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inTRODUCTiOn

Nishizuka and colleagues discovered protein kinase C (PKC) as a calcium-dependent, lipid cofactor-
sensitive protein kinase (1). Initially known as the only physiological effector for tumor-promoting 
phorbol esters, this ubiquitous enzyme eventually took center stage in cellular signaling. Part of 
the AGC kinase branch of the kinome, PKC is a family of serine/threonine kinases comprising 
11 isoforms encoded by 9 genes and grouped into 4 classes – classical (cPKCs-α, βI, βII, γ), novel 
(nPKCs-δ, ϵ, η, θ), atypical (aPKCs-ζ, ι/λ), and PKCμ (a form between novel and atypical isoforms) 
(Box 1). Their considerable structural homology, overlapping substrate specificities, and biochemi-
cal properties indicated at least partial enzymatic redundancy and rendered the task of identifying 
isoform-specific functions challenging. The initial phase of PKC research correlated the unique 
structural features of the isoforms with their functions (Box 1) (2). But, with their structural overlaps 
and hugely varying functions in different models, specificity of the isoforms became a confounding 
puzzle demanding stringent isoform-specific regulation to avoid functional redundancy. To define 
this stringency, subsequent PKC research focused on the upstream and downstream regulatory 
mechanisms (3, 4), highlighting the importance of subcellular distribution as a function of time (5). 
As simultaneous activation of all PKC isoforms would be energetically and spatially conflicting for 
decoding the message received by the cell surface receptor, cell type, and stimulus-specific selec-
tive and sequential activation deemed justified (6). The recent phase of PKC research propounds a 
PKC-signaling module (7, 8) wherein an inter-isoform network regulates the PKC isoforms’ activity 
(Box 2; Figure 1B). Here, we propose activator- and cofactor-specific sequential activation of PKC 
isoforms in a spatio-temporal model wherein selective subcellular compartmentalization quantita-
tively determines the isoform-specific effector functions.

STRUCTURAL BiAS TO pKC FUnCTiOn?

Structural reconfigurations of the PKC isoforms play a central role in orchestrating their spatial 
distribution and activation (15). C1 domain ligands – diacylglycerol (DAG) and phosphatidylserine 
(PS) – recruit PKC by altering the surface properties of the domain to favor membrane penetration. 
Studies on GFP–PKC with the fluorescent phorbol ester analog sapintoxin-D showed differential 
subcellular localization of C1 ligands determining subcellular targeting of PKCs (16). The nPKC 
C1B domain has a 100-fold higher affinity for DAG compared to cPKCs due to an invariant tryp-
tophan residue at position 22 as opposed to a tyrosine in case of cPKCs resulting in rapid plasma 
membrane localization for cPKCs versus slower and sustained Golgi localization for nPKCs (17). 
The C2 domain functions as a Ca2+-regulated membrane anchor in cPKCs (6, 15) while regulating 
protein–protein interactions and spatial distribution through phosphotyrosine-binding modules in 
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BOX 2 | Chronological epochs of pKC research.

1977–1987: introducing PKC

• Discovery of PKC by Nishizuka and colleagues (1).
• Structural analysis of the PKC isoforms.
• Takai et al. showed PKC to be reversibly activated by Ca2+/phospholipid 

and DAG (9).
• Identification of PKC as a target for phorbol ester class of tumor promoters 

by Castagna et al. (10).
• Discovery of the pseudosubstrate region by House and Kemp (2).
• 1988–1997: the decade of elucidation of PKC structure–function 

relationship
• Elucidation of the structural basis of PKC function.
• Identification of receptors for activated C-kinases by Mochly-Rosen and 

coworkers (11).
• First report by Nishizuka about the role of PKC in cellular signaling (3).
• In 1994, Dekker and Parker for the first time raised the question of specifi-

city of PKC isoforms (4).
• Cloning of first RACK by Mochly-Rosen et al. (12).
• Role of anchoring protein in localization of PKCs (5).
• For the first time, the role of binding proteins in PKC isoform-specific 

functions was suggested.

1998–2007: the decade of studies on the spatio-temporal regulation of 
PKC isoforms

• Identification of PKC anchoring proteins as a means for isozyme selectivity 
by Mochly-Rosen and colleagues in 1998 (13).

• Detection of substrates that interact with C-kinases (STICKs) through 
overlay assay by Jaken (14).

