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While protein aggregation is predominantly associated with loss of function and toxicity,
it is also known to increase survival of bacteria under stressful conditions. Indeed, protein
aggregation not only helps bacteria to cope with proteotoxic stresses like heat shocks
or oxidative stress, but a growing number of studies suggest that it also improves
survival during antibiotic treatment by inducing dormancy. A well-known example of
dormant cells are persisters, which are transiently refractory to the action of antibiotics.
These persister cells can switch back to the susceptible state and resume growth in the
absence of antibiotics, and are therefore considered an important cause of recurrence
of infections. Mounting evidence now suggests that this antibiotic-tolerant persister
state is tightly linked to—or perhaps even driven by—protein aggregation. Moreover,
another dormant bacterial phenotype, the viable but non-culturable (VBNC) state, was
also shown to be associated with aggregation. These results indicate that persisters and
VBNC cells may constitute different stages of the same dormancy program induced by
progressive protein aggregation. In this mini review, we discuss the relation between
aggregation and bacterial dormancy, focusing on both persisters and VBNC cells.
Understanding the link between protein aggregation and dormancy will not only provide
insight into the fundamentals of bacterial survival, but could prove highly valuable in our
future battle to fight them.
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INTRODUCTION

Failure of antibiotic treatment has become a worldwide problem due to the prevalence and spread of
different bacterial survival mechanisms. One way in which bacteria can survive antibiotic treatment
is by becoming resistant through genetic changes that allow bacteria to grow in the presence of
the antibiotic, for example, by promoting efflux of the drug, changing the antibiotic target, or
directly inactivating the antibiotic (Reygaert, 2018). Apart from surviving antibiotics by acquiring
genetic resistance, cells can also protect themselves without acquiring heritable genetic changes.
An example of such a non-genetic antibiotic survival mechanism is becoming dormant. Dormant
cells are characterized by lower metabolism and a lack of growth (Lennon and Jones, 2011).
As antibiotics need active targets (Eng et al., 1991), the shutdown of some important pathways
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is thought to prevent the antibiotic’s corrupting effects, thereby
inducing tolerance (Hu and Coates, 2012; Balaban et al., 2019).
A well-known example of dormant cells are persisters. Persisters
constitute a small, genetically identical subpopulation of bacteria
that are transiently tolerant to antibiotics. They cannot grow
in the presence of the antibiotic but can withstand antibiotic
pressure as long as they reside in the persister state. These
persister cells are most often thought to survive antibiotic
treatment by becoming dormant, for example, by lowering ATP
levels and by inhibiting important macromolecular processes like
transcription and translation (Dewachter et al., 2019; Wilmaerts
et al., 2019b). However, persistence has also sporadically been
associated with active mechanisms like the activity of antibiotic
efflux pumps and DNA repair (Nguyen et al., 2011; Orman and
Brynildsen, 2013a; Völzing and Brynildsen, 2015; Pu et al., 2016).
Despite being dormant, persisters can easily resume growth when
antibiotics are removed (Balaban et al., 2019; Wilmaerts et al.,
2019a). This regrowth has been implicated in the chronic nature
of infections (Dhar and McKinney, 2010; Mulcahy et al., 2010;
Goneau et al., 2014; Schumacher et al., 2015).

Besides persistence, other dormant bacterial phenotypes
like the viable but non-culturable (VBNC) state exist (Xu
et al., 1982). VBNC cells remain metabolically active, but
they have lost the ability to grow on standard medium that
would otherwise support their proliferation (Oliver, 1993). This
dormancy protects VBNC cells from antibiotic and other stresses
(Nowakowska and Oliver, 2013). Contrary to persisters, VBNC
cells do not resume growth when provided with fresh medium,
but instead, they need a specific factor to resuscitate (Li et al.,
2014). Although these resuscitation factors are not always known
(Yamamoto, 2000), it appears as though at least some VBNC cells
can resuscitate in vivo (Colwell et al., 1996) and cause recurrent
infections (Pai et al., 2000; Rivers and Steck, 2001).

