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Abstract

Background: Phospholipases hydrolyze glycerophospholipids and generate diverse lipid-derived molecules with
secondary messenger activity. Out of these, phospholipase C (PLC) specifically cleaves the phospholipids at ester
linkages and yields diacylglycerol (DAG) and phosphorylated head groups. PLCs are classified further as
phosphatidylinositol-specific PLCs (PI-PLCs) and non-specific PLCs with biased specificity for phosphatidylcholine
(NPC/PC-PLC).

Results: In the present report, we identified and characterized PLC genes in the genomes of three orchids,
Phalaenopsis equestris (seven PePLCs), Dendrobium catenatum (eight DcPLCs), and Apostasia shenzhenica (seven
AsPLCs). Multiple sequence alignment analysis confirmed the presence of conserved X and Y catalytic domains,
calcium/lipid-binding domain (C2 domain) at the C terminal region, and EF-hand at the N-terminal region in PI-PLC
proteins and esterase domain in PC-PLC. Systematic phylogenetic analysis established the relationship of the PLC
protein sequences and clustered them into two groups (PI-PLC and PC-PLC) along with those of Arabidopsis
thaliana and Oryza sativa. Gene architecture studies showed the presence of nine exons in all PI-PLC genes while
the number varied from one to five in PC-PLCs. RNA-seq-based spatio-temporal expression profile for PLC genes was
generated, which showed that PePC-PLC1, PePC-PLC2A, DcPC-PLC1A, DcPC-PLC1B, DcPC-PLC2, DcPC-PLC1B, and AsPC-
PLC1 had significant expression in all reproductive and vegetative tissues. The expression profile is matched to their
upstream cis-regulatory promoter elements, which indicates that PLC genes have a role in various growth and
development processes and during stress responses.

Conclusions: The present study unwrapped the opportunity for functional characterization of selected PLC genes
in planta for plant improvement.
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Background
The plasma membrane acts as a barrier between cells
and the outside environment and plays a major role in
the development and protection of plants from external
stresses. Phospholipids act as building blocks of the

plasma membrane; the composition of these compounds
dynamically change, during various growth and develop-
mental processes and in response to abiotic and biotic
stresses [1]. These compositional changes are essential
for the maintenance of membrane integrity and stability,
which is necessary for the overall health and growth of
plants. The phospholipase superfamily is a large family
of enzymes, which is involved in the above process.
Phospholipases are considered a diverse group of
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principle enzymes involved in lipid hydrolysis [2]. Essen-
tially, all the lipid derivatives are supposed to play a
major role as signaling compounds in various cellular
processes. The phospholipase superfamily on the basis
of their substrate specificity is categorized into three
sub-families, phospholipase A (PLA), phospholipase C
(PLC), and phospholipase D (PLD). Phospholipase C is
considered one of the essential lipid-hydrolyzing en-
zymes; it cleaves the ester linkage of phospholipid mol-
ecule of the plasma membrane and yields a water-
soluble phospholipid head group and diacylglycerol
(DAG) [3]. The phospholipase C sub-family is further
classified on the basis of the affinity toward the
phospholipid head group as the substrate, into two cat-
egories, phosphatidylinositol-specific phospholipase C
(PI-PLC) and non-specific phospholipase with biased
specificity for phosphatidylcholine (PC-PLC/NPC). PC-
PLC mainly hydrolyze the membrane lipids (phosphat-
idylcholine and phosphatidylethanolamine) and acts in a
calcium-independent manner [4–8]. In addition to this,
it is reported that in plant cells phosphorylated products
of DAG, the phosphatidic acid (PA), diacylglycerol pyro-
phosphate (DGPP), and hexakisphosphate (IP6) acts as
secondary messengers [9]. The PLC gene family was first
reported in Arabidopsis thaliana, where nine PI-PLC
and six PC-PLC genes were identified [10, 11]. After
Arabidopsis, PLC genes have been identified from a
number of plant species such as Oryza sativa [12], Triti-
cum turgidum [13], Gossypium hirsutum, G. arboretum,
and G. raimondii [9], Lycopersicon esculentum [14], Gly-
cine max [5, 15], Solanum tuberosum [16], Pisum sati-
vum [17], Brassica napus [18, 19], Vigna radiata L. [20],
Avena sativa [21], Lilium daviddi [22], Zea mays [23],
and Physcomitrella patens [24, 25]. Members of both
sub-groups of PLC have their own specific signature do-
mains: PI-PLC group consists of X and Y catalytic do-
mains, which leads to the formation of the TIM
(triphosphate isomerase) barrel-like structure essential
for the phosphoesterase activity, a calcium/lipid-binding
domain (C2 domain) at the C terminal region, and EF-
hand at N-terminal region to guide the binding of the
enzyme to a membrane and PC-PLC contains only ester-
ase domain.
PI-PLC genes regulate various cellular processes in-

