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Abstract: Accumulating evidence indicates that long non-coding RNAs (lncRNAs) have certain
similarities with messenger RNAs (mRNAs) and are associated with numerous important biological
processes, thereby demanding methods to distinguish them. Based on machine learning algorithms,
a variety of methods are developed to identify lncRNAs, providing significant basic data support for
subsequent studies. However, many tools lack certain scalability, versatility and balance, and some
tools rely on genome sequence and annotation. In this paper, we propose a convenient and accurate
tool “PreLnc”, which uses high-confidence lncRNA and mRNA transcripts to build prediction
models through feature selection and classifiers. The false discovery rate (FDR) adjusted p-value and
Z-value were used for analyzing the tri-nucleotide composition of transcripts of different species.
Conclusions can be drawn from the experiment that there were significant differences in RNA
transcripts among plants, which may be related to evolutionary conservation and the fact that
plants are under evolutionary pressure for a longer time than animals. Combining with the Pearson
correlation coefficient, we use the incremental feature selection (IFS) method and the comparison of
multiple classifiers to build the model. Finally, the balanced random forest was used to construct
the classifier, and PreLnc obtained 91.09% accuracy for 349,186 transcripts of animals and plants.
In addition, by comparing standard performance measurements, PreLnc performed better than other
prediction tools.
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1. Introduction

Long non-coding RNAs (lncRNAs), defined as a transcript with low protein-coding potential over
200 nucleotides in length, are initially considered as a “noise” of transcription because the expression
level and sequence conservation of them are lower than those of messenger RNAs (mRNAs) [1].
However, in recent years, accumulating evidence indicates that lncRNAs exist widely in eukaryotes
and are essential elements of the transcriptome [2]. For instance, some lncRNAs have the cis or trans
function of possessing gene expression [3], and they can regulate gene expression at multiple levels
by complementing homologous sequences of RNA or DNA, or by forming molecular frameworks
and scaffolds assembled through structural macromolecular complexes [4–6]. In the gene expression
network, some lncRNAs act as important regulators, regulating the nuclear structure and transcription
of the cell nucleus, mRNA stability, translation and cytoplasmic post-translational modifications [7].
It is precisely because of the various specific expressions of lncRNAs in organisms that the annotation
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of the sequences has fallen behind. Therefore, it is of great biological significance to identify lncRNAs
from multitudinous sequences.

The transcriptome analysis shows that more than 90% of the eukaryotic genome is transcribed,
but only 1% to 2% of the genome can encode proteins, which indicates that it is quite crucial to evaluate
the protein-encoding ability of transcripts [8,9]. Similar to the structure of mRNAs, lncRNAs have a
poly tail and promoter structure after splicing [10]. Since lncRNAs and mRNAs have certain similarities
and both have biological functions [11], the identification and differentiation of lncRNAs and mRNAs
deserve further study. Moreover, previous studies have shown that some lncRNAs expressed with high
abundance are poorly conserved, while some low-expressed lncRNAs have important functions [12].
Therefore, it is less feasible to seek the regularity directly from the stability of lncRNAs, the protection
of lncRNAs between species, and the expression level of lncRNAs [12,13].

With the continuous development of sequencing technology and a large number of species being
sequenced, researchers can predict lncRNAs from abundant candidate transcripts with scientific
calculations. Since the recognition of lncRNAs and RNA from transcripts is a binary classification
problem, many machine learning algorithms have been applied to diverse methods, such as CPAT [14],
PLEK [15], CPC2 [16], lncRScan-SVM [17], LncFinder [18], PLncPRO [19], RNAplonc [20], etc. CPAT is a
tool for evaluating protein-coding ability based on the linear regression model, which is as popular and
species-neutral as CPC2. CPC2 uses a support vector machine (SVM) model with the standard radial
basis function kernel, which can rapidly predict the protein-coding ability of sequences and provide an
online website. PLEK adopts an improved k-mer scheme and support vector machine algorithm to
separate lncRNAs from mRNAs. Compared to the input sequence-based method described above,
LncRScan-SVM relies on GTF files of query transcripts and focuses on predicting lncRNAs. LncFinder
identifies long non-coding RNA utilizing sequence intrinsic composition, structural information, and
physicochemical property, which is released as an R package and a web server. PLncPRO and RNAplonc
are tools for predicting plant lncRNAs, providing identification models of monocotyledonous and
dicotyledonous plants. In combination with the RNA-seq experiment, thousands of transcripts can
be generated, but it is difficult and time consuming for researchers to filter thousands of lncRNAs
predictions. Predictive software allows researchers to select the most likely candidate sequences for
experimental validation, which will help researchers perform functional verification of lncRNAs more
efficiently. However, the general applicability and convenience of the method still need to be improved.

Many methods rely on various genetic identification databases and other sequence alignment files,
leading to a complex prediction process that takes up a lot of time and space. In this paper, we propose
a convenient and accurate tool “PreLnc”, which uses high-confidence lncRNA and mRNA transcripts
to build prediction models through feature selection and classifiers. The false discovery rate (FDR)
adjusted p-value and Z-value were used for analyzing the tri-nucleotide composition of transcripts of
different species. Combining with the ranking features through the Pearson correlation coefficient,
we use the incremental feature selection (IFS) method and the comparison of multiple classifiers to
build the model. Finally, the balanced random forest was used to construct the classifier, and the
model training PreLnc can effectively deal with the imbalance of lncRNAs and mRNAs. Besides,
by comparing standard performance measurements with other prediction tools, PreLnc performed
better in many aspects and obtained 91.09% accuracy for 349,186 transcripts of animals and plants.
Its open-source package is available at https://www.github.com/LeiCao97/PreLnc.