Despite the difference in resuscitation, persisters and VBNC
cells also share some properties. They are both tolerant to
antibiotics (Nowakowska and Oliver, 2013; Balaban et al., 2019)
and reside in a dormant state with no or slow growth (Xu
et al., 1982; Balaban et al., 2004), a low metabolism (Shleeva
et al., 2004; Amato et al., 2014), and reduced energy production
(Dörr et al., 2010; Verstraeten et al., 2015; Zhao et al., 2016).
Moreover, persisters and VBNC cells also show similarities
regarding their formation, suggesting a link between them.
Persisters and VBNC cells can both be generated stochastically
in unstressed exponential phase cultures (Balaban et al., 2004;
Orman and Brynildsen, 2013b). However, more often, they are
induced by environmental stresses. Some examples of stresses
that induce both dormant phenotypes are nutrient (Betts et al.,
2002; Mishra et al., 2012), oxidative (Wu et al., 2012; Li
et al., 2014), osmotic (Roth et al., 1988; Murakami et al.,
2005), acid (Cunningham et al., 2009; Hong W. et al., 2012),
and temperature stress (Oliver et al., 1991; Cardoso et al.,
2010). Additionally, both persistence and the VBNC state are
linked to the general stress response (Boaretti et al., 2003;
Murakami et al., 2005), toxin-antitoxin modules (Moyed and
Bertrand, 1983; Korch and Hill, 2006), and protein aggregation
(Leszczynska et al., 2013; Mordukhova and Pan, 2014; Pu et al.,
2019; Yu et al., 2019; Cesar et al., 2020; Dewachter et al., 2021;

Huemer et al., 2021). Persisters and VBNC cells thus share many
similarities. Therefore, it is hypothesized that they represent
different stages of the same dormancy program with different
dormancy depths; persisters and VBNC cells reside in a
shallow and deep dormant state, respectively (Li et al., 2014;
Ayrapetyan et al., 2015; Kim et al., 2018; Pu et al., 2019;
Dewachter et al., 2021).

Recently, experimental support for this hypothesis has
emerged suggesting that both persistence and the VBNC state are
linked to protein aggregation and that progressive aggregation
can drive the development from persistence to the VBNC state
(Figure 1) (Pu et al., 2019; Dewachter et al., 2021). Indeed,
previous work also demonstrated a link between aggregation
and persistence (Leszczynska et al., 2013; Mordukhova and
Pan, 2014; Pu et al., 2019; Yu et al., 2019; Dewachter et al.,
2021; Huemer et al., 2021). In this review, we elaborate on the
steadily growing number of studies linking protein aggregation
and persistence. Additionally, we discuss how aggregation could
induce dormancy in general.

PROTEIN AGGREGATION IN BACTERIA

Formation, Features, and Consequences
of Protein Aggregates
For a cell, the amount of proteins that adopts the native
state is critical as only correctly folded proteins function
properly. This amount depends on the balance between
the speed of translation, the rate of protein folding, and
the stability of that fold (Sabate et al., 2010). When this
balance is disturbed, proteins can unfold or misfold,
causing their aggregation-prone regions to be exposed.
These aggregation-prone regions are hydrophobic stretches
that trigger protein aggregation when they are exposed
(Rousseau et al., 2006). They do this by interacting with
aggregation-prone regions of other non-native proteins and
forming intermolecular β-sheets in a dose-dependent manner
(Bednarska et al., 2013).

Two different classes of protein aggregates exist: amyloid
and amorphous aggregates (Figure 2). In amyloid aggregates,
the intermolecular β-sheets run perpendicular to the central
axis of the aggregate, which gives them their highly ordered
structure (Sunde and Blake, 1997). Next to amyloids, amorphous
aggregates or inclusion bodies exist. These amorphous aggregates
also contain some amyloid-like β-structures, but they miss the
long-range order. This makes them unstructured in electron
microscopic images (Wang et al., 2008).