cluding signal transduction, cytoskeleton dynamic, ves-
icular trafficking, and remodeling of the cell by means of
various lipid intermediates, the phosphatidic acid, diacyl-
glycerol, inositol 1,4, 5-trisphosphate (IP3), and inositol
hexakisphosphate (IP6) [11, 12, 26]. The members of the
PI-PLC subgroups are activated by various stress condi-
tions such as cold, salt, and drought stress [27–29]. The
activation of PI-PLC during stress conditions has been
reported in various plants such as Zea mays, where
ZmPLC1 gets upregulated and enhances grain

production during dehydration and cold stress [23].
Similarly, BnPLC2 of Brassica napus shows high expres-
sion in response to drought stress [18]. Genome-wide
analysis of the PLC gene family in B. napus suggested
that the overexpression of BnaPI-PLC1 and BnaPI-PLC2
as well as BnaNPC1 genes enhances the DAG level
under drought stress [19]. Knockout studies of Arabi-
dopsis thaliana, AtPLC3, and AtPLC9 result in enhanced
sensitivity to heat revealing their role in thermotolerance
[11, 30, 31]. Additionally, PI-PLCs of tomato were found
to be involved in hypersensitive response (HR) and im-
munity exposure [14, 26]. The role in plant immunity is
also established in Arabidopsis thaliana [32]. The PI-
PLC is also found to play important role in gravitropism,
plant hormonal responses, photosynthesis and flowering
[18, 24]. In Pyrus, PI-PLC is involved in the maintenance
of the self-incompatibility [33]. The PC-PLC (NPC) are
responsible for lipid conversion during phosphate-
limiting conditions [29]. These play essential role in
number of physiological processes and various biotic
and abiotic stress responses [34, 35]. In addition to this,
it is found in rice that PC-PLC/NPC also affect the root
architecture by brassinolide response [12].
During post-genomics era, the whole genome sequen-

cing of Phalaenopsis equestris [36], Dendrobium catena-
tum [37] and Apostasia shenzhenica [38] plants leads to
ample opportunities for genome-wide characterization
of various gene families in these orchids. However, such
studies are rare in case of orchids. P. equestris is a prized
commercial plant due to its floral morphology. D. cate-
natum also has floricultural importance but it is mainly
known for its antioxidant, immune modulation and
vasodilation properties as reported in traditional Chinese
medicines [39]. A. shenzhenica, a primitive terrestrial or-
chid, has evolutionary significance due to the presence
of contrasting features to the general morphology of or-
chids, e.g., actinomorphic flowers, indistinct labellum,
absence of pollinia, and resupination of ovary and rudi-
mentary gynostemium, supporting its divergence from
Orchidaceae [40]. Orchids, in general, are important
plants for their floricultural and medicinal value. They
are endangered of survival due to various environmental
stresses and excessive exploitation for human use. The
role of the PLC gene family in growth and development
as well as in stress tolerance is well established. Several
PLC members have been reported to be involved in vari-
ous cellular processes and signaling networks, which are
triggered by stressful environmental cues. This makes
the PLC genes potential candidates for genetic engineer-
ing for the production of plants with enhanced growth
and stress tolerance.
The present study on identification and

characterization of the PLC gene family in orchids is
proposed to provide a better understanding of the
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structure, function, and phylogenetic relationships of
PLC genes which in turn can facilitate their functional
characterization and utilization for the introduction of
improved traits leading to better growth and stress toler-
ance in these immensely important plants.

Methods
Identification of PLC gene family proteins and analysis of
primary structure
Phospholipase C protein sequences of Arabidopsis thali-
ana (AtPLC) and Oryza sativa (OsPLC) were used as
query sequences and Blastp was carried out against the
NCBI derived P. equestris [36], D. catenatum [37], and
A. shenzhenica [38] protein database (https://www.ncbi.
nlm.nih.gov/protein) [41]. The retrieved PePLC, DcPLC,
and AsPLC sequences were then analyzed for the pres-
ence of X and Y catalytic domains, calcium/lipid-binding
domain, and esterase domain with SMART server
(http://smart.embl-heidelberg.de/ )[42]. The domain
architecture was constructed using Expasy - Prosite
(https://prosite.expasy.org/ )[43]. The conserved catalytic
centers were located with the help of multiple sequence
alignment using the MULTALIN tool (http://multalin.
toulouse.inra.fr/multalin/ )[44]. The MEME suite server
(http://meme-suite.org/tools/meme )[45], with preset pa-
rameters (maximum number of motifs — 05, number of
repetitions — any, optimum motif width — ≥ 6 and ≤
200) was used for the identification of conserved motifs.