2. Materials and Methods

2.1. Datasets

The datasets in this paper are mainly from six species, which can be divided into two major
categories, one consisting of animals (humans, mice, and cows), and the other consisting of 3 common
plants (Arabidopsis thaliana, Oryza sativa, and Zea mays). For animal datasets, we rigorously filtered long
non-coding and protein-coding transcripts with ‘transcript_biotype’ as ‘lncRNA’ and ‘protein_coding’,
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respectively, from the Ensembl (v97) database (http://asia.ensembl.org/) [21]. Due to the absence of
known lncRNAs in some existing plants, long non-coding transcripts of plants were obtained from the
GreeNC database, which is a repository of lncRNAs annotated in plants and algae specifically [22].
We selected protein-coding transcripts as negative samples from the EnsemblPlants (v44) database [23].
In order to effectively establish the model, we used CD-hit [24] and set parameters (c = 0.9, aS = 0.9)
to filter out highly similar 19,181 lncRNAs and 75,673 mRNAs. For model training and testing, we
further divided the datasets into training sets and testing sets, which were randomly sampled from
complete datasets (see Table 1). All the datasets were independent of each other and are available
online at https://github.com/LeiCao97/PreLncData.

Table 1. Datasets of animals and plants. Transcripts of animals were obtained from Ensembl (v97).
Long non-coding and protein-coding transcripts of plants were obtained from GreeNC and
EnsemblPlants (v44), respectively. All of the data is filtered by CD-hit, and the datasets are independent
of each other.

Dataset Species Training Testing

1 Humans
positive 12,000 24,323
negative 12,000 80,324

2 Mice
positive 6500 6534
negative 6500 53,239

3 Cows
positive 1000 976
negative 1000 36,346

4 Arabidopsis thaliana positive 1400 1339
negative 1400 33,345

5 Oryza sativa positive 2500 2487
negative 2500 33,970

6 Zea mays positive 7500 7843
negative 7500 68,460

2.2. Feature Selection and Extraction

Given that the features play a crucial role in the prediction, we selected a variety of features based
on the definition, structure and composition of lncRNAs and mRNAs, which can be directly obtained
by scientific calculations. Since each selected feature affects the prediction performance, we selected
11 important features as the first candidate subset through analyzing existing lncRNAs prediction
methods, which can be divided into four categories (see Table 2). First, sequence length, GC content
and standard deviation (SD) of stop codon counts (SCC) (see Equations (1) and (2)) are the basic
features directly derived from transcripts [16].

x =
1
3

3∑
i=1

SCCi (1)

SD =

√√√
1
3

3∑
i=1

(SCCi − x)2 (2)

where x represents stop codon counts of three frames (SCC1, SCC2, SCC3). Second, the structural
features are composed of open reading frame (ORF) integrity and some parameters related to
the coding sequence (CDS) (CDS length, CDS score and CDS percentage) [17,25], which can be
evaluated by txCdsPredict program from UCSC [26]. Theoretical isoelectric point (PI) and length
of a predicted peptide, which are related to peptides and calculated by the “ProtParam” module in
BioPython [27], were selected as features of the third category. The fourth category is composed of two
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simple and functional definition features that distinguish protein-coding and non-coding transcripts.
Fickett TESTCODE score was used to evaluate combination effects based on nucleotide composition
and codon usage bias (see Equations (3)–(8)) [28], whereas hexamer score was selected to evaluate the
dependencies between adjacent amino acids (see Equation (9)) [14].

Ncontent = Proportion of nucleotide Nε{A, T, C, G} (3)

N1 = Number of A′ s in positions 1, 4, 7, · · · (4)

N2 = Number of A′ s in positions 2, 5, 8, · · · (5)

N3 = Number of A′ s in positions 3, 6, 9, · · · (6)

Npos =
MAX(Ni)

MIN(Ni) + 1
iε{1, 2, 3} (7)

Fickettscore =
8∑

i=1

piwi (8)

in Equation (3), Ncontent means the proportion of nucleotide Nε{A, T, C, G}. In Equations (4) to (7),
N1, N2, N3 measure the asymmetry in the distribution of each base among the three codon positions
and Npos measures the deviation of each base from one codon to another. Hexamer score can be
calculated by the following equation.

Hexamerscore =
1
m

m∑
i=1

log(
F(Hi)

F′(Hi)
) (9)

where F(hi) and F′(hi)(i = 0, 1, . . . , 4095) represent in-frame hexamer frequency, which can be measured
by a log-likelihood ratio between coding and non-coding training data sets, respectively.

Table 2. The first subset of 11 features. The features can be classified into four categories: (1) Basic
features: No 1, 2, 3. (2) ORF (open reading frame) and CDS (coding sequence) related features: No 4–7.
(3) Peptide related features: No 8, 9. (4) Functional definition features: 10, 11.