• Compartmentalization of PKC through binding proteins and substrates.
• Studies on the temporal kinetics of PKC function.
• Elucidation of cell and stimulus-specific actions of PKC isozymes.

2008–present: inter-PKC regulation and PKC-signaling module
This is the decade where the concept of inter-PKC regulation in calibrating 

receptor triggered effector functions is gaining popularity leading to the possi-
ble build-up of a PKC-signaling network in space-time coordinates.

BOX 1 | Structural features of pKC isoforms defining functional 
specificity.

PKC serve as a paradigm for the reversible regulation of membrane localiza-
tion by the concerted action of two membrane-targeting modules.

C1: a cysteine-rich region of approximately 50 residues present in all PKC 
isozymes. In cPKCs and nPKCs, it is present as a tandem repeat C1A and 
C1B. aPKCs contain a single copy of the domain termed atypical because it 
does not bind phorbol esters. The domain contains two pulled apart β-sheet 
forming the ligand-binding pocket. Two zinc atoms are coordinated by 
two histidines and six cysteines at opposite ends of the primary sequence 
stabilizing the domain. In aPKCs, one face of the ligand-binding pocket is 
compromised, so that the module cannot bind phorbol esters or DAG.

Ligand binding dramatically alters the surface properties of the 
module (C1B). The ligand caps the hydrophilic ligand-binding pocket, so 
that the top-third of the C1 domain presents a continuous hydrophobic 
surface thus achieving membrane targeting by simply altering membrane 
properties.

C2: an independent membrane-targeting module that binds calcium 
in cPKCs, but not in nPKCs. C2 domain is a β-strand rich globular domain 
with loops formed by sequences at opposite ends of the primary structure. 
Two topological variants exist – Type I for domains that follow the C1 domain 
(cPKCs) and Type II for domains that precede C1 (nPKCs). In the calcium-
responsive C2 domains of cPKCs, the pocket is lined by multiple aspartic 
acid residues that coordinate two to three calcium ions that act as a bridge 
between the C2 domain and the phospholipid head groups of the membrane.

CR, cysteine rich; PS, pseudosubstrate; DAG, diacylglycerol; PMA, 
phorbol-12-myristate 13-acetate; PB1, Phox–Bem 1; C, constant regions; V, 
variable regions.
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nPKCs (18, 19). The aPKCs are not responsive to either DAG or 
Ca2+ and instead possess a Phox–Bem (PB)1 domain that facili-
tates interactions with scaffolding proteins leading to constitutive 
activation (20). Phosphorylation plays a key role in determining 
the cellular levels of PKC rendering them catalytically competent 
and protecting them from degradation (17). Classical and novel 
PKCs are constitutively phosphorylated at three conserved resi-
dues: the activation loop – the first rate-limiting step governed 
by phospho-inositide-dependent kinase (PDK)-1 that aligns 
residues within the active site for catalysis, followed by phos-
phorylation at the turn motif and autophosphorylation of the 
hydrophobic loop. For cPKCs and nPKCs, these phosphorylation 
events require mTORC2. Phosphorylation at the hydrophobic 
motif controls the stability of the enzyme promoting degrada-
tion on dephosphorylation (17). A phosphomimetic glutamic 
acid prevents phosphorylation at the hydrophobic motif of 
aPKCs. Although catalytically competent, these phosphorylated 
PKCs remain inactive in the cytosol due to binding of the pseu-
dosubstrate to its kinase domain (Figure 1A) until appropriate 
cofactor interaction provides the necessary energy to expel the 

pseudosubstrate and activate PKC. So, the key to functional 
specificity in  vivo may lie in the isoforms’ primary structure 
and the cofactors governed conformational plasticity. Yet, their 
promiscuity in vitro suggests involvement of factors beyond the 
primary structure leading to the studies on the spatio-temporal 
regulation of these isozymes.

