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Abstract Oxidative stress is of importance in the patho-
physiology of sickle cell disease (SCD). In this open label
randomized pilot study the effects of oral N-acetylcysteine
(NAC) on phosphatidylserine (PS) expression as marker of
cellular oxidative damage (primary end point), and markers
of hemolysis, coagulation and endothelial activation and
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NAC tolerability (secondary end points) were studied. Elev-
en consecutive patients (ten homozygous [HbSS] sickle cell
patients, one HbSpR-thalassemia patient) were randomly
assigned to treatment with either 1,200 or 2,400 mg NAC
daily during 6 weeks. The data indicate an increment in
whole blood glutathione levels and a decrease in erythrocyte
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outer membrane phosphatidylserine exposure, plasma
levels of advanced glycation end-products (AGEs) and
cell-free hemoglobin after 6 weeks of NAC treatment in
both dose groups. One patient did not tolerate the
2,400 mg dose and continued with the 1,200 mg dose.
During the study period, none of the patients experi-
enced painful crises or other significant SCD or NAC
related complications. These data indicate that N-acetyl-
cysteine treatment of sickle cell patients may reduce
SCD related oxidative stress.

Keywords Cell-free hemoglobin - N-acetylcysteine -
Oxidative stress - Phosphatidylserine - Sickle cell disease

Introduction

Oxidative stress plays a role of major importance in the
development of organ damage in sickle cell disease (SCD)
[1-4]. Oxidative stress in SCD results from factors such as
the unstable auto-oxidative sickle hemoglobin (HbS) [5, 6],
chronic intravascular hemolysis [7-9], recurrent ischemia
reperfusion injury [4], and low grade inflammation [10].
Increased levels of reactive oxygen species (ROS) lead to
further acceleration of hemolysis [8], hypercoagulability
[11, 12], decreased nitric oxide (NO) bio-availability [13],
and endothelial damage [14].

Given the fact that oxidative stress is a likely major
contributing factor in the development of both acute and
chronic complications in SCD, the potential of anti-oxidants
as therapeutics for SCD should be explored. A major intra-
cellular anti-oxidant is the reduced form of the amino-thiol
glutathione (GSH) [15, 16]. Due to increased consumption
by excessive levels of ROS, sickle cell patients have de-
creased levels of plasma and erythrocyte total glutathione
and the ratio of GSH to its oxidized form glutathione disul-
fide (GSSG) is reduced [17, 18]. N-acetylcysteine (NAC),
the rate limiting substrate for GSH generation, is an impor-
tant antioxidant with pleiotropic effects on inflammation
and vasomotor function [19]. NAC readily enters cells and
within the cytoplasm it is converted to L-cysteine, which is a
precursor to GSH [20]. Treatment of sickle cell patients with
NAC has been demonstrated to have an inhibitory effect on
the formation of dense red cells [21]. Augmenting the anti-
oxidant capacity in sickle red blood cells by NAC may
reduce oxidative red cell membrane damage and reduce its
many down-stream pathophysiological effects, such as he-
molysis, endothelial damage, and activation, activation of
the coagulation cascade, and the decrease of NO bio-
availability [13, 22, 23]. In this randomized open label pilot
study, the effects of oral NAC treatment on markers of
oxidative stress and hemolysis in sickle cell patients were
investigated.
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Patients and methods
Study population

Consecutive adult (age >18 years) homozygous sickle cell
anemia (HBSS) or HbSpB -thalassemia outpatients (high
performance liquid chromatography (HPLC) confirmed), at
the Academic Medical Center (AMC), Amsterdam, The
Netherlands, were eligible for the study. Exclusion criteria
were painful crisis and blood transfusion in the preceding
4 weeks and 4 months respectively, pregnancy, or the desire
to get pregnant in the following 3 months, calculated glo-
merular filtration rate of <90 ml/min (Cockcroft and Gault
formula), known gastric/duodenal ulcers, active infections,
auto-immune inflammatory diseases and use of hydroxy-
urea, vitamin K antagonists or other oral anticoagulants
and contraindications for NAC use. Ten race and age-
matched healthy volunteers were included as controls for
base-line values. All participants received verbal and written
explanation of the objectives and procedure of the study and
subsequently provided written informed consent. The study
was approved by the AMC Medical Ethical Commission
and experiments were performed in accordance with the
Declaration of Helsinki. The study was registered in the
Dutch Trial Registry (www.trialregister.nl; trial ID number
NTR1013).