Determination of physical parameters
The physiochemical characterization of PLC protein se-
quences (molecular weight, aliphatic index, instability
index, isoelectric point, and hydropathicity) were done
using the Expasy-ProtParam server (https:// web.expasy.
org/protparam) [46]. The sub-cellular localization of
protein was predicted by CELLO v.2.5 (http://cello.life.
nctu. edu.tw/) [47] and WoLF PSORT (https://www.
genscript. com/wolf-psort.html )[48]. The signal peptide
and transmembrane regions were detected using online
server SignalP.4.0 (http://www.cbs.dtu.dk/services/
signalp/ )[49] and TMHMM v.2.0 (http://www.cbs.dtu.
dk/services/TMHMM/) [50].

Phylogenetic analysis and ortholog prediction
The full-length PLC protein sequences (AtPLC, OsPLC,
PePLC, DcPLC, and AsPLC ) were aligned with the
MUSCLE program and the phylogenetic tree was then
cons truc ted us ing MEGA X tool (h t tp : / /www.
megasoftware.net/) [51] by the maximum-likelihood
method at a bootstrap value of 1000 and the model se-
lected was the Jones-Taylor-Thornton (JTT) model.
The orthologs for PePLC, DcPLC, and AsPLC protein

sequences were predicted using local NCBI BLASTp
search, each candidate PLC protein sequence querying

independently against each other, and the best bidirec-
tional blast hit with an e value less than 10−5 was se-
lected [52]. Orthologs were also detected using
OrthoVenn2 ( https://orthovenn2.bioinfotoolkits.net )
[53].

Gene structure and promoter analysis
The coding sequences (CDS), gene sequences, and pro-
moter sequences were retrieved for each PLC protein
from the NCBI database. CDS sequences and gene se-
quences were analyzed by using Gene Structure Display
Server 2.0 (http://gsds.cbi.pku.edu.cn/ )[54] for the exon-
intron architecture. The cis-regulatory elements of the
PLC protein sequences were recognized in 1.5-kb up-
stream sequences using PLACE server (https://sogo.dna.
affrc.go.jp/cgi-bin/sogo.cgi?lang=en&pj=640&action=
page&page=newplace )[55]. Further analysis of promoter
elements was carried out for the identification of com-
mon specific promoters using the Venn diagram tool
GeneVenn (http://GeneVenn (sourceforge.net)/) [56].

Duplication events prediction
The duplication events among PePLC, DcPLC, and
AsPLC CDS sequences were predicted with the help of
sequence similarity index obtained from the MUSCLE
tool (https://www.ebi.ac.uk/Tools/msa/muscle/) [57].
The genes sharing ≥ 80% identity were considered dupli-
cates [58].

Expression analysis
The CDS sequences of PLC genes were used for the
BLASTn search against the high-throughput RNA-
seq data available at the SRA database (https://www.
ncbi.nlm.nih.gov/sra) [59] for different tissues in P.
equestris [leaf (SRX1074879), root (SRX1074875),
stem (SRX1074876), flower bud (SRX1074880), sepal
(SRX1806366), petal (SRX1806365), labellum
(SRX1806348), pollinia (SRX2938663), and gynostemium
(SRX1805894)]; D. catenatum [leaf (SRX2251517), root
(SRX2938667), green root tip (SRX2251515), white part of
root (SRX2251514), stem (SRX2251516), flower bud
(SRX2251519), sepal (SRX2251513), lip (SRX2251518),
pollinia (SRX2938662), and gynostemium (SRX2251512)];
and A. shenzhenica [tuber (SRX2938654), seed
(SRX2938653), and pollen (SRX2938652)] [37, 38]. The
total hits were counted and RPKM values (reads per kilo-
base per million) were calculated using the formula RPKM
= (C × 109)/(N × L), where C = number of reads mapped
to the sequence, N = total mapped reads in the experi-
ment, and L = exon length in base-pairs for the gene. Heat
maps for the spatio-temporal expression of PePLC,
DcPLC, and AsPLC genes were generated using Hierarch-
ical Clustering Explorer 3.5 (http://www.cs.umd.edu/hcil/
hce/) [60, 61].
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Molecular modeling
Secondary structures
To predict secondary structures (alpha helices, random
coils, beta turns, and extended strands) of PLC protein
sequences, the SOPMA secondary structure prediction
tool was used (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_
automat.pl?page=/NPSA/npsa_sopma.html )[62].