pKC iSOFORM FUnCTiOnS in  
SpACE-TiME COORDinATES

Functional specificity of the PKC isoforms depends on the prox-
imity to their substrates in specific intracellular compartments 
effected through multiple binding proteins that also determine 
the precise duration and amplitude of PKC activity thus providing 
a mechanism for integrating PKC-mediated signaling with other 
cellular activities. PKCβI interacts with Bruton’s tyrosine kinase 
to positively regulate JNK signaling and cytokine gene expres-
sion in mast cells (6, 21). Partition defective-3 (PAR3) protein 
interacts with PKCζ to activate pathways leading to embryonic 
polarity and asymmetric cell division (6, 22), whereas PAR4 
inactivates PKCζ leading to apoptosis (6, 23). Ras-related nuclear 
protein-binding protein-9/10 integrates PKCδ and γ signals to 
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FiGURE 1 | Continued
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FiGURE 1 | (A) Hypothetical figure showing sequential activation of the PKC isoforms in response to receptor-stimulus coupling. Analyses from various studies indicate 
that in cases where a single stimulus activates multiple isoforms of different classes the classical PKC isoforms are usually activated first and to the greatest degree 
followed by the novel and atypical forms. (B) Kinetics of activation and subcellular distribution of PKC isoforms. The various classes of PKC isoforms are localized at 
different subcellular sites both prior and post activation. They are translocated to the membrane for activation in response to their respective cofactors. Post activation, 
the isoforms are translocated to specific subcellular locations by their binding partners, which bring them close to their respective substrates. DAG, diacylglycerol; IP3, 
inositol tri-phosphate; PA, phosphatidic acid; PAH, phosphatidic acid hydrolase; PI3K, phosphatidyl inositol-3-kinase; PLC, phospholipase C; PKC, protein kinase C; 
PhosIns(4,5)P2, phosphatidyl-inositol-4,5-bis phosphate; RACK, receptors for activated C-kinases; STICK, subtrates that interact with C-kinases. (C) Modulation of PKC 
isoforms by Leishmania infection. The figure shows modulation of PKC isoforms by Leishmania as it enters a host cell, for instance, macrophages, by preventing 
phagosome maturation. It interferes with the translocation of isoforms to membranes and inhibits PDK-1. It inhibits Ca2+ efflux to prevent DAG-mediated activation of 
cPKCs α and β, which are involved in proinflammatory cytokine production thus resulting in disease progression concomitantly enhancing PKCδ- and ζ-mediated 
production of anti-inflammatory cytokines to suppress host immune response conducing in parasite survival.

dictate efficient regulation of dopaminergic D1 receptor signal-
ing (24). In CHO cells, initial phorbol 12-myristate 13-acetate 
(PMA) treatment translocates and colocalizes receptor for 
activated C-kinases (RACK) 1 and PKCβII to the cell periphery 
that later move to the perinuclear area (25). Thus, RACK–PKC 
complex can move from one cellular site to another likely result-
ing in different molecular events at each site depending on the 
available substrate. PKCϵ interacts specifically with filamentous 
actin through a binding site located between its two cysteine-rich 
regions to enhance glutamate exocytosis from nerve terminals 
(26). Notwithstanding the considerable stimulus and cellular 
variability in their subcellular distribution, certain PKC iso-
forms exhibit unique localizations. PKCθ is redox dependently 
recruited to the plasma membrane of naive T-cells (27). The 
scaffolding protein A-kinase anchor protein (AKAP) 450 (25) 
associates with nascent PKCϵ within Golgi/centrosome mem-
branes and dissociates on maturation of PKCϵ (17). PKCζ shows 
a remarkable range of functions reflecting its multiple cellular 
locations and interacting partners (28). Interactions with bind-
ing partners sometimes also affect PKC pharmacological profile 

like AKAP-79 protecting PKC from certain ATP competitive 
inhibitors and altering the susceptibility of PDK-1 to ATP analog 
inhibitors (29). These observations indicate that the structural 
features determine the isoforms’ translocation and activation 
pattern, whereas the binding proteins contribute plasticity and 
specificity.

As multiple PKC isoforms may be activated by a single stimu-
lus, it is logical to assume that differential activation dynamics 
can impose specificity. Following receptor ligation, the isoforms 
exhibited differences in activation kinetics and subcellular locali-
zation. The kinetics of Ca2+-induced translocation triggered by 
the C2 domain is faster than that triggered by the C1 domain 
(30) (Figure  1A) indicating a possible sequential activation 
pattern (31) guided by stimulus specificities in many cell types 
including macrophages and T-cells (8, 31). Indeed, studies in 
chick muscle cells have shown short-term stimulation to initially 
trigger PKCα/β membrane translocation followed by PKCδ to a 
lesser degree (32). PKCδ-activated acid sphingomyelinase cