This result suggested that, although immune activity 

was higher in Foxp3_H, immune cells were generally 

depleted and did not function optimally. Previous 

studies have also shown tumor-associated lymphocyte 

infiltration in glioblastoma with the lymphocyte 

generally having a poor function and severe exhaustion 

[25]. Therefore, immune checkpoint inhibitors could be 

a more effective treatment option for patients with high 

immune checkpoint gene expression.  
 

To confirm the effect of Foxp3 in immune regulation, 

we compared Foxp3_H and Foxp3_L using differential 

expression analysis. A total of 294 genes were 

identified as the DEGs, including 91 differentially 
expressed immune genes among them. From the GO 

and KEGG analyses, the DEIGs were significantly 

enriched in complement activation, classical pathway, 
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phagocytosis, recognition, T cell co-stimulation (GO 

terms), and cytokine-cytokine receptor interaction 

(KEGG). Furthermore, we developed and validated a 

Foxp3-related IPS which was related to prognosis. The 

four-gene IPS was also an independent prognostic 

factor by univariate and multivariate Cox analyses. 

Moreover, a predicting nomogram was developed based 

on the IPS to predict the survival of patients with GBM. 

 

 
 

Figure 4. Construction of the Foxp3-related immune prognostic signature (IPS). (A–C) LASSO Cox analysis identified four genes 

most correlated with overall survival in the training set (n=76). (D, G) Kaplan–Meier curves of overall survival based on the IPS in the training 
set and validation set (n=76). (E, H) ROC curve analysis of the IPS. (F, I) Risk scores distribution, survival status of each patient, and heatmaps 
of prognostic four-gene signature in the training set (n=76) and validation set (n=76). 
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Figure 5. Construction of the nomogram model. (A) Univariate and multivariate Cox analyses indicating that the IPS is significantly 
associated with OS. (B) Nomogram model for predicting the probability of 1-, 2-, and 3-year OS in GBMs. (C) Calibration plots of the 
nomogram for predicting the probability of OS at 1, 2, and 3 years. 
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Four genes were identified as hub genes in our IPS by 

LASSO Cox regression: CXCL5, IGHV3-11, TNFSF14, 

and LGR6. CXCL5 (C-X-C motif chemokine ligand 5) 

encodes the protein CXCL5, a small cytokine belonging 

to the CXC chemokine family that is produced upon the 

stimulation of cells with the inflammatory cytokines IL-

1 or TNF-α [26]. CXCL5 is not only known to regulate 

neutrophil homeostasis [27] but is also related to cancer 

cell migration/invasion and tumor angiogenesis [28]. In 

previous research, CXCL5 was shown to be up-

regulated in glioma tissues compared with normal brain 

tissues and could promote the proliferation and 

migration of glioma cells by activating the ERK, JNK, 

p38, and MAPK signaling pathways [29]. In glioma 

cells, CD133, a cancer stem cell marker, raises the 

expression of IL-1β and its downstream chemokines, 

including CCL3, CXCL3, and CXCL5 [30]. 

Foxp3+Tregs could exert an immune function by 

controlling the CXCL5-IL-17 inflammatory axis [31]. 

And CXCL5 caused a 2.5-fold increase in the frequency 

of Foxp3+Tregs in CD4+T cells [32]. IGHV3-11 

(immunoglobulin heavy variable 3-11) was one of the 

VH3 immunoglobulin gene family. The molecular 

function of IGHV3-11 is related to antigen binding and 

immunoglobulin receptor binding. Previous study had 

demonstrated that immunoglobulin could expand 

Foxp3+Tregs [33]. TNFSF14 (TNF superfamily member 

14) encodes a member of the tumor necrosis factor 

(TNF) ligand family. This protein has been shown to 

induce the expansion of T cells and induce apoptosis of 

different tumor cells [34]. Treps et al. fused a CGKRK 

peptide with TNFSF14 and injected it intravenously 

into murine orthotopic GBM models. The tumor 

vasculature appeared to have normal features after 

treatment. Additionally, the authors observed more 

endothelial venules and T cell infiltration in solid 

tumors [35]. In a recent study, researchers determined 

that the expression of TNFSF14 negatively correlates 

with tumor mutation burden (TMB) in GBM and that 

TNFSF14 is a significant prognostic factor for poor OS 

[36]. TNFSF14 can promote the proliferation of 

Foxp3+Tregs [37], and bind HVEM which are 

expressed on Foxp3+Tregs to mediate the suppressive 

functions [38]. LGR6 (leucine-rich repeat containing G 

protein-coupled receptor 6) encodes a member of the 

leucine-rich repeat-containing subgroup of the G 

protein-coupled 7-transmembrane protein superfamily. 