The presence of amorphous or amyloid aggregates is often
linked to detrimental effects, such as loss of function of the
aggregated proteins (Chiti and Dobson, 2006). In extreme
conditions of proteome-wide aggregation induced by frequently
occurring aggregation-prone regions, this extensive loss of
function can even become lethal (Bednarska et al., 2015;
Khodaparast et al., 2018). Next to provoking loss of function,
amyloid aggregates are also directly associated with cytotoxicity.
This toxicity is most often caused by soluble oligomers that
precede the formation of amyloids but not by the more inert
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FIGURE 1 | A model depicting the role of protein aggregation in the formation and awakening of dormant cells. Progressive protein aggregation is proposed to
induce the shift from sensitive to dormant cells. Aggregation can induce the switch from sensitive cells to the shallowly dormant persister state. Further development
of the aggregates can cause a shift from persister cells to the deeper dormant VBNC state. This aggregation-induced dormancy renders cells tolerant to antibiotics.
This tolerance is likely caused by the sequestration of proteins in the cell, thereby shutting down different important cellular pathways. To wake up again, these
dormant cells likely first need to remove the aggregates. To perform this disaggregation, bacteria make use of chaperones.

mature amyloids themselves (Bucciantini et al., 2002). A possible
mechanism by which these oligomers induce toxicity and
cell death involves membrane damage and permeabilization
(Bednarska et al., 2013). In contrast to amyloids, amorphous
aggregates are generally not toxic (Bednarska et al., 2013).

Despite all these negative effects, the presence of aggregates
is not always detrimental as some proteins remain active
in amorphous or amyloid aggregates (Arié et al., 2006).
Additionally, certain proteins reach their specific function only
when they are structured in amyloids (Chiti and Dobson, 2006).
For example, functional amyloids are needed for the robustness
and adherence of biofilms, the functionality of specific toxins,
and the formation of spores (Garland and Buckley, 1988; Austin
et al., 1998; Bednarska et al., 2013). Due to their lower level
of organization, amorphous aggregates are not related to these
new functionalities (Bednarska et al., 2013). Another beneficial
effect of aggregates is their ability to protect the cell against stress
(Leszczynska et al., 2013; Mordukhova and Pan, 2014; Govers
et al., 2018; Pu et al., 2019; Yu et al., 2019; Dewachter et al., 2021;
Huemer et al., 2021). It is not known yet if this increased stress
tolerance is a general property or if it is linked to a specific type
and/or composition of aggregates.

Induction, Prevention, and Removal of
Protein Aggregates
Since proteins need to be at least partially unfolded or misfolded
to aggregate (Uversky and Fink, 2004), aggregation is promoted
by increasing the amount of non-native proteins. This can
be done by increasing the amount of newly-formed, unfolded
polypeptides by increasing translation or decreasing the rate of
protein folding (Tartaglia et al., 2009). Another way to trigger
aggregation is by destabilizing the native fold (Chiti et al.,

2000). Many destabilizing factors exist such as changes in the
protein sequence caused by genetic mutations (Hurle et al.,
1994), modifications due to oxidative stress (Dahl et al., 2015),
or mistranslation (Drummond and Wilke, 2008). Additionally,
protein unfolding or misfolding can also be triggered by external
stresses such as heat (Litvinovich et al., 1998), high pressure
(Ferrão-Gonzales et al., 2000), extreme pH (Guijarro et al., 1998),
moderate concentrations of organic solvents or alcohols (Chiti
et al., 1999), and osmotic (Schramm et al., 2020) and oxidative
stress (Mirzaei and Regnier, 2008).

Because aggregation can render proteins dysfunctional, cells
try to minimize the amount of non-native proteins through
several complementary approaches. First, cells limit the amount
of aggregation-prone proteins by controlling transcription,
translation, and degradation even more strictly than for non-
aggregation-prone proteins (Gsponer and Babu, 2012). Second,
cells already start to fold their proteins during translation which
minimizes the amount of unfolded peptides in the cytoplasm.
Co-translational folding has been shown to be dependent on
RNA structure and the presence of rare codons, which induce
pauses during translation. These pauses then allow the cell
to fold proteins correctly (Purvis et al., 1987; Sabate et al.,
2010). Furthermore, specialized chaperones aid the folding
of proteins by binding and release cycles that are repeated
until the native state is reached (Hartl et al., 2011; Bhuwan
et al., 2017). The three major bacterial chaperone complexes
are trigger factor, the DnaK-DnaJ-GrpE, and the GroEL-GroES
complexes (Sabate et al., 2010). These chaperones can work
both independently and cooperatively to fold proteins correctly
(Hartl, 1996; Deuerling et al., 1999). The importance of these
chaperones is reflected in their conservation among bacteria,
archaea, and eukaryotes (Powers and Balch, 2013).
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FIGURE 2 | Different types of protein aggregations. When proteins are—at
least partially—unfolded or misfolded, they can expose their
aggregation-prone regions (APRs). Interaction of APRs of different proteins
results in the formation of intermolecular β-sheets that cause aggregation.
Amyloid aggregates are highly ordered as their β-sheets run perpendicular to
the central axis of the aggregate. Amorphous aggregates also contain some
β-structures but lack this long-range order.