No. Feature Introduction

1 Length sequence length
2 GC_content GC content
3 Stop_condon_std standard deviation of stop codon counts (TAA, TAG, TGA)
4 ORF_in open reading frame integrity
5 CDS_len CDS length
6 CDS_score CDS score of txCdsPredict prediction
7 CDS_percent CDS percentage
8 Pep_len peptide length
9 PI isoelectric point
10 Hexamer hexamer score
11 Fickett fickett score

In RNA molecules, each of the adjacent tri-nucleotides is defined as a codon, representing an amino
acid during protein synthesis [29]. Considering that classification performance remains a major concern,
we proposed to add a subset of features for animals and plants, respectively, by taking tri-nucleotides as
another candidate combinations, which performed well in distinguishing lncRNAs and mRNAs [30,31].
It is worth mentioning that the transcripts between plants and animals or even between each species
have certain differences. Therefore, it is meaningful to analyze and select uniformly valid features
among 64 tri-nucleotides to enhance classification performance. According to the proportion of each
trinucleotide in the transcript, we conducted the significance test of the statistical hypothesis test [32].
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p-value is a method for statistical test data to fall within the range of error probability, and it is set as a
threshold value to measure the significance (≤5% is significant, ≤1% is quite significant). The false
discovery rate is often applied to multiple test corrections to the p-value, while the FDR adjusted
p-value is more rigorous to measure its significance [33]. The corresponding Z-value can intuitively
reflect the degree of difference, which can be a good measure of the correlation between the inner
K-mer of the sequence and the category of structure or even function [34]. The adjusted p-value and
Z-value were applied to analyze the rules of tri-nucleotides in lncRNAs and mRNAs of different
species (see Equations (10)–(13)) [35], to analyze the consistent tri-nucleotides between animals, as well
as plants.

Z =
X1 −X2√

S2
1

n1
+

S2
2

n2

(10)

S =

√∑(
Xi −X

)2

n− 1
(11)

Pvalue = 2P(Z C ≥ |Z| | µ = µ0) (12)

Adjust− Pvalue(i) = Pvalue(i) × length(P)/rank(P) (13)

where X1, X2 represent the averages of a certain tri-nucleotide in the positive and negative sample set,
S1, S2 represent the standard deviation, and n1, n2 represent the numbers of lncRNAs and mRNAs.
In equation 12, p-value is the probability that the test statistic (ZC) is greater than or equal to the
test statistic value calculated based on the observed sample set (|Z|) when the test data is lncRNA
(µ = µ0). In equation 13, p-values are sorted from small to large, and the adjusted p-value is obtained
by calculating the current p-value (Pvalue(i)) multiplied by the total number length(P) divided by
the sorting number rank(P). In order to select the tri-nucleotides with the strongest influence as the
features, we set the FDR adjusted p-value at 1% and ranked the significance of the absolute value of
Z-value.

Feature selection method usually has a great influence on the whole research process, thus pearson
correlation coefficients (PCCs) [36] and incremental feature selection methods [37] were used to study
the correlation between features and transcript types. Firstly, we use the Pearson correlation coefficient
to rank the features and remove redundant features (|r| > 0.8) to ensure their independence from
each other. Then, combining all the min-max scaling normalized feature parameters from training
sets, an incremental feature selection method was adopted to conduct efficient classification based
on the ranking features and classifiers, which was evaluated with the 10-fold cross-validation [37,38].
Moreover, we analyzed the recognition bias of these features, such as amino acids corresponding
to tri-nucleotides that may have an important effect on protein synthesis, for mRNAs of different
species. Feature extraction was mainly conducted through modified Python scripts from three known
software (CPAT [14] used for Feature 3, CPC2 [16] used for Feature 4–7 and lncRScan-SVM [17] used
for Feature 8–11).

2.3. Model Foundation and Evaluation

Feature selection and different classifiers will affect the final prediction performance. Therefore,
we combined the incremental feature selection method with a variety of machine learning classifiers,
including logistic regression (LR) [39], SVM [40], decision tree (DT) [41], random forests (RF) [42],
and K-nearest neighbor methods (KNN) [43]. Based on python’s ‘sklearn’ package, parameters of the
10-fold cross-validation, including sensitivity (SEN) and F-measure (F) (see Equations (14) and (15),
were evaluated to build a model with good prediction performance and high applicability. Taking into
account the imbalance of the training sets, we divided the positive and negative samples into the data
set into different proportions, and finally determined the classifier to balance the random forest. In the
overall modeling process, all features were extracted from the transcripts of each species for individual
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training, and lncRNAs prediction model was created (see Figure 1). All input files are in FASTA format
and do not rely on other gene annotation files.
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Figure 1. Model architecture of PreLnc. A presents animals (humans, mice, and cows) and B presents
plants (A. thaliana, O. sativa and Z. mays). The FDR (false discovery rate) adjusted p-value and Z-value
are used to select tri-nucleotides as candidate feature sets. Pearson correlation coefficients (PCCs)
are used to obtain ranking lists of features for feature selection results with the incremental feature
selection (IFS) method. Model for each species is based on feature selection results and machine
learning classifiers.

The performance of PreLnc was compared to several mainstream and scalable tools, including
CPC2, CPAT, PLEK, LncFinder, PLncPRO and RNAplonc to evaluate the rationality and validity of
the model. Standard performance measurement methods were used to evaluate the parameters (see
Equations (14)–(18)), including SEN, specificity (SPE), accuracy (ACC), Matthews correlation coefficient
(MCC), and area under curve (AUC) characteristics of receiver operating characteristic (ROC) curve
through python script. Where TP, TN, FP, FN represent true positive, true negative, false positive,
false negative.