LGR6 binds to RSPO ligands to activate the Wnt/β-

catenin signaling pathway to promote cancer 

progression [39]. And Wnt/β-catenin signaling could 

modulate the TCF-1-dependent inhibition of Foxp3 

transcriptional activity to limit immunosuppressive 

activity [40]. 
 

Interestingly, immune checkpoint genes, BTLA, CD27, 

ICOS, LAG-3, TIM-3, IDO1, and PD-L1 were 

expressed higher in the high-risk group (Supplementary 

Figure 4). This indicated that the high-risk patients 

identified by the Foxp3-related IPS might be having a 

better effect on immune checkpoint inhibitors. 

 

For now, some predictive models of glioblastoma have 

been constructed. Tang et al. identified a model of a 

specific gene module. The AUC values were 0.61-0.67 

and 0.71-0.88 for predicting 12-months and 36 months 

patient’s survival, respectively [41]. A relatively 

authentic immune-related predictive model constructed 

by Liang et al. had the AUC value of 0.869 [42]. In our 

present study, we found Foxp3 expression to be 

associated with prognosis and developed a Foxp3-

related IPS with the AUC values for predicting 1- and 

2-year patient survival of 0.633 and 0.695, respectively 

in the validation set. Our result provided a novel vision 

to study glioblastoma and we will verify the accuracy of 

the Foxp3-related IPS by our data in further research 

works. 

 

Currently, the research on the microenvironment of 

gliomas attracting considerable attention from the 

scientific community. This study provided new insights 

into the GBM immune microenvironment from different 

perspectives. Nevertheless, there were some limitations. 

This study was retrospective hence there is a need for 

further prospective studies to confirm the value of our 

four genes functionally and mechanistically. 

 

In summary, our study has identified the mechanism of 

Foxp3 expression on prognosis from the perspective of 

immunology. We have constructed a Foxp3-related IPS 

that can classify patients into different immune risk 

groups. Moreover, we have developed a nomogram to 

quantitatively predict a patient’s survival based on this 

IPS. These findings are beneficial for GBM patients for 

the development of individualized treatment plans and 

improvement of prognosis. 

 

MATERIALS AND METHODS 
 

Data collection and immunohistochemical staining 

 

The clinical and prognostic significance of Foxp3 

expression was assessed in a prognosis cohort using 

immunohistochemical (IHC) staining of tissue 

microarray (TMA) slides. Formalin-fixed paraffin-

embedded blocks of 72 specimens (49 WHO grade III 

gliomas and 23 WHO grade IV glioblastomas) were 

collected from the pathologic archive of the Sun Yat-

sen University Cancer Center (SYSUCC) from 1st 

January 2003 to 1st June 2006. Clinicopathological and 

follow-up data were retrieved from the medical records. 

The staging and grading evaluation followed the World 

Health Organization (WHO) 2016 classification. All the 
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procedures in the current study were approved by the 

ethics committee of Sun Yat-sen University Cancer 

Centre. Written informed consent was obtained from all 

the patients. 

 

Immunohistochemical staining for Foxp3 (1:1000, 

ab10901) was conducted on 4-μm-thick TMA sections 

according to the manufacturer's instructions. 

Immunoreactivity in >0% of cells was defined as 

positive Foxp3 IHC staining. Two pathologists read the 

Foxp3 IHC slides. 

 

Gene expression datasets and data processing 

 

RNA-seq data from 152 GBM samples were obtained 

from the TCGA website (https://portal.gdc.cancer.gov/). 