Despite the cell’s efforts to make correctly folded proteins,
some proteins will still fold wrongly and aggregate. To remove
these aggregates, different chaperones often work together. After
disaggregation, proteins can be refolded and reused. However,
when the disaggregated proteins are damaged or unneeded,
they will be degraded by proteases (Schramm et al., 2020).
Taken together, cells will inevitably encounter the formation of
non-native proteins and aggregates at some point. The amount
of aggregation that the cell experiences depends on a variety of
factors that influence the very delicate balance between proteins
in the soluble and aggregated state (Carrió and Villaverde, 2001).

THE ROLE OF PROTEIN AGGREGATION
IN BACTERIAL DORMANCY

Protein Aggregation and Dormancy
Correlate at the Single-Cell and
Population Level
Despite the detrimental effects that are commonly associated with
aggregation, the presence of aggregates could also be beneficial

since it has repeatedly been suggested to protect bacteria against
antibiotic stress. An increasing number of studies have linked
protein aggregation to different forms of bacterial dormancy, in
particular persistence. Because of the tight association between
both processes, we and others have hypothesized that protein
aggregation drives dormancy development. This hypothesis is
supported by the observation that in Escherichia coli persisters
and VBNC cells more often contain aggregates than non-
dormant cells (Pu et al., 2019; Yu et al., 2019; Cesar et al.,
2020) and that protein aggregation in these dormant cells occurs
more intensely (Dewachter et al., 2021). Moreover, the intensity
of aggregation, measured by expression of IbpA-msfGFP and
therefore the amount of proteins that are aggregated, appears
to be correlated to dormancy depth at the single-cell level;
shallowly dormant persisters carry low intensity aggregates, while
deeper dormant VBNC cells contain more intense aggregates
(Dewachter et al., 2021). However, not all cells with protein
aggregates are dormant (Dewachter et al., 2021), which suggests
that a certain level or threshold of aggregation is needed in the
cells to shift to the dormant state. As aggregates were shown
to develop gradually (Yu et al., 2019; Dewachter et al., 2021),
the correlation between aggregate intensity and dormancy depth
implies that a general dormancy program may exist in which
progressive protein aggregation could induce the shift from the
susceptible to the persister state and from the persister to the
VBNC state (Figure 1) (Dewachter et al., 2021).

Besides the tight association between protein aggregation
and bacterial dormancy demonstrated at the single-cell level,
further support for the association and potentially causal
relation between aggregation and dormancy was found at the
population level. In clinically isolated Staphylococcus aureus
cultures, persisters were shown to accumulate insoluble proteins
(Huemer et al., 2021). Moreover, multiple studies performed
with E. coli observed that influencing aggregation causes a
similar change in dormancy, thereby revealing a direct link
between them. For example, decreasing aggregation by buffering
the pH of the growth medium or by adding low levels of
osmolytes also decreased the persister level (Leszczynska et al.,
2013). Additionally, suppressing aggregation by administering
chloramphenicol reduced both aggregation and dormancy (Pu
et al., 2019). On the other hand, when aggregation was increased
by adding acetate, the persister level also rose (Leszczynska
et al., 2013; Mordukhova and Pan, 2014). Other conditions that
induce aggregation like high temperatures or the addition of
streptomycin or hydrogen peroxide augmented dormancy as well
(Pu et al., 2019). Besides these external triggers, genetic factors
were also shown to influence both aggregation and dormancy.
For example, overexpression of the persister gene obgE, which
encodes a small GTPase that plays a role in ribosome assembly
and functioning (Feng et al., 2014), not only accelerated persister
development, but also triggered aggregation and the formation
of VBNC cells (Verstraeten et al., 2015; Dewachter et al., 2021).
Besides obgE, overexpression of metA, which encodes an unstable
protein involved in the biosynthesis of methionine (Rowbury,
1965), resulted in more aggregation of this protein at high
temperatures. This increased aggregation was accompanied by
an increase in persistence. Stabilizing the MetA protein not
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only reduced its aggregation, but also lowered the persister level
(Mordukhova and Pan, 2014). Consequently, different studies
have found a direct association between aggregation and the
induction of persistence and/or the VBNC state at both the
single-cell and the population level.