SEN =
TP

TP + FN
(14)

F =
2TP

2TP + FP + FN
(15)

SPE =
TN

TN + FP
(16)

ACC =
TP + TN

TP + TN + FP + FN
(17)

MCC =
TP× TN− FP× FN√

(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)
(18)

3. Results

3.1. Analysis of Feature Selection and Model Foundation

3.1.1. Analysis of Tri-Nucleotide Differences Among Species

We used Z-value stacking histograms to show the tri-nucleotide differences among species and the
effect of tri-nucleotides on protein-coding ability (see Figures 2 and 3). The Z-value fragment of the same
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trinucleotide shows the significant degree of differentiating transcripts between species. The difference
in the Z-value stacking value of different trinucleotides shows the difference in the transcript sequence
itself, which implies that the composition of lncRNA in plants is significantly different. In Figure 2,
the columnar segmentation shows the range span of Z-value on humans, mice, and cows (0.183~34.656,
0.079~17.809 and 0.08~12.512), indicating that the significance of tri-nucleotides on humans is greater
than that on mice and cows. However, Figure 3 shows that the Z-value span is more differentiated
among A. thaliana, O. sativa and Z. mays (0.027~28.755, 0.021~69.513 and 0.152~85.182). Accordingly,
the significance of the tri-nucleotides on Z. mays was greater than that on the other two plants.
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Figure 3. Z-value stacking histograms on plants. The red-labeled bars indicate the ability to distinguish
trinucleotides with significant effects from lncRNAs on A. thaliana, O. sativa and Z. mays (adjusted
p-value < 0.01).

A few tri-nucleotides extracted from two datasets were filtered out because adjusted p-value does
not meet the significance condition, despite the fact that the cumulative absolute value of Z-value of
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them is relatively high. Consequently, 15 tri-nucleotides were used as another feature subset for animals,
and 24 tri-nucleotides were used for plants. As can be seen in the Figures 2 and 3, 15 tri-nucleotides
red-labeled acted on animals, namely, ACG, AGC, CAG, CAT, CCA, CGG, CGT, GAC, GAG, GAT,
GGC, GGG, TAC, TAG, and TCA, and 24 tri-nucleotides red-labeled acted on plants, namely, AAA,
AAC, AAT, ACC, ACT, AGC, AGG, ATC, ATG, CAA, CAG, CAT, CGA, CTA, GAC, GAG, GAT, GGA,
GGG, GTA, TAA, TAG, TAT, and TTA, as they can significantly affect the prediction compared with the
other tri-nucleotides. Detailed parameters of adjusted p-value and Z-value can be downloaded for
viewing (Additional File 1: Table S1).

3.1.2. Correlation Analysis and Ranking Lists of Features

The Pearson correlation coefficient can not only measure the correlation between individual
characteristics and transcription classes, but also eliminate redundant characteristics. Therefore,
we enumerated the correlation coefficients of all features in the form of heat maps (see Figures 4 and 5).Genes 2020, 11, x FOR PEER REVIEW 9 of 23 
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peptide length. 

Figure 4. Pearson correlation coefficients of features on animals. The correlation coefficient is in the
form of a heat map between various features and transcript categories. Blue represents a positive
correlation and red represents a negative correlation. The darker the color, the stronger the correlation.
The description of the feature abbreviations: Length, sequence length; GC_content, GC content;
Stop_condon_std, standard deviation of stop codon counts (TAA, TAG, TGA); CDS_len, CDS length;
CDS_percent, CDS percentage; CDS_score, CDS score of txCdsPredict prediction; Pep_len, peptide
length; Fickett, fickett score; PI, isoelectric point; ORF_in, open reading frame integrity; Hexamer,
hexamer score, and the other features—tri-nucleotides. The numerical value of the grid indicates the
correlation between these two features. The dark blue area in the upper left corner of the figure shows
the high correlation over 0.9 between stop codon counts, CDS length, CDS score and peptide length.
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As can be seen from Figures 4 and 5, for both animals and plants, four features, namely, standard 
deviation of stop codon counts, CDS length, CDS score, and peptide length, are highly positively 
correlated with each other (|r| > 0.8). According to the definition and calculation of highly correlated 
features, we filter out CDS length and peptide length to ensure the independence between features. 
The standard deviation of the stop codon count that measures the deviation of the three frames in the 
ORF is retained, since not all ORFs can be expressed as protein products. 

Figure 5. Pearson correlation coefficients of features on plants. The correlation coefficient is in the
form of a heat map between various features and transcript categories. Blue represents a positive
correlation and red represents a negative correlation. The darker the color, the stronger the correlation.
The description of the feature abbreviations: Length, sequence length; GC_content, GC content;
Stop_condon_std, standard deviation of stop codon counts (TAA, TAG, TGA); CDS_len, CDS length;
CDS_percent, CDS percentage; CDS_score, CDS score of txCdsPredict prediction; Pep_len, peptide
length; Fickett, fickett score; PI, isoelectric point; ORF_in, open reading frame integrity; Hexamer,
hexamer score; and the other features, tri-nucleotides. The numerical value of the grid indicates the
correlation between these two features. The dark blue area in the upper left corner of the figure shows
the high correlation over 0.88 between stop codon counts, CDS length, CDS score and peptide length.