The survival data were available for all the patients, and 

their survival time was at least 30 days. Patients were 

divided into two groups, 76 Foxp3_H patients and 76 

Foxp3_L patients, based on their median Foxp3 

expression value. The RNA transcriptome profiling was 

then performed using a log2-based transformation of 

FPKM values. 

 

Immunogenomic analysis  

 

Enrichment levels of the 29-immune signature in each 

GBM sample were quantified using the single-sample 

gene-set enrichment analysis (ssGSEA) score [16, 17]. 

This was followed by the evaluation of the immune cell 

infiltration level (immune score), stromal content 

(stromal score), and tumor purity for each GBM sample 

by Estimation of STromal and Immune cells in 

MAlignant Tumours using Expression data 

(ESTIMATE) [43]. Expression levels of human 

leukocyte antigen (HLA) genes and immune checkpoint 

genes were then compared between Foxp3_H and 

Foxp3_L using analysis of variance (ANOVA) test. 

 

Survival analysis 

 

The OS of GBM patients was compared between 

Foxp3_H and Foxp3_L. The log-rank test was used to 

calculate the significance of survival time differences 

using a threshold of P < 0.05. Kaplan–Meier curves 

were plotted to show the survival time differences. 

 

Differential expression analysis 

 

Differential expression analysis between Foxp3_H and 

Foxp3_L was processed and executed onRstudio using 

the Wilcoxon Rank Sum and Signed Rank Tests [44]. 

Genes with log2 |fold change| ≥1 and False Discovery 

Rate (FDR) <0.05 were selected as differentially 

expressed genes (DEGs). DEIGs were identified by 

the ImmPort database (https://www.immport.org/) 

[18]. 

 

Functional enrichment analysis 

 

To analyze gene ontology and signaling pathway 

enrichment, DEIGs were uploaded to an online tool, 

Metascape, a website for gene annotation, visualization, 

and attributes (https://metascape.org/) [45–48].  

 

Construction and validation of the immune 

prognostic signature (IPS) 

 

For the construction of the immune prognostic 

signature (IPS), the TCGA GBM dataset was 

randomly divided into two sets: training and 

validation. DEIGs in the training set were placed into 

LASSO Cox regression for analysis using the 

“glmnet” R package to establish IPSs [49–51]. An IPS 

was created by weighting the Cox regression 

coefficients to estimate a risk score for each patient. 

Patients were categorized as low-risk or high-risk 

according to the optimal cut-off values acquired by the 

“survminer” R package. Receiver operating 

characteristic (ROC) curves were generated to evaluate 

the sensitivity and specificity of IPS using the 

“survivalROC” R package [52]. The area under the 

curve values were calculated for the ROC curves. 

Subsequently, the prognostic prediction power of this 

IPS was further validated using the validation set.  

 

Development of the nomogram 

 

The univariate and multivariate Cox analyses were used 

to evaluate the independent prognostic ability of the 

IPS. The “rms” package was used to develop an 

innovative nomogram based on the results of the Cox 

analyses. Calibration plots of observed vs. predicted 

probabilities of 1-, 2-, and 3-year OS were generated to 

determine the accuracy. The discrimination of the 

model was determined using the concordance index (C-

index). Bootstraps were calculated to correct the C-

index [53]. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Identification of Foxp3-associated differentially expressed genes. (A) Heatmap of genes differentially 

expressed between Foxp3_H and Foxp3_L. (B) Volcano plot of 294 genes differentially expressed between Foxp3_H and Foxp3_L. 

 

 
 

Supplementary Figure 2. The prognostic value of the IPS in the total set, containing the training set, the validation set, and 
WHO grade III gliomas set. (A) Kaplan–Meier curves of overall survival based on the IPS in the total set (n=152). (B) ROC curve analysis of 

the IPS in the total set (n=152). (C) Kaplan–Meier curves of overall survival based on the IPS in the WHO grade III gliomas set (n=210). (D) ROC 
curve analysis of the IPS in the WHO grade III gliomas set (n=210). 
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Supplementary Figure 3. FOXP3 expression in GBM with different subtypes and IDH status. (A) FOXP3 expression in GBM with 

different subtypes. (B) FOXP3 expression in GBM with IDH status. *P < 0.05, **P < 0.01, ***P < 0.001. 
 