3D structure prediction
The three-dimensional structure of PLC protein se-
quences was predicted using homology modeling in the
online Phyre2 server (http://www.sbg.bio.ic.ac.uk/
phyre2/index.cgi) [63] and PyMOL (https://pymol.org/)

[64] was used for the visualization of the protein 3D
structure.

Results
Identification, ortholog prediction and domain analysis
Upon thorough exploration of P. equestris, D. catena-
tum, and A. shenzhenica genome, a total of seven, eight,
and seven PLC sequences were predicted respectively.
The PLC gene family in all three plants could be
successfully divided into two major groups,
phosphatidylinositol-specific PLC (PI-PLCs) and non-
specific phospholipase C with specific catalytic activity
for phosphatidylcholine (PC-PLC/NPC). The PLC gene

Table 1 Ortholog prediction for PePLC, DcPLC, and AsPLC
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family is represented by three PI-PLC and four PC-PLC
genes in P. equestris, three PI-PLC and five PC-PLC in
D. catenatum, and two PI-PLC and five PC-PLC in A.
shenzhenica. Additionally, orthologous genes for PePLC,
DcPLC, and AsPLC were predicted (Table 1). The no-
menclature of proteins and their respective genes was
done in accordance with their closest phylogenetic ho-
mologs in A. thaliana and O. sativa [10, 12]. Further-
more, structure analysis indicated that all the members
of the PePI-PLC, DcPI-PLC, and AsPI-PLC groups com-
prised of X and Y catalytic domains and the calcium/
lipid-binding domain. PC-PLC members were character-
ized by the presence of the phosphoesterase domain only
(Fig. 1). Additionally, multiple sequence alignment
showed the presence of a conserved region of EF-hand,
X-box, Y-Box, and C-terminus C2 domain region in all
PI-PLC sequences, whereas PC-PLC proteins were ob-
served to have ENRSFDxxxG, TxPNR, DExxGxxDHV,
GxRVPxxxxxP, and variable C-terminus region (Fig. 2).
Motif analysis showed that all PLC protein sequences
under study have the five highly conserved motifs. The
conserved motifs are identified separately for both sub-
groups of the PLC family (Fig. 3).
In P. equestris, three protein sequences were identified

along with isoforms with the help of the NCBI database
search for protein gene ID. Every two proteins or a
group of proteins sharing the same gene ID was

considered an isoform. The PePI-PLC6C (XP_
020579604.1; Gene ID: 110024153) was predicted to
have two isoforms (XP_020579605.1 and XP_
020579606.1), PePI-PLC6B (XP_020578229.1; Gene ID:
110023257) have one isoform (XP_020578230.1) and
PePC-PLC2B (XP_020583114.1; Gene ID: 110026499)
also have one isoform (XP_020583115.1); we have con-
sidered the longest isoform for further analysis, whereas
no isoforms were identified for any DcPLC and AsPLC
proteins.

Protein characterization
Physico-chemical characterization of all PLC protein se-
quences was comparable in all three plants (Table 2).
The average and range values for each physico-chemical
property were calculated separately for both sub-groups:
PI-PLC and PC-PLC. The peptide length for PePI-PLC
ranged from 590 amino acid (aa) to 597aa, DcPI-PLC
ranged from 594aa to 604aa and AsPI-PLC ranged from
588aa to 595aa with an average of 594aa, 599aa and
591aa, respectively. The DcPI-PLC8A has the smallest
peptide length, which indicates its truncated nature, so
this was not considered for average calculations. DcPI-
PLC6B was predicted to have the longest protein se-
quence among all PI-PLC protein sequences in three or-
chid species. The average molecular weight for PePI-
PLC, DcPI-PLC, and AsPI-PLC protein sequences was

Fig. 1 Domain and gene architecture analysis. a Specific domains of PI-PLC (X catalytic domain, Y catalytic domain, calcium/lipid-binding) and
PC-PLC (signal P and phosphoesterase) categories. b Domains and exon-intron architecture for PI-PLC and PC-PLC for P. equestris, D. catenatum,
and A. shenzhenica
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67.8kDa, 68.1kDa, and 67.25kDa respectively. The iso-
electric point for all the PI-PLC ranged from 5.04 to
6.46 with an average aliphatic index of 77 (Table 2). In
the case of PC-PLC protein sequences, the average

length for PePC-PLC, DcPC-PLC, and AsPC-PLC was
531aa, 481aa, and 524aa respectively. The molecular
weight analysis showed that the average molecular
weight of PePC-PLC, DcPC-PLC, and AsPC-PLC