As can be seen from Figures 4 and 5, for both animals and plants, four features, namely, standard
deviation of stop codon counts, CDS length, CDS score, and peptide length, are highly positively
correlated with each other (|r| > 0.8). According to the definition and calculation of highly correlated
features, we filter out CDS length and peptide length to ensure the independence between features.
The standard deviation of the stop codon count that measures the deviation of the three frames in the
ORF is retained, since not all ORFs can be expressed as protein products.

According to the importance of individual features in distinguishing lncRNAs from mRNAs,
we ranked features to prepare for feature selection (see Figures 6 and 7). On the whole, the features
of animals are easier to distinguish from transcripts than plants. Although the sorted list cannot
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intuitively indicate the impact of features on predictive classification, it is certain that the predictive
model of animals will be more versatile than that of plants.
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Figure 6. Ranking correlation coefficients (|r|) of features for animals. The horizontal coordinates
represent the features. The vertical coordinates represent the correlation coefficient between the
features and the transcription category. The description of the feature abbreviations: CDS_percent,
CDS percentage; Fickett, fickett score; Hexamer, hexamer score; CDS_score, CDS score of txCdsPredict
prediction; GC_content, GC content; Stop_condon_std, standard deviation of stop codon counts (TAA,
TAG, TGA); PI, isoelectric point; Length, sequence length; ORF_in, open reading frame integrity and
the other features—tri-nucleotides.
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Figure 7. Ranking correlation coefficients (|r|) of features for plants. The horizontal coordinates
represent the features. The vertical coordinates represent the correlation coefficient between the
features and the transcription category. The description of the feature abbreviations: Length, sequence
length; Hexamer, hexamer score; CDS_score, CDS score of txCdsPredict prediction; Stop_condon_std,
standard deviation of stop codon counts (TAA, TAG, TGA); Fickett, fickett score; PI, isoelectric point;
CDS_percent, CDS percentage; GC_content, GC content; ORF_in, open reading frame integrity and the
other features—tri-nucleotides.
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3.1.3. Results of Incremental Feature Selection Method with Multiple Classifiers

To ensure that the model can better predict lncRNAs and mRNAs, we integrated the results of the
feature selection and classifiers on animals and plants to unify the final standards of the model. Figure 8
shows the dynamic change of F parameters in combination with features and multiple classifiers.
In general, a random forest was selected as the final classifier because its performance on six species is
significantly better than other classifiers. As far as animals are concerned, the F parameter (0.91503)
of the top 20 features of humans are slightly lower than that (0.91738) of the top 19 features and
the consistency between species. The top 20 features with high F parameters (0.91503 for humans,
0.92555 for mice and 0.94723 for cows, respectively) were finally used to build animal prediction model
(see Figure 8A–C). Compared with animals, random forests have a good classification effect on plants,
and the F parameter is generally higher than 0.99 (see Figure 8D–F). The results of the random forest
algorithm with ranking features demonstrated good stability on plants, thus we retain all features to
further strengthen the model’s balance and generalization ability. The detailed data of SEN parameters
and F parameters can be downloaded for viewing (Additional Files 2 and 3: Tables S2 and S3).
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Figure 8. Results of IFS with multiple classifiers. The horizontal and vertical coordinates represent a
number of features and F-measure, respectively. (A) F-measures on humans. The best parameter is
0.91783 with 19 features and random forest classifier; (B) F-measures on mice. The best parameter is
0.92555 with 20 features and random forest classifier; (C) F-measures on cows. The best parameter is
0.94723 with 20 features and random forest classifier; (D) F-measures on A. thaliana. F-measures were
basically stable at 0.99 with ranking features; (E) F-measures on O. sativa. F-measures were basically
stable at 0.99 with ranking features; (F) F-measures on Z. mays. F-measures were basically stable at 0.99
with ranking features.
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In most plant lncRNA databases, lncRNAs transcript data of many species have yet to be mined,
resulting in an imbalance in the number of lncRNAs and mRNAs data. Considering that users can
build prediction models for any species using the PreLnc tool, balanced random forests were performed
for automatic feature selection [44,45]. We divided the positive and negative samples of the training
set into different proportions for comparison (see Figure 9). Balanced random forests perform poorly
on uneven animal datasets with F-measure gaps of 15.93% for humans, 13.18% for mice, and 14.52%
for cows. Different from animals, F-measure gaps of plants are smaller (6.77% for A. thaliana, 6.40%
for O. sativa, and 3.53% for Z. mays, respectively). Therefore, for the common absence of lncRNAs on
plants, our method shows considerable advantages.
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Figure 9. F-measures of balanced random forests in positive and negative sample sets of 1:5, 1:4, 1:3,
1:2, and 1:1, respectively. The horizontal and vertical coordinates represent proportion and F-measure,
respectively. (A) Balanced random forests with 20 features on animals. Balanced random forests
perform poorly on uneven animal datasets with F-measure gaps of 15.93% for humans, 13.18% for mice,
and 14.52% for cows; (B) Balanced random forests with 33 features on plants. F-measure gaps of plants
are smaller (6.77% for A. thaliana, 6.40% for O. sativa, and 3.53% for Z. mays, respectively.

3.2. Comparison and Analysis of Prediction Results

In this paper, the performance of PreLnc is evaluated by comparing standard measurement
parameters with some common prediction tools, including CPAT, PLEK, CPC2, and LncFinder, as well
as some plant tools, including PLncPRO and RNAplonc. We mainly analyzed the balance and bias
of the tool’s prediction performance with SEN, SPE, ACC, MCC and AUC scores. The AUC scores
of LncFinder were not listed because it directly determines the type of transcripts. MCC scores were
lower, due to the large data difference between the positive and negative sample sets, but it did not
affect the comparison between the various tools.