 

 
 

Supplementary Figure 4. Comparison of immune checkpoint gene expression levels between high risk and low risk using 
ANOVA test. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Supplementary Tables 
 

 

Supplementary Table 1. The clinicopathological features of the prognosis cohort associated with Foxp3 expression. 
(n = 72). 

Variables All patients Foxp3-positive Foxp3-negtive 

Age [years; n (%)] 
   

<60 62(86.1) 26(81.2) 36(94.7) 

≥60 10(13.9) 8(18.8) 2(5.3) 

Gender [n (%)] 
   

Male 47(65.3) 24(70.6) 23(60.5) 

Female 25(45.7) 10(29.4) 15(39.5) 

WHO grade [n (%)] 
   

WHO III 49(68.1) 19(55.9) 30(78.9) 

WHO IV 23(31.9) 15(44.1) 8(21.1) 

Over survival 

(days, mean ±SD) 
1179.1±1759.1 845.0±1386.8 1478.0±2007.0 

 

Supplementary Table 2. The 29 immune signatures represented by 29 different gene sets. 

Immune signatures Genes 
aDCs CD83, LAMP3,CCL1 
APC co inhibition C10orf54, CD274, LGALS9, PDCD1LG2, PVRL3,  
APC co stimulation CD40, CD58, CD70, ICOSLG, SLAMF1, TNFSF14, TNFSF15, TNFSF18, TNFSF4, TNFSF8, 

TNFSF9 
B cells BACH2, BANK1, BLK, BTLA, CD79A, CD79B, FCRL1, FCRL3, HVCN1, RALGPS2 
CCR CCL16, TPO, TGFBR2, CXCL2, CCL14, TGFBR3, IL11RA, CCL11, IL4I1, IL33, CXCL12, 

CXCL10, BMPER, BMP8A, CXCL11, IL21R, IL17B, TNFRSF9, ILF2, CX3CR1, CCR8, 
TNFSF12, CSF3, TNFSF4, BMP3, CX3CL1, BMP5, CXCR2, TNFRSF10D, BMP2, CXCL14, 

CCL28, CXCL3, BMP6, CCL21, CXCL9, CCL23, IL6, TNFRSF18, IL17RD, IL17D, IL27, CCL7, 
IL1R1, CXCR4, CXCR2P1, TGFB1I1, IFNGR1, IL9R, IL1RAPL1, IL11, CSF1, IL20RA, IL25, 

TNFRSF4, IL18, ILF3, CCL20, TNFRSF12A, IL6ST, CXCL13, IL12B, TNFRSF8, IL6R, BMPR2, 
IFNE, IL1RAPL2, IL3RA, BMP4, CCL24, TNFSF13B, CCR4, IL2RA, IL32, TNFRSF10C, 

IL22RA1, BMPR1A, CXCR5, CXCR3, IFNA8, IL17REL, IFNB1, IFNAR1, TNFRSF1B, CCL17, 
IFNL1, IL16, IL1RL1, ILK, CCL25, ILDR2, CXCR1, IL36RN, IL34, TGFB1, IFNG, IL19, ILKAP, 

BMP2K, CCR10, ILDR1, EPO, CCR7, IL17C, IL23A, CCR5, IL7, EPOR, CCL13, IL2RG, 
IL31RA, TNFAIP6, IFNL2, BMP1, IL12RB1, TNFAIP8, IL4R, TNFRSF6B, TNFAIP8L1, 

TNFRSF10B, IFNL3, CCL5, CXCL6, CXCL1, CCR3, TNFSF11, CSF1R, IL21, IL1RAP, IL12RB2, 
CCL1, IL17RA, CCR1, IL1RN, TNFRSF11B, TNFRSF14, IL13, IL2RB, BMP8B, CCL2, IL24, 
IL18RAP, TGFBI, TNFSF10, TNFRSF11A, CXCL5, IL5RA, TNFSF9, IL1RL2, TNFRSF13C, 