Possibly, aggregation is more prevalent in dormancy
development than currently thought because different studies
have separately shown that aggregation and dormancy are
induced by the same factors. Entry into stationary phase not
only induces progressive aggregation (Kwiatkowska et al.,
2008), but also different depths of dormancy (Pu et al., 2019;
Yu et al., 2019; Cesar et al., 2020; Dewachter et al., 2021).
This increased aggregation and dormancy in stationary phase
may be caused by nutrient deprivation and consequently ATP
depletion (Pu et al., 2019). Indeed, the ATP level in a population
enriched in persister cells was shown to be reduced by 50%
(Huemer et al., 2021). Moreover, ATP depletion is linked to
the formation of dormant cells (Dörr et al., 2010; Kwan et al.,
2013; Verstraeten et al., 2015; Zhao et al., 2016; Wilmaerts et al.,
2018; Huemer et al., 2021) and protein aggregation (Pu et al.,
2019; Dewachter et al., 2021). Additionally, acid stress is also
known to induce aggregation (Kern et al., 2007), persistence
(Hong S.H. et al., 2012), and the VBNC state (Cunningham
et al., 2009). Another stress that is linked to the induction of
aggregation (Schramm et al., 2020) and dormancy (Roth et al.,
1988; Murakami et al., 2005) is osmotic stress. Reducing osmotic
stress by adding low concentrations of osmolytes can resuscitate
VBNC cells (Roth et al., 1988) and inhibit aggregation (Diamant
et al., 2001). Furthermore, oxidative stress (Arana et al., 1992;
Mirzaei and Regnier, 2008; Hong S.H. et al., 2012) and heat
stress (Oliver, 2000; Murakami et al., 2005; Schramm et al.,
2019) also induce aggregation, persistence, and the VBNC state.
Finally, induction of proteotoxic mistranslation by exposing
bacteria to sub-MIC concentrations of aminoglycosides like
gentamycin and streptomycin (Davies et al., 1964) or by exposing
them to trimethoprim, which interrupts the folate metabolism
(Huang et al., 1997), increases persistence (Kwan et al., 2013)
and aggregation (Laskowska et al., 2002; Lindner et al., 2008;
Goltermann et al., 2013). Because a wide variety of factors
influence both aggregation and dormancy, protein aggregation
could possibly be a widespread phenomenon that is related to the
onset of dormancy over many different inducing conditions.

Protein Aggregation Is Hypothesized to
Induce Dormancy by Shutting Down
Important Cellular Pathways
The clear correlation between aggregation and dormancy
suggests that aggregation could be responsible for the formation
of dormant cells. Indeed, it has been hypothesized that
aggregation induces dormancy by shutting down different
important cellular pathways (Figure 1).

Protein aggregates present in dormant cells contain a wide
variety of proteins of important pathways like energy production
and translation (Leszczynska et al., 2013; Pu et al., 2019; Yu
et al., 2019; Dewachter et al., 2021; Huemer et al., 2021).
Although antibiotic targets are also present in the aggregate,

their direct sequestration is probably not important for the
induction of tolerance in E. coli (Dewachter et al., 2021). Instead,
the aggregation and consequent loss of function of multiple
proteins may lead to a gradual shutdown of cellular metabolism,
which then causes dormancy and tolerance. The hypothesis
that inhibition of important pathways may induce dormancy
is supported by the observation that lowering transcription
or translation by toxins or the addition of antibiotics also
induces persistence (Kwan et al., 2013; Cheverton et al., 2016).
Although inhibition of transcription or translation by antibiotics,
toxins, and aggregation might work differently, it shows that the
shutdown of important pathways can indeed be an important
cellular mechanism to induce antibiotic tolerance. Moreover,
as it is hypothesized that aggregation needs to reach a certain
threshold before a specific dormancy depth can be induced, this
inhibition of important pathways might be the trigger to switch
to a deeper dormant state.