Fig. 2 Multiple sequence alignment. Multiple sequence alignment of PLC protein sequences of P. equestris, D. catenatum, A. shenzhenica, A.
thaliana, and O. sativa with the Multalin online tool. Highly conserved amino acid sequence regions are highlighted with boxes for both PI-PLC
(a) and PC-PLC (b) sequences
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proteins was nearly equal to 59.2 kDa, 53.8 kDa, and
58.46 kDa, individually. The isoelectric point for all PC-
PLC protein sequences ranged from 5.27 to 8.54. The
average aliphatic index for protein sequences was 74.18.
In addition to this, all the PLC proteins were observed
to have a negative GRAVY value indicating their hydro-
philic nature. Subcellular localization studies showed
that most of the proteins were localized in the cyto-
plasm, nucleus, and mitochondria. Ten PC-PLC protein
sequences were reported to have signal peptides (PePC-
PLC1, PePC-PLC2A, DcPC-PLC1A, DcPC-PLC2, DcPC-
PLC1B, DcPC-PLC5, AsPC-PLC1, AsPC-PLC2, AsPC-
PLC3, and AsPC-PLC5). The transmembrane region
prediction indicated the presence of a transmembrane
region in four proteins (PePC-PLC1, DcPC-PLC1A, and
AsPC-PLC2) (Table 2).

Phylogenetic analysis
Phylogenetic analysis was performed for PLC protein
sequences of P. equestris, D. catenatum, and A. shenz-
henica by clustering along with protein sequences of
O. sativa and A. thaliana to understand the evolu-
tionary relatedness of this gene family to both dicots

and monocots. All the proteins clustered along with
their counterparts in the PI-PLC and PC-PLC sub-
groups (Fig. 4).

Genomic locus, gene structure, and gene duplication
events
Genomic scaffold and stretch were identified for can-
didate genes and enlisted (Table 3). The exon-intron
architecture analysis of P. equestris, D. catenatum,
and A. shenzhenica showed the presence of nine
exons and eight introns among all PePI-PLC, DcPI-
PLC, and AsPI-PLC members. All PI-PLC genes of
the three orchids were dominated by phase 0 introns
indicating less disruption of the codon (Fig. 1), while
in the case of PC-PLC, seven genes were predicted
to have four exons and three introns, four genes with
three exons and two introns, and one was with five
exons and four introns. DcPC-PLC1B was intron-less
(Fig. 1, Table 3). The genes of this PC-PLC sub-
group were dominated by phase 2 introns, which in-
dicates the disruption of the codon between the
second and third bases. These studies also indicated
that the maximum number of exons was

Fig. 3 Motif analyses in PePLC, DcPLC, and AsPLC. Motifs were predicted by the MEME suite online server. a Conserved motifs in PePC-PLC,
DcPC-PLC, and AsPC-PLC sequences, marked in colored boxes. b Conserved motifs in PePI-PLC, DcPI-PLC, and AsPI-PLC sequences, marked in
colored boxes. c Sequence logo of PI-PLC and PC-PLC protein motifs obtained by the MEME server
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asymmetrical in nature because they were flanked by
more than one intronic phase (Fig. 1). There were no
duplication events predicted in any of the plants
(Table S1).

Promoter analysis and spatio-temporal expression
analysis
The PLC gene sequences were analyzed up to 1500 bp
upstream from the gene start site. The result showed
the presence of conserved cis-regulatory elements
within P. equestris, D. catenatum, and A. shenzhenica
promoter region and this disclosed the significance of
PLC genes in growth and developmental processes and
stress responses (Fig. 5; Table S2). Detailed plant-wise
analysis of promoter sequences of Phospholipase C
genes revealed the presence of various cis-regulatory

elements along with core promoter elements TATA-
box (TATABOX5) and CAAT-box (CAATBOX1). The
analysis showed the correlation function with the
concerned genes were root-specific (ROOTMOTIFTA-
POX1), mesophyll-specific (CACTFTPPCA1), pollen-
specific (POLLEN1LELAT52), wound-activating W-box
(WBOXNTERF3), WRKY proteins binding to W-box
(WRKY71OS), dehydration-responsive (MYC), ABRE-
like binding site motif (ABRE) involved in abscisic acid
regulations, auxin-responsive elements (AuxREs), sali-
cylic acid- and ethylene-mediating response elements
(ASF1, ERELEE4) and cold-, drought-, and ABA-
responsive elements (LTRE) with consensus core se-
quences ATATT, YACT, AGAAA, TGACY, CANNTG,
ACGTG, TGACGTGGC/KGTCCCAT, TGACG,
AWTTCAAA, and CCGAC. The presence of these