As a result, PreLnc had a significant advantage in many aspects, especially for SEN, ACC, and
MCC (see Table 3). PreLnc has the highest prediction performances, especially for humans, mice,
A. thaliana and Z. mays, but it lacks in prediction performances for cows and O. sativa. Additionally,
ROC curves were used to represent the AUC scores and authenticity of these methods, showing the
great performance of PreLnc (see Figure 10). PreLnc obtained 91.09% accuracy for 349,186 transcripts
of animals and plants. On the whole, PreLnc has a higher recognition rate and maintains a balance in
distinguishing lncRNAs and mRNAs.
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Table 3. Methods comparison.

Species Methods SEN% SPE% ACC% MCC% AUC%

Humans

CPAT 95.321 81.759 84.911 67.763 94.857
CPC2 94.742 69.398 75.288 54.402 90.122
PreLnc 96.633 85.000 87.703 72.801 96.199
PLEK 87.761 81.219 82.739 61.160 86.971

LncFinder 95.663 84.005 86.714 70.781 /

Mice

CPAT 95.883 86.842 87.831 62.111 96.414
CPC2 94.781 76.235 78.263 47.693 92.155
PreLnc 94.154 89.927 90.389 66.525 97.087
PLEK 91.185 74.534 76.354 43.730 85.574

LncFinder 95.638 89.448 90.219 66.557 /

Cows

CPAT 94.570 91.391 91.474 44.095 97.657
CPC2 87.602 94.759 94.572 50.225 97.172
PreLnc 95.389 93.743 93.787 50.768 97.881
PLEK 90.164 83.228 83.409 30.043 86.190

LncFinder 93.955 95.251 95.217 55.497 /

A. thaliana

CPAT 99.851 90.097 90.474 50.910 96.663
CPC2 82.450 92.473 92.086 47.245 95.976
PreLnc 99.925 93.138 93.400 58.598 97.483
PLEK 88.200 82.876 83.082 34.318 85.566

LncFinder 99.477 90.610 90.953 51.833 /
PLncPRO 73.786 88.925 88.340 35.359 /
RNAplonc 99.776 90.814 91.160 52.444 /

O. sativa

CPAT 94.692 82.437 83.273 46.333 92.944
CPC2 78.166 77.265 77.327 31.660 83.629
PreLnc 96.220 82.058 83.024 46.697 96.085
PLEK 89.867 85.514 85.811 47.849 89.763

LncFinder 94.094 87.861 88.241 53.995 /
PLncPRO 30.197 76.334 73.186 3.849 /
RNAplonc 99.517 77.489 78.991 43.352 /

Z. mays

CPAT 98.126 91.788 92.439 71.936 97.826
CPC2 88.920 89.239 89.206 60.756 95.351
PreLnc 99.796 97.547 97.779 89.514 99.892
PLEK 90.960 90.879 90.888 65.360 95.757

LncFinder 98.546 92.331 92.970 73.453 /
PLncPRO 66.888 77.615 76.512 30.455 /
RNAplonc 99.308 85.465 86.883 60.881 /

The numbers in bold are the highest parameters of the prediction results. CPAT, CPC2, PreLnc, PLEK and LncFinder
predicted lncRNA in all species, and RNAplonc and PLncPRO specifically predicted plant lncRNA. PreLnc has
obvious recognition advantages in humans, mice, A. thaliana and Z. mays, and the AUC value maintains a high score
in identifying lncRNAs and mRNAs of 6 species. LncFinder had the best predictive results on cows and O. sativa.

3.3. Prediction on Other Known Datasets

Non-coding regulatory RNA is one of the hotspots in life science research, and a large number
of lncRNA data and resource databases have been accumulated to facilitate our query and research.
To verify the effectiveness of our tools, we further compared the predicted results with other known
datasets. We first compared the humans (lncRNAs: 6142, mRNAs: 7485), mice (lncRNAs: 10638,
mRNAs: 6460), and A. thaliana (lncRNAs: 2562, mRNAs: 13986) datasets from CPC2, which includes
mRNA from the RefSeq database with protein sequences annotated by Swiss-Prot and non-coding
transcripts from the Ensembl (v87) and EnsemblPlants (v32) databases. PreLnc performed well on the
humans and A. thaliana datasets, but its predictive effect on mice was slightly lacking (see Table 4).
CPAT obtained higher SEN scores on mice and A. thaliana, while LncFinder had an advantage in
predicting accuracy on mice.
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Figure 10. Receiver operating characteristic curves of 6 species. Different colored curves correspond
to different tools (red: PreLnc, blue: CPC2, green: CPAT, black: PLEK). The horizontal and vertical
coordinates represent the true positive rate and the false positive rate, respectively. (A) Receiver
operating characteristic on humans; (B) Receiver operating characteristic on mice; (C) Receiver
operating characteristic on cows; (D) Receiver operating characteristic on A. thaliana; (E) Receiver
operating characteristic on O. sativa; (F) Receiver operating characteristic on Z. mays.

Table 4. Prediction on CPC2 dataset.