IL36G, IL15RA, TNFRSF21, CXCL8, IL22RA2, TNFAIP8L2, IL18R1, IFNLR1, CXCR6, 
CCL3L3, TNFRSF1A, IL17RE, IFNGR2, IL17RC, TNFAIP8L3, ILVBL, TGFBRAP1, CCL4L1, 
CSF2RA, CCRN4L, CCL26, TNFAIP1, CCRL2, IFNA10, TNFRSF17, IFNA13, IL20, IL18BP, 
CCL3L1, TNFSF12-TN, IL5, IL23R, IL26, TNF, TGFA, CSF2, IL1F10, CXCL17, TNFSF13, 

IFNA4, IL37, IL12A, IL7R, IFNA1, IL1A, IL4, IL2, CCL22, CSF3R, IL10, IFNK, TGFB2, IL1R2, 
IL1B, IL17F, IL27RA, IL15, TNFSF8, IL36B, XCL1, CXCL16, TNFRSF19, IL3, CCL3, IFNA2, 

BMPR1B, IFNA21, TNFSF18, CCL8, IL17RB, TNFRSF25, IL22, IL10RB, IFNAR2, CCL18, 
IFNA16, CSF2RB, IL36A, TNFAIP3, IL13RA2, IL13RA1, CCR9, TNFRSF10A, IFNA7, IFNW1, 

XCL2, TNFSF14, CCR2, BMP15, BMP10, CCL15-CCL1, TGFBR1, IFNA5, BMP7, IFNA14, 
IL20RB, IL10RA, IFNA17, CCR6, TGFB3, CCL15, CCL4, CCL27, TNFRSF13B, TNFAIP2, IL31, 

IL17A, TNFSF15, CCL19, IFNA6, IL9 
CD8+ T cells CD8A 

Check-point IDO1, LAG3, CTLA4, TNFRSF9, ICOS, CD80, PDCD1LG2, TIGIT, CD70, TNFSF9, ICOSLG, 
KIR3DL1, CD86, PDCD1, LAIR1, TNFRSF8, TNFSF15, TNFRSF14, IDO2, CD276, CD40, 

TNFRSF4, TNFSF14, HHLA2, CD244, CD274, HAVCR2, CD27, BTLA, LGALS9, TMIGD2, 
CD28, CD48, TNFRSF25, CD40LG, ADORA2A, VTCN1, CD160, CD44, TNFSF18, TNFRSF18, 

BTNL2, C10orf54, CD200R1, TNFSF4, CD200, NRP1 
Cytolytic activity PRF1, GZMA 

DCs CCL17, CCL22, CD209, CCL13 
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HLA HLA-E, HLA-DPB2, HLA-C, HLA-J, HLA-DQB1, HLA-DQB2, HLA-DQA2, HLA-DQA1, HLA-
A, HLA-DMA, HLA-DOB, HLA-DRB1, HLA-H, HLA-B, HLA-DRB5, HLA-DOA, HLA-DPB1, 

HLA-DRA, HLA-DRB6, HLA-L, HLA-F, HLA-G, HLA-DMB, HLA-DPA1 
iDCs CD1A, CD1E 

Inflammation-
promoting 

CCL5, CD19, CD8B, CXCL10, CXCL13, CXCL9, GNLY, GZMB, IFNG, IL12A, IL12B, IRF1, 
PRF1, STAT1, TBX21, 

Macrophages C11orf45, CD68, CLEC5A, CYBB, FUCA1, GPNMB, HS3ST2, LGMN, MMP9, TM4SF19 

Mast cells CMA1, MS4A2, TPSAB1 

MHC class I B2M, HLA-A, TAP1 

Neutrophils EVI2B, HSD17B11, KDM6B, MEGF9, MNDA, NLRP12, PADI4, SELL, TRANK1, VNN3 

NK cells KLRC1, KLRF1 

Parainflammation CXCL10, PLAT, CCND1, LGMN, PLAUR, AIM2, MMP7, ICAM1, MX2, CXCL9, ANXA1, 
TLR2, PLA2G2D, ITGA2, MX1, HMOX1, CD276, TIRAP, IL33, PTGES, TNFRSF12A, SCARB1, 
CD14, BLNK, IFIT3, RETNLB, IFIT2, ISG15, OAS2, REL, OAS3, CD44, PPARG, BST2, OAS1, 