Table 2 Physiocochemical characterization of PePLC, DcPLC, and AsPLC proteins

Isoelectric point (pI), protein molecular weight (MW) in kDa, instability index (Ins), aliphatic index (AI) grand average of hydropathy (GV), localization (LOC), signal
peptide (SP) transmembrane domain (TM)
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elements accounts for the responsive nature of PLC
genes under biotic and abiotic stresses and in various
developmental processes (Table S2). The expression
profile for PePLC and DcPLC was constructed on the
basis of the RPKM value in various developmental
stages like leaf, stem, root, sepal, petal, pollen, and
gynostemium. Similarly, for AsPLC genes profile was
constructed for tissues like tuber, pollen, and seeds.
The analysis indicates that the PePC-PLC1, DcPC-
PLC1A, and AsPC-PLC1 genes had significant expres-
sion in all the tissues under study. DcPC-PLC1A, DcPC-
PLC2, PePC-PLC2A, and AsPC-PLC2 were showing
outstanding expression in pollens, while DcPC-PLC2
and PePC-PLC2A also have high expression in gynoste-
mium. AsPC-PLC4 had predominant expression in
seeds, whereas expression in seeds is not studied in P.
equestris and D. catenatum. The PePI-PLC6A, DcPI-
PLC6A, and AsPI-PLC6 were showing significant ex-
pression in vegetative tissues like leaf, root, stem, and
tubers. The PePI-PLC6A and DcPI-PLC6A also had
high expression in gynostemium, floral bud, and lip
(Fig. 6).

Molecular modeling
Homology modeling is a technique, which provides new
insights into protein structure and understanding the
mechanism of protein function. A total of six proteins
PePI-PLC6A, DcPI-PLC6A, AsPI-PLC6, PePC-PLC1,
DcPC-PLC1A, and AsPC-PLC1 were taken for the com-
parative protein structure study from P. equestris, D.
catenatum, and A. shenzhenica on the basis of their ex-
pression profile. The secondary structures were analyzed
using the SOPMA server, which indicates that all the
predicted PI-PLC and PC-PLC proteins were dominated
by random coils ranging from 44.37 to 46.30% and 51.59
to 56.02%, respectively (Fig. 7). The random coils are
often described as regions, where the folded chain acts
more flexibly and dynamically than other secondary con-
formational structures. The secondary structure analysis
indicated the proportion of alpha-helix, extended strand,
beta-turn, and random coils in protein was almost the
same in PePI-PLC and PePC-PLC proteins and their
orthologs in D. catenatum and A. shenzhenica. The pro-
teins taken from the PI-PLC group of P. equestris, D.
catenatum, and A. shenzhenica were dominated by beta-

Fig. 4 Phylogenetic analysis of PePLC, DcPLC and AsPLC proteins. Phylogenetic clustering of PePLC, DcPLC, and AsPLC protein sequences was
done with AtPLC, and OsPLC sequences. The PI-PLC and PC-PLC groups are marked respectively in red and green
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sheets, each of them having 15 beta-sheets and 12 alpha-
helix structures. The little variation at the EF-domain re-
gion in the sequence of AsPI-PLC6 and at N-terminal
region in DcPI-PLC6A was observed. The members of
the PC-PLC group were observed with six beta-sheet in
their tertiary structure. But DcPC-PLC1A was predicted
to have a large number of variations in their protein se-
quence at the alpha-helix region (Fig. 8). The superim-
position of 3D-structure of PePI-PLC6A, DcPI-PLC6A,
AsPI-PLC6, and PePC-PLC1, DcPC-PLC1A, and AsPC-
PLC1 indicate their almost similar nature with little vari-
ation as indicated by the root mean square deviation
(RMSD) value, which measures the average distance be-
tween the atoms of superimposed proteins (Table 4).
RMSD values of the PI-PLC sub-group indicate that the

variation in the structure of beta-sheets among PePI-
PLC6A, DcPI-PLC6A, and AsPI-PLC6 protein sequences
is comparatively less than alpha helices and random
coils. However, in PC-PLC proteins, variations in the
beta-sheets were observed to be more in comparison to
the alpha-helix, except in PePC-PLC1 and AsPC-PLC1.
This analysis showed that PLC proteins are conserved at
structural level in P. equestris, D. catenatum, and A.
shenzhenica.