Species Methods SEN% SPE% ACC% MCC%

Humans CPAT 90.247 95.409 92.574 85.285
CPC2 92.692 95.995 94.181 88.386
PreLnc 96.072 98.893 97.344 94.705
PLEK 92.866 89.086 91.163 82.132

LncFinder 93.106 96.239 94.518 89.054

Mice CPAT 97.879 91.003 93.601 87.154
CPC2 94.892 93.871 94.257 87.972
PreLnc 92.167 92.254 92.221 83.677
PLEK 96.409 85.888 89.986 80.498

LncFinder 96.703 95.412 95.912 91.428

A. thaliana CPAT 99.961 93.371 94.391 82.777
CPC2 99.649 95.310 95.981 95.981
PreLnc 98.205 100.000 99.722 98.936
PLEK 98.712 86.004 87.972 68.947

LncFinder 96.721 93.443 93.951 80.768
RNAplonc 98.205 94.101 94.737 83.181
PLncPRO 99.141 94.881 95.540 85.552

The numbers in bold are the highest parameters of the prediction results. The datasets consist of humans (lncRNAs:
6142, mRNAs: 7485), mice (lncRNAs: 10638, mRNAs: 6460), and A. thaliana (lncRNAs: 2562, mRNAs: 13986).
PreLnc had the highest prediction accuracy of 97.344% on humans and 99.722% on A. thaliana, and LncFinder had
the highest prediction accuracy of 95.912% on mice.
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The second dataset was non-coding transcripts of humans and mice from NONCODEv5 [46].
According to the prediction results, PreLnc had higher prediction accuracy for 172,216 humans
ncRNA transcripts, reaching 95.319% (see Table 5). CPAT was relatively more accurate (97.594%) in
predicting ncRNA transcripts on mice. In general, the prediction results are highly consistent with the
above experiments.

Table 5. Prediction on NONCODEv5.

Methods NONCODEv5_Humans (172,216 Total) NONCODEv5_Mice (131,697 Total)

PreLnc 95.319% 96.315%
CPAT 93.188% 97.594%
CPC2 93.946% 95.928%
PLEK 89.321% 95.195%

LncFinder 94.256% 96.913%

The numbers in bold are the highest parameters (accuracy) of the prediction results. Datasets are obtained from
NONCODEv5, including humans (172,216 total) and mice (131,697 total). PreLnc had the highest prediction accuracy
of humans lncRNA to 95.319%, while CPAT had the highest prediction accuracy of mice lncRNA to 97.594%.

3.4. Analysis of Model Universality and Generalization Ability

In the above comparative experiments, our algorithm predicted a total of 91.09% prediction
accuracy on model organisms. In order to further verify the universality and generalization ability
of the model, we evaluated and analyzed the prediction effects of other species’ lncRNAs, including
Aedes aegypti, Rhesus, Opossum, Platypus, and Pig. The 4274 lncRNA transcripts of A. aegypti were
derived from the systematic research project on the Nucleotide Sequence Database (NT) of NCBI,
while other species data were derived from NONCODE v5 [46]. A. aegypti lncRNA research covered
117 RNA-seq libraries, and sequencing reads with the average quality score (Phred Score) above 20
were retained for downstream analysis [47]. Compared with model organisms, trained humans models
are applied to these less-studied organisms. In Figure 11, the results show that the prediction accuracy
of Rhesus, Opossum and Pig are all greater than 93%, and that of A. aegypti and Platypus are all greater
than 91%. The prediction results of other species verify the effectiveness of PreLnc for predicting novel
lncRNAs and its generalization ability.
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Figure 11. Prediction performance on Aedes aegypti, Rhesus, Opossum, Platypus and Pig. The horizontal
and vertical coordinates represent species and accuracy, respectively. The 4274 lncRNAs of A. aegypti
were derived from the systematic research project on the Nucleotide Sequence Database (NT) of NCBI.
The lncRNAs of Rhesus (9128 lncRNAs), Opossum (27167 lncRNAs), Platypus (11210 lncRNAs) and
Pig (29585 lncRNAs) were derived from NONCODE v5.
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3.5. Comparison of Time Consumption

We compared the system computing time consumption of several tools on the same platform.
The configuration is Linux, Ubuntu 16.04.6 LTS 64 bit, Intel®X®(R) CPU E5-2682 v4 @ 2.50 GHz and 2
GB memory. The computational time of the three CPC2 data sets was listed. As seen from Table 6,
CPC2, CPAT, RNAplonc and PLncPRO all support fast computing performance. In contrast, PreLnc
takes longer than LncFinder, nearly 0.5 times longer, while PLEK takes slightly longer than PreLnc.
Meanwhile, the time difference between humans and mice indicates that PLEK may have a certain
preference for sequence length.

Table 6. Comparison of the system computing time consumption.

Methods Humans (13,627 Total) Mice (17,098 Total) A. thaliana (16,542 Total)

CPAT 37 s 46 s 39 s
CPC2 26 s 34 s 25 s

PreLnc 269 s 346 s 279 s
PLEK 400 s 307 s 291 s

LncFinder 198 s 212 s 164 s
RNAplonc / / 34 s
PLncPRO / / 56 s

The numbers in bold are the fastest time parameters of CPC2. The configuration of the same platform is Linux,
Ubuntu 16.04.6 LTS 64 bit, ®te®) Xeon(R) CPU E5-2682 v4 @ 2.50 GHz and 2 GB memory. Datasets are obtained
from CPC2, including humans (13,627 total), mice (17,098 total), and A. thaliana (16,542 total). CPAT, CPC2, PreLnc,
PLEK and LncFinder predicted lncRNA in all species, and RNAplonc and PLncPRO specifically predicted plant
lncRNA. CPC2 supports the fastest speed in the prediction of lncRNA, followed by CPAT, RNAplonc and PLncPRO
within 1 min.