End point

The primary end point of the study was reduction of
erythrocyte phosphatidylserine (PS) expression as a direct
indicator of erythrocyte membrane (oxidative) damage.
Changes in markers of hemolysis (hemoglobin, reticulo-
cytes, lactate dehydrogenase (LDH), and bilirubin) hyper-
coagulability, endothelial activation, and inflammation, and
tolerability of oral NAC were secondary end points.

Study protocol

After baseline measurements and randomization to either
1,200 or 2,400 mg of NAC per day, patients started taking
NAC (acetylcysteine 600 mg tablets dissolved in water;
Pharmachemie B.V. Haarlem, The Netherlands) orally twice
daily during 6 weeks followed by another 6 weeks of
follow-up after NAC cessation. Both during NAC treatment
(visits 0-3) and in the post-treatment period (visits 4—6)
patients were seen two-weekly for follow-up visits during
which questionnaires pertaining to side effects were com-
pleted, weight, blood pressure, and pulse were measured
and a blood sample was drawn via venipuncture. Patients
kept a daily pain score diary (visual analogue scale pain
score). Patient compliance was monitored by history taking
and pill counts. If possible, NAC treatment would not be
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discontinued in case of an (hospital admission due to) acute
vaso-occlusive pain crisis or other clinical event.

Blood samples

Standard blood counts were performed in EDTA anti-
coagulated blood (Cell-Dyn 4000; Abbott, Illinois, USA).
LDH and total and direct bilirubin levels were measured in
heparinized plasma with spectrophotometry (P800 Modular;
Roche, Basel, Switzerland). Citrate, serum, and EDTA sam-
ples were centrifuged immediately for 15 min at 3,000 rpm
(4°C). Aliquots were stored at —80°C until further analysis.
L-arginine (immediate precursor of NO), asymmetric dime-
thylarginine (ADMA), and symmetric dimethylarginine
(SDMA) levels were measured in EDTA plasma using
reversed-phase HPLC as described elsewhere [24, 25]. NT-
proBNP levels were measured in EDTA plasma with elec-
trochemiluminescence immunoassay (Roche Diagnostics).
Ultra-sensitive C-reactive protein (US-CRP) was measured
with ELISA according to the manufacturer's instructions
(Biokit, Barcelona, Spain). Prothrombin fragment 1+2 (F1+
2) and thrombin—antithrombin (TAT) complexes were deter-
mined using sandwich enzyme-linked immunosorbent assay
(ELISA; Enzygnost, Dade Behring Marburg GmbH,
Germany). Plasma levels of von Willebrand Factor antigen
(vWF-ag) were determined in citrate plasma with in an in-
house ELISA. Soluble vascular adhesion molecule-1
(sVCAM-1) levels were determined in serum (R&D Systems;
Minneapolis, MN, USA).

Glutathione levels

Concentrations of GSH and GSSG were determined accord-
ing to Tietze et al. and Sacchetta et al., respectively [26, 27].
After measurement in EDTA full blood, the glutathione
values were adjusted for erythrocyte numbers and mean
corpuscular volume (MCV). GSH is the difference between
total glutathione and GSSG concentrations.

Phosphatidylserine exposure

For measurement of PS expression, first 5 ul blood (EDTA)
was washed in a HEPES buffer (10 mM HEPES, 150 mM
NaCl, 5 mM KCl, 1.8 mM CaCl,, 2.1 mM MgCl, pH 7.4),
centrifuged at 3,650 rpm for 90 s and after adding 5 pl
annexin V antibodies (Annexin V-FITC; IQP-120F, IQ prod-
ucts) incubated for 10—15 min at 4°C in the dark. After the
incubation period, the erythrocytes were washed, resus-
pended in 500 pul HEPES buffer, and erythrocyte PS expres-
sion was measured by flow cytometry using FACSCalibur
(BD Biosciences, CA, USA). Assuming that especially ma-
ture old sickle erythrocytes have higher levels of external
PS expression leading to their removal, we also analyzed

the percentage of sickle erythrocytes having external PS
expression more than one log greater than the PS negative
erythrocytes.

Cell-free hemoglobin

Plasma levels of cell-free hemoglobin were determined in
citrate plasma with a spectrophotometer (Shimadzu UV-
2401 PC) according to the methods of Kahn et al. [28]
which adjusts for hyperbilirubinemia and lipemia.