Discussion
The PLC gene family plays a major role in many critical
cellular processes, including signal transduction, vesicu-
lar trafficking, cytoskeletal rearrangement, and secretion,
which are necessary for plant growth and development,

Table 3 Gene characterization table of PePLC, DcPLC, and AsPLC genes
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stress responses, and immune system maintenance [11,
12, 26]. Nevertheless, the reports on PLC transcription
factors in orchids are not available till now. In the
present study, PLC genes were identified from P. eques-
tris [36], D. catenatum [37], and A. shenzhenica [38]. In
our study of genome-wide exploration of P. equestris, D.
catenatum, and A. shenzhenica through various bioinfor-
matics techniques revealed the presence of seven, eight,
and seven PLC encoding genes. The pattern of distribu-
tion of the number of genes among both sub-classes in
the PLC family in orchids is somewhat similar to the rice

[12]. However, there is a variation in the number of PLC
genes in Arabidopsis (15), rice (9), and soybean (12) [5,
10, 12] (Table 5) and this difference in the size of the
PLC gene family in monocots and dicots must be due to
the loss of genes during the course of evolution. The
whole PLC gene family is divided into two groups, PI-
PLC and PC-PLC, on the basis of domain analysis,
phylogenetic clustering, and homology modeling in ac-
cordance with reports on Arabidopsis, rice, tomato,
cotton, and Brassica napus [9, 10, 12, 14, 19]. Like in
Arabidopsis and rice, the PI-PLCs also have

Fig. 5 Promoter analysis: Venn diagram showing common numbers of promoters in PI-PLC (a) and PC-PLC (b)

Fig. 6 Expression profiling. The expression profile in the form of a heat map for (a) PePLC (b) DcPLC, and (c) AsPLC in different tissues such as leaf
(L), root (R), green root tip (Gr), white part of the root (Wr), stem (S), flower bud (Fb), sepal (Sp), petal (Pt), labellum (Lp), pollinia (Po), and
gynostemium (Gy), Tuber (Tu), and seed (Se) was generated by using HCE3.5 tool
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Fig. 7 Structural analysis of proteins. A Diagrammatical representation of Secondary structures (a: PePI-PLC6A; b: DcPI-PLC6A; c: AsPI-PLC6; d:
PePC-PLC1; e: DcPC-PLC1A; f: AsPC-PLC1). B Bar graph showing the percentage of alpha-helix, beta-sheet, and random coil of (a, b, c, d, e, f)

Fig. 8 Simulated three-dimensional super-imposed structures. a Superimposed structure of PePI-PLC6A, DcPI-PLC6A and AsPI-PLC6. b
Superimposed structure of PePC-PLC1, DcPC-PLC1A and AsPC-PLC1
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characteristic PI-PLC-X and Y catalytic domains and
phospholipid-binding C2 domain at the C-terminal (Fig.
1). The conserved EF-hand region is observed in mul-
tiple sequence alignment of PI-PLC sequence of orchids,
like rice and Arabidopsis [10, 12]. The identified PC-
PLC proteins are predicted with a signature phosphoes-
terase domain, which consists of four conserved regions
ENRSFDxxxG, TxPNR, DExxGxxDHV, GxRVPxxxxxP,
and variable C-terminus region (Figs. 1 and 2). The
physicochemical analysis of PI-PLC proteins of P. eques-
tris, D. catenatum, and A. shenzhenica showed that the
average length and weight of the PI-PLC proteins are in
range with the PI-PLC proteins of rice [12]. Likewise,
the average length and average weight of PC-PLC pro-
teins fall within the range of those in Arabidopsis [10].
The signal peptides were predicted in 11 orchid PLC
protein sequences, which is confirmatory with the pres-
ence of signal peptides in four proteins in Gossypium
hirsutum, three in G. arboretum, and four in G.

raimondii [9]. Furthermore, the evolutionary analysis of
PePLC, DcPLC, and AsPLC along with PLC sequences
of A. thaliana and O. sativa showed the clustering of PI-
PLC and PC-PLC proteins in dedicated groups with high
bootstrap values. The clustering of proteins with their
closest relative indicated their conserved nature at the
sequence level. The structural analysis for PLC genes
and proteins showed the conserved nature of this gene
family at the structural level as well. The exon-intron
architecture revealed that all the PI-PLC members con-
tain 7–9 exons. A similar kind of exon-intron pattern re-
mains conserved among rice, Gossypium sp., Brassica
napus, and Arabidopsis. However, in the case of PC-
PLC, a number of exons ranged from 1 to 5, five genes
had three exons, seven had four, one had five exons, and
one had only one exon, which is also reported in PC-
PLC members of rice, Gossypium sp., and Brassica
napus [9, 12, 19]. Duplication event analysis indicated
that the PLC genes of P. equestris, D. catenatum and A.