NOX1, PLA2G2A, IFIT1, IFITM3, IL1RN 
pDCs CLEC4C, CXCR3, GZMB, IL3RA, IRF7, IRF8, LILRA4, PHEX, PLD4, PTCRA 

T cell co-inhibition 
 

BTLA, C10orf54, CD160, CD244, CD274, CTLA4, HAVCR2, LAG3, LAIR1, TIGIT 

T cell co-stimulation 
 

CD2, CD226, CD27, CD28, CD40LG, ICOS, SLAMF1, TNFRSF18, TNFRSF25, TNFRSF4, 
TNFRSF8, TNFRSF9, TNFSF14 

T helper cells CD4 

Tfh PDCD1, CXCL13, CXCR5 

Th1 cells IFNG, TBX21, CTLA4, STAT4, CD38, IL12RB2, LTA, CSF2 

Th2 cells PMCH, LAIR2, SMAD2, CXCR6, GATA3, IL26 

TIL ITM2C, CD38, THEMIS2, GLYR1, ICOS, F5, TIGIT, KLRD1, IRF4, PRKCQ, FCRL5, SIRPG, 
LPXN, IL2RG, CCL5, LCK, TRAF3IP3, CD86, MAL, LILRB1, DOK2, CD6, PAG1, LAX1, 
PLEK, PIK3CD, SLAMF1, XCL1, GPR171, XCL2, TBX21, CD2, CD53, KLHL6, SLAMF6, 
CD40, SIT1, TNFRSF4, CD79A, CD247, LCP2, CD3D, CD27, SH2D1A, FYB, ARHGAP30, 

ACAP1, CST7, CD3G, IL2RB, CD3E, FCRL3, CORO1A, ITK, TCL1A, CYBB, CSF2RB, IKZF1, 
NCF4, DOCK2, CCR2, PTPRC, PLAC8, NCKAP1L, IL7R, 6-Sep, CD28, STAT4, CD8A, LY9, 

CD48, HCST, PTPRCAP, SASH3, ARHGAP25, LAT, TRAT1, IL10RA, PAX5, CCR7, DOCK11, 
PARVG, SPNS1, CD52, HCLS1, ARHGAP9, GIMAP6, PRKCB, MS4A1, GPR18, TBC1D10C, 
GVINP1, P2RY8, EVI2B, VAMP5, KLRK1, SELL, MPEG1, MS4A6A, ARHGAP15, MFNG, 

GZMK, SELPLG, TARP, GIMAP7, FAM65B, INPP5D, ITGA4, MZB1, GPSM3, STK10, 
CLEC2D, IL16, NLRC3, GIMAP5, GIMAP4, IFFO1, CFH, PVRIG, CFHR1, 

Treg IL12RB2, TMPRSS6, CTSC, LAPTM4B, TFRC, RNF145, NETO2, ADAT2, CHST2, CTLA4, 
NFE2L3, LIMA1, IL1R2, ICOS, HSDL2, HTATIP2, FKBP1A, TIGIT, CCR8, LTA, SLC35F2, 

IL21R, AHCYL1, SOCS2, ETV7, BCL2L1, RRAGB, ACSL4, CHRNA6, BATF, LAX1, ADPRH, 
TNFRSF4, ANKRD10, CD274, CASP1, LY75, NPTN, SSTR3, GRSF1, CSF2RB, TMEM184C, 
NDFIP2, ZBTB38, ERI1, TRAF3, NAB1, HS3ST3B1, LAYN, JAK1, VDR, LEPROT, GCNT1, 

PTPRJ, IKZF2, CSF1, ENTPD1, TNFRSF18, METTL7A, KSR1, SSH1, CADM1, IL1R1, ACP5, 
CHST7, THADA, CD177, NFAT5, ZNF282, MAGEH1 

Type I IFN Response DDX4, IFIT1, IFIT2, IFIT3, IRF7, ISG20, MX1, MX2, RSAD2, TNFSF10 

Type II IFN Response GPR146, SELP, AHR 

 