Advanced glycation end products

Two different advanced glycation end products (AGEs) were
measured (i.e., pentosidine and N°-(carboxy-methyl)lysine
(CML)) at baseline and after the 6 weeks of NAC treatment.
Pentosidine and CML were measured in EDTA plasma using
single-column HPLC with fluorescence detection and ultra
performance liquid chromatography-tandem mass spectrome-
try respectively, as previously described [29, 30].

Statistical analysis

Friedman test for repeated measures of non-parametric data
was used for comparisons between different time points
within a treatment groups. The Wilcoxon signed rank test
was used for comparisons between two related samples
within a treatment group. The Mann—Whitney U test was
used for comparisons between two groups. Continuous data
are presented as medians with corresponding inter quartile
ranges (IQR), unless stated otherwise. P<0.05 was consid-
ered statistically significant (SPSS 16.0, Chicago, IL, USA).

Results

Eleven patients (10 HbSS and 1 HbS-(’-thalassemia; me-
dian age 23 years (range 20—47), 6 male, 5 female) who met
eligibility criteria, were included in the study. One patient
(P4) discontinued using NAC after 3 weeks and withdrew
from the study. Two patients who used <80% of prescribed
dosing are shown in gray in the figures. One patient on the
2,400 mg NAC dose had gastro-intestinal complaints that
disappeared after switching to 1,200 mg on the second day
of treatment which she continued using (P6). No other
patient reported adverse events. Levels of hemoglobin,
LDH, and bilirubin and reticulocyte and leukocyte counts
did not change significantly (Fig. 1). Sickle cell patients had
significantly lower whole blood total glutathione and GSH
levels as compared to healthy controls (Fig. 2a). Total glu-
tathione levels increased during treatment period in patients
of both 1,200 mg (from 136 (100-198) to 169 (121-221)
pumol/l) and 2,400 mg (from 150 (136-165) to 163 (142—
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Fig. 1 Markers of hemolysis
during the 12 weeks of study
period. Panels a and b
hemoglobin, panels ¢ and d
reticulocytes, panels e and f
lactate dehydrogenase, panels g
and h bilirubin, panels i and j
leukocytes. Panels on the /lef:
1,200 mg and panels on the
right 2,400 mg. Patients are
numbered in the order of
inclusion. Two patients with
compliance of <80% are shown
in gray. Patient number 4 (P4)
discontinued using NAC and
withdrew from the study
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Fig. 2 Glutathione levels and erythrocyte phosphatidylserine (PS)
expression in sickle cell patients (SCD) as compared to healthy con-
trols (CTRL). a Levels of total glutathione (t-glutathione) and the
reduced glutathione (GSH) are significantly lower in sickle cell
patients (gray bars) than in race-matched healthy controls (black bars).

178) pmol/l) dose groups (Fig. 3, panels a and b), with the
differences being statistically significant when analyzing the
two dose groups combined (from 150 (113-168) to 167 (142—
179) umol/l, P<0.05).

Red blood cell PS expression was significantly higher in
sickle cell patients as compared to healthy controls (Fig. 2b)
and decreased after 6 weeks of NAC treatment in patients
of both 1,200 mg (from 1.64 (1.35-2.89)% to 1.46
(0.76-2.60)%) and 2,400 mg (from 2.44 (1.12-3.53)% to
1.42 (1.00-2.97)%) NAC groups (Fig. 3, panels ¢ and d)
reaching statistical significance when analyzing both dose
groups together (from 1.64 (1.32-3.37)% to 1.43 (1.00-
2.6)%), P=0.036). Also, the percentage of sickle erythro-
cytes with very high external PS expression (more than one
log greater than the PS negative erythrocytes) decreased
during the treatment and returned towards baseline values
after cessation of NAC treatment (Fig. 3, panels e and f).
The decrease was statistically significant in the 2,400 mg
group (P=0.039) and when analyzing both dose groups to-
gether (P=0.030).

Plasma levels of cell-free hemoglobin decreased after
NAC treatment and returned towards baseline levels after
cessation of the treatment in patients of both 1,200 (from 5.0
(1.4-16.7) to 2.7 (2.1-8.5) pmol/l) and 2,400 mg (from 6.5
(4.5-10.4) umol/l to 6.5 (3.4-7.8) umol/l) groups, though
the differences were not statistically significant (Fig. 3, pan-
els g and h). Both pentosidine and CML were significantly
higher in sickle cell patients at baseline as compared to
healthy controls, and CML decreased significantly after
6 weeks of treatment when analyzing the two dose groups
together (Fig. 4). None of the other measured parameters
changed during the treatment period (Table 1).