4. Discussion

There are still many problems to be solved in the process of dealing with prediction. For the
diversity of species, higher compatibility methods need to be developed under the premise of
ensuring the accuracy of prediction. The specificity and relevance of multiple species can be
explored in conjunction with effective scientific calculations to extract some of the more biologically
significant features.

In this paper, we use a cross-species method to identify lncRNAs and study the intrinsic
tri-nucleotide differentiation between animal and plant transcripts. Based on the adjusted p-value and
Z-value analysis (see Figures 2 and 3), we found that the Z-value span of tri-nucleotides varies more
between plants than between animals, which is consistent with evolutionary conservation and the fact
that plants are under evolutionary pressure for a longer time than animals [48,49]. Taking codons into
account, every three adjacent nucleotides in an RNA molecule are grouped together to represent a
certain type of amino acid during protein synthesis [29]. Therefore, in terms of mRNA transcripts,
it is meaningful to analyze the corresponding amino acids from the significant differentiation of
tri-nucleotides [29,30]. During protein synthesis, the amino acids of the above six species are prominent
in threonine, serine, glutamine, histidine, arginine, aspartic acid, glutamic acid, glycine, tyrosine and
stop codons (UAG). Besides, there is still a tri-nucleotide corresponding amino acid named proline
that is more important for mRNA transcripts of animals. Different from animals, lysine, asparagine,
isoleucine, leucine, valine, methionine (starting codon AUG), termination code (UAA) play a major
role in the protein synthesis of plants.

As for iterative incremental feature selection, the classification effect of individual features between
species is presented in the process. The CDS percentage (Feature: CDS_pencent) prediction effect
significantly exceeds 0.8 except for the KNN classifier on animals (see Figure 8A–C). In terms of plants,
the transcript length (Feature: Length) has an outstanding effect on the classification of transcripts.
The F parameter exceeds 0.70 on A. thaliana, and exceeds 0.81 on O. sativa and Z. mays. Meanwhile,
the CDS score (Feature: CDS_score) significantly enhanced the classification ability on all species.
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Therefore, CDS-related features are more conducive to distinguish between lncRNA and mRNA,
which just confirms whether they have protein-coding functions [50].

LncRNA differences between plants and animals were shown as the result of differences caused by
imbalance and lack of training data. Judging from the training results of uneven datasets (see Figure 9),
prediction models of animals are more dependent on the balance of positive and negative data
samples. This may be because the current research on animal lncRNA is more comprehensive, and
the mechanism coverage is wider, resulting in the lack of lncRNA datasets and greatly reducing the
accuracy of prediction [51,52]. In contrast, the identified plant lncRNA is scarce, and its research field
still has a vast, mysterious area [51–53]. Therefore, the imbalance of the plant dataset has little effect on
the prediction accuracy.

According to the comparison of the various methods, we found the advantages and biases of
these tools in distinguishing RNA transcripts. As seen from the testing results (see Tables 3 and 4),
CPAT and CPC2 can quickly predict the coding ability of transcripts, but the accuracy of CPAT is
higher. The poor prediction performance of CPC2 may be due to its prediction only by training human
RNA transcripts despite the fact that the transcripts of different species have high complexity and
inconsistency. Besides, LncFinder got higher SPE, ACC and MCC scores, especially on cows and O.
sativa, and the overall classification effect is better than CPAT, CPC2 and PLEK. Especially in terms
of plant tools, the poor prediction of PLncPRO may be due to the consensus models for dicots and
monocots [19]. At the same time, RNAplonc is biased to differentiate lncRNA especially on O. sativa.
PreLnc has the best predictive performance on some species, such as humans and A. thaliana, rather
than cows and O. sativa. The lack of species training data and the complexity of the transcript may
affect the PreLnc model. In addition, the predicted parameters of animals were lower than those of
plants as a whole, which may be the fact that the lncRNAs and mRNAs of animals themselves are more
complex and diverse [52,54]. Combined with PreLnc prediction results on other species (see Figure 11),
the PreLnc model is proved to have good effectiveness, universality and generalization.

In this study, these results all suggested that lncRNA is less conserved among different species,
and transcription sequence was certainly difficult to be used for reference among species [55,56].
Plant lncRNA research is still in its infancy and has great research value, which may reveal unknown
new mechanisms that control plant growth and differentiation [53,57]. When studying and analyzing
differences in the overall RNA transcripts of animals, a more comprehensive and systematic data
structure should be taken to solve the impact of high differentiation. Moreover, further studies can be
conducted to compare transcript sequences from functional verification and mechanism studies.

5. Conclusions

Nowadays, a variety of tools were developed for lncRNAs prediction, most of which use scientific
calculation methods to predict sequences, to accelerate the annotation of unknown genomes for the
Human Genome Project. In this work, in addition to screening the tri-nucleotides of species with high
genetic similarity as features, other features, such as sequence definition, composition and function,
were extracted to propose a more effective method. Compared with other tools, PreLnc can be directly
obtained from the transcripts and have certain expansibility, universality and fault tolerance. PreLnc is
a convenient and user-friendly tool, but it still needs to be improved in terms of computing speed.
On the whole, PreLnc has good predictive performance and supports the prediction of lncRNAs for
multiple species.
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