Disaggregation Appears to Be a
Prerequisite for Growth Resumption
When aggregation-induced dormant cells resume growth, the
aggregate is being removed suggesting that disaggregation is
needed for awakening (Figure 1) (Pu et al., 2019; Yu et al., 2019;
Cesar et al., 2020; Huemer et al., 2021). Different chaperones
play an important role in this disaggregation process. The
chaperones DnaK and ClpB were shown to colocalize with the
aggregates of E. coli persister cells prior to their awakening,
but failed to do so in VBNC cells that remained dormant (Pu
et al., 2019). Additionally, impairing the disaggregation activity
of DnaK, and to a minor extent also the activity of ClpB,
increased dormancy in general but reduced regrowth suggesting
problems with awakening (Pu et al., 2019; Cesar et al., 2020).
This indicates that disaggregation by chaperones such as DnaK,
and possibly also ClpB, could be important for aggregation-
induced dormant cells to resume growth. Moreover, as it was
shown that the FtsZ protein can be refolded and resume its
function after disaggregation (Yu et al., 2019), it is hypothesized
that disaggregation is required to recover the proteins inside the
aggregate to restart important cellular pathways. However, as this
reactivation was only investigated for a single protein, further
confirmation is still needed to see if the reactivation of aggregated
proteins or the removal of the aggregates itself is important for
awakening. However, the causality between disaggregation and
awakening has not been fully established yet. It therefore remains
possible that cells wake up by replenishing their energy levels and
that the observed disaggregation is merely a side effect of the
increased levels of ATP, which is needed for chaperone activity.

CONCLUSION AND FUTURE
PERSPECTIVES

Even though protein aggregates are mostly known for their
detrimental effects, they may also protect cells against antibiotics
by inducing dormancy. Indeed, both persistence and the
VBNC state, which are tolerant phenotypes with different
dormancy depths, have been linked to protein aggregation
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(Leszczynska et al., 2013; Mordukhova and Pan, 2014; Pu et al.,
2019; Yu et al., 2019; Cesar et al., 2020; Dewachter et al.,
2021; Huemer et al., 2021). Additionally, as aggregates were
shown to develop gradually and as the intensity of aggregation
has been correlated to different dormancy depths, it has been
suggested that progressive protein aggregation could induce
different depths of dormancy (Dewachter et al., 2021). First,
aggregation may cause sensitive cells to switch to the shallowly
dormant persister state. Further development of the aggregates
subsequently drives these persister cells into a deeper dormant
VBNC state. At the mechanistic level, it is hypothesized that
aggregation leads to the sequestration of important cellular
proteins, which leads to the shutdown of cellular metabolism
and consequently also to dormancy (Leszczynska et al., 2013; Pu
et al., 2019; Yu et al., 2019; Dewachter et al., 2021). To resume
growth, it is suggested that dormant cells first remove aggregates
(Pu et al., 2019). As a protein’s functionality can be recovered
following disaggregation (Yu et al., 2019), such disaggregation
may lead to a restart of important cellular pathways, thereby
potentially explaining why disaggregation is a prerequisite for
growth resumption.

Even though the above explanation for the link between
protein aggregation and bacterial dormancy seems appealing,
there are still some important unanswered questions. First,
despite the frequently confirmed correlation between aggregation
and dormancy, conclusive proof for a causal relationship between
both processes is still missing. Second, in case such a relationship
exists, the molecular mechanism by which protein aggregation
drives dormancy development needs to be resolved. Additionally,
since not all cells that carry protein aggregates are dormant, it
is hypothesized that a certain threshold of aggregation is needed
to induce dormancy. It therefore needs to be investigated what

this specific threshold is, if it is reached stepwise or gradually
and if it depends on the composition of the aggregate. Third,
the fate of disaggregated proteins needs to be investigated further
to see if they are refolded and reused or if they are degraded.
Clearly, addressing these current research gaps will require
advanced single-cell approaches. For example, developments in
microfluidics and physiological reporters will make it possible
to track the aggregation and disaggregation process in real time
in a high-throughput manner and correlate it to changes in
cell physiology. Clearly, many questions are left unanswered.
However, a link between aggregation and dormancy has been
repeatedly demonstrated and may lead to breakthroughs in
both the dormancy and the aggregation fields. Furthermore, if
protein aggregation is revealed to form the link between several
redundant persister pathways that are already known today, it
might be an important starting point for the development of
highly-needed anti-persister therapies in the future.
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