During the treatment period, none of the study patients
was admitted with SCD related complications. The daily
pain score did not change during treatment (data not shown).

P < 0.0001

»
4
’

8]
(=]
—

-
v
A

-y
[=]
N

o
o
A

Erythrocyte PS expression (%)

CTRL sCcD

L
[=}
.

The oxidized disulfide form of glutathione (GSSG) and GSH/GSSG
ratios were comparable between patients and controls. b Sickle eryth-
rocytes (SCD, gray bar) have a significantly higher outer membrane
PS expression as compared to erythrocytes of race matched healthy
controls (CTRL, black bar)

Discussion

In this pilot study, 6 weeks of NAC treatment seemed to
reduce oxidative stress in SCD, as reflected by reduced red
cell membrane PS expression. Also, plasma levels of AGEs
and cell-free hemoglobin seemed to decrease during NAC
treatment. None of the other primary end points changed
during the treatment period.

Through enzymatic reactions PS is normally restricted to
the inner monolayer of the cell membrane [31]. Increased
intracellular generation of ROS leads to (per-)oxidative
damage to the erythrocyte inner membrane and proteins
responsible for maintaining normal PS asymmetry, resulting
in abnormal PS externalization [32]. NAC treatment seemed
to result in a decrease of surface membrane PS expression
with both 1,200 and 2,400 mg dose groups. With a reduction
in red cell membrane damage, hemolysis would be expected
to be reduced. While the standard markers of hemolysis did
not change, there was a decrease in plasma levels of cell-free
hemoglobin, though the differences were not statistically
significant [28]. Downstream events of pathophysiological
PS exposure such as thrombin generation and increased
expression of sVCAM-1 did not change [33, 34]. Given
large variability of such parameters, we cannot rule out that
a potential ameliorating effect of NAC supplementation on
endothelial and coagulation activation has been missed due
to the small number of included patients.

Increased production and tissue accumulation of AGEs due
to oxidative stress are associated with disease severity and
organ complications in diabetes and inflammatory diseases
[35-37]. AGE interaction with intra- and extracellular tissue
structures leads to distortion of normal tissue architecture [23],
resulting in (micro-)vasculature basement membrane thicken-
ing with reduced vascular wall elasticity, reduced filtration
rate across the vessel lumen and diminished arteriolar
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Fig. 3 Total glutathione levels,
erythrocyte phosphatidylserine
(PS) expression, and cell-free
hemoglobin levels at baseline,
after 6 weeks of NAC treatment
and 6 weeks after cessation of
NAC. Panels a and b total glua-
thione, panels ¢ and d erythro-
cyte PS expression, panels e and
f erythrocytes with very positive
external PS expression (>1 log
greater than the PS negative
erythrocytes) and panels g and
h cell-free hemoglobin. Panels
on the /ef, 1,200 mg NAC; pan-
els on the right, 2,400 mg

vasodilatory response all contributing to tissue ischemia [37,
38]. Furthermore, the interaction of AGEs with their receptor
(RAGE) enhances the production of pro-inflammatory
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cytokines, adhesion molecules, and more oxidants, inducing
a pro-inflammatory response and further increasing oxidative
stress [35]. Steady state plasma AGEs are increased in both
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Fig. 4 Plasma levels of AGEs (pentosidine and N°-(carboxy-methyl)
lysine (CML)) in controls (CTRL; white bar) and sickle cell patients
(SCD) at baseline (black bar) and after 6 weeks (gray bar) N-acetyl-
cysteine (NAC) treatment. a Baseline pentosidine levels were higher in
sickle cell patients than in controls (P<0.0001). Pentosidine decreased

children and adults with SCD, and we have recently demon-
strated AGEs to be significantly associated with both the
degree of hemolysis and the presence of hemolysis-related
organ complications in adult sickle cell patients [18]. Somjee
et al. [18] reported a strong inverse correlation between plas-
ma AGEs and GSH levels in sickle erythrocytes. Decreased
levels of GSH may play an important role in the increased
formation of AGEs since GSH is an essential cofactor for
glyoxalase 1, the enzyme that detoxifies the major AGE
precursor methylglyoxal to S-D-lactoyl-glutathione [39]. The
decrease in AGE levels during NAC treatment could suggest
that production and tissue accumulation of AGEs and thus

after 6 weeks NAC treatment in both 1,200 and 2,400 mg groups,
though the differences were not statistically significant. b CML levels
at baseline were also higher in sickle cell patients than in controls (P=
0.019) and decreased after 6 weeks NAC treatment in both groups.
Means+SEM

oxidative tissue damage can be reduced by enhancing GSH
production with NAC treatment.