Table 4 Root mean square deviation (RMSD) value of superimposed PI-PLC and PC-PLC proteins

Table 5 Size of the Phospholipase C (PLC) gene family in some dicot and monocot species
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shenzhenica did not participate in any significant dupli-
cation event. Similar, studies have been reported from
rice where no duplication events were reported [12].
The promoter analysis of the PLC gene family in orchids

indicates the presence of core promoter elements along
with various other elements such as root-specific,
mesophyll-specific, pollen-specific, stress-responsive,
hormone-responsive elements and pathogen-responsive
elements. These promoter elements are in line with func-
tions performed by PLC genes. The dominance of abiotic
stress (LTRE, PRE, MYC), hormone (ASF1, ERE), and
pathogen (W-BOX, WRKY) responsive elements reflects
the role of the PLC gene family in immunity responses
and in both abiotic and biotic stress resistance. Similarly,
the presence of cis-elements has been reported in the rice
promoter with a predicted role in regulating gene expres-
sion patterns during abiotic stress conditions [12]. The
presence of auxin-responsive cis-elements in the promoter
region of the PLC gene family has also been observed in
cotton [9]. Additionally, the presence of ASF-1and LTRE
promoter elements, which are involved in the activation of
various genes by auxin/salicylic acid-and ABA-mediated
pathways and indicates the role of PLC genes in cold,
drought, and salt stress responses [12, 65]. Similarly, the
role of PLC genes (OsPI-PLC1, OsPI-PLC3, and OsPI-
PLC4) is also reported in rice during cold, drought, and
salt stress responses [12, 66]. The presence of W-box
(TGAC) cis-elements in the promoter regions of AsPLC,
DcPLC, and PePLC indicates the responsiveness of this
family toward biotic stresses. The W-box has the capacity
to bind with the WRKY transcription factor, which has a
role in pathogen response [67] (Table S2). Expression ana-
lysis of PLCs indicated that these genes have differential
expression in different tissues indicating their specific role
in various physiological processes and developmental pro-
cesses. In Arabidopsis, NPC5 (PC-PLC5) expression is re-
ported from the floral organ and the PI-PLC2 gene is
reported to have a role in reproductive development [68,
69], and in conformity, AsPC-PLC5 showed moderate ex-
pression in pollen. The PePI-PLC6A and DcPI-PLC6A
genes displayed significant expression in reproductive tis-
sues (floral bud, pollen, lip, and gynostemium) in tune
with the expression of their orthologs (BnaPI-PLC6A3,
BnaPI-PLC6A5, BnaPI-PLC6C3, and BnaPI-PLC6C4) in
Brassica napus [19]. In rice, OsNPC4 showed higher ex-
pression in seed developmental stages while OsPLC3 was
downregulated in seed stages [12]. A similar interesting
expression profile was observed in AsPC-PLC4 and AsPC-
PLC3 as well (Fig. 6). The three-dimensional structure
analysis in Arabidopsis indicates that the backbone of the
tertiary structure of PC-PLC is made up of beta-sheets
(which includes 7 beta structures) [6]; a similar trend is
also observed in orchid PC-PLC proteins, which are com-
posed of six beta-sheet structures surrounded by around

16 alpha-helix structures. The PI-PLC proteins of orchids
are dominated by 15 beta-sheets and nearly 17 alpha-helix
structures (Figs. 7 and 8).

Conclusions
In this study, we have successfully done genome-wide
characterization of the PLC gene family in three orchid
species P. equestris, D. catenatum and A. shenzhenica
through various in silico approaches. Total of 22 PLC
genes were predicted in three orchid species, which were
conserved at sequence and structure level. The expres-
sion profiles and cis-regulatory of all the PLC genes of
three orchids were analyzed during various development
stages. Both the expression analysis and promoter ana-
lysis indicate that the PLC gene family is involved in
various developmental processes and stress responses.
The study suggests that PLC is important for plant de-
velopment and adaptation to various biotic and abiotic
stresses.
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