In contrast to the study by Pace et al. [21] in which
glutathione increments were only observed in patients trea-
ted with 2,400 mg NAC during 6 weeks, increases in glu-
tathione levels in this study were comparable in both 1,200
and 2,400 mg dose groups. A possible explanation for this
discrepancy could be of methodological nature. The com-
parable glutathione increments with concurrent reductions
in erythrocyte PS expression and plasma AGEs in both dose
groups may suggest that higher dose than 1,200 mg NAC
per day may not be needed. This is an important finding as

Table 1 Markers of endothelial and coagulation activation and NO bioavailability before and after NAC treatment

1,200 mg (n=06)

2,400 mg (n=4)

Baseline 6 weeks

Baseline 6 weeks

sVCAM-1 (ng/mL)
vWEF:Ag (%)

TAT (ug/L)

F1+2 (pmol/L)

Thrombin generation

1,151 (880-1,638)
181 (152-377)
8.2 (4.4-14.1)
268 (201-341)

Lag time (min)
Peak value (nM)
ETP (nM*min)
Arginine (umol/L)
ADMA (pmol/L)
NT-proBNP

2.0 (1.8-2.3)

310 (233-375)
1,136 (844-1,507)
52.6 (45.0-67.9)
0.62 (0.52-0.70)
63.0 (25.5-125)

1,110 (859-1,841)
208 (145-374)
5.9 (5.4-12.6)
269 (174-329)

2.0 (1.8-2.0)

343 (282-363)
1,225 (1,009-1,315)
57.5 (46.7-73.3)
0.67 (0.49-0.73)
51.8 (33.9-84.7)

788 (638-1,578)
162 (129-217)
10.2 (7.8-10.7)
302 (179-366)

905 (778-1,516)
162 (130-234)
8.4 (6.3-11.2)
254 (170-360)

1.0 (1.0-1.8)

343 (271-367)
1,156 (913-1,287)
61.2 (57.6-71.4)
0.57 (0.51-0.64)
28.3 (24.3-46.9)

1.0 (1.0-1.8)

311 (161-358)
1,102 (520-1,313)
63.5 (60.6-78.0)
0.61 (0.55-0.64)
33.5 (13.3-64.1)

Numbers are medians with inter quartile ranges. sVCAM-1 soluble vascular cellular adhesion molecule-1; vIiWF-4g von Willebrand factor antigen;
TAT thrombin antithrombin complex; F1+ 2 prothrombin fragments 1+2; ADMA asymmetric dimethylarginine; N7-proBNP N-terminal pro-Brain

Natriuretic Peptide. Changes not significant
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gastro-intestinal side effects may be dose-limiting (as ob-
served in one patient in the current study).

The obvious limitation of our study is the small number
of patients in a pilot study lacking a control (placebo) group
as well as the short duration of treatment. Nonetheless, the
presented data seem to indicate gradual decrease in red cell
surface PS expression, plasma levels of AGEs and cell-free
hemoglobin with subsequent increments after NAC cessa-
tion. Obviously, these findings need confirmation in larger
randomized placebo-controlled clinical trials. One of the 11
patients had HbS-p’-thalassemia. The excess of alpha-
globin might influence the degree of oxidative stress in this
patient. However, both sickle cell and beta-thalassaemia
erythrocytes are associated with oxidative stress [40, 41].
Furthermore, disease severity in patients with HbS-f°-thal-
assemia is comparable with those in HbSS [42—44]. N-
acetylcysteine amide, an amide form of N-acetylcysteine
has been shown to reduce oxidative stress in beta thalasse-
mia red blood cells [45]. Exclusion of this patient does not
alter the results (data not shown).

In conclusion, N-acetylcysteine treatment of sickle cell
patients seems to reduce erythrocyte PS expression, plasma
AGEs, and cell-free hemoglobin levels. Given the wide
availability, safety and low cost of NAC and the findings
in this pilot study, we are of the opinion that potential of
NAC as a “supportive care therapeutic” in SCD deserves
further study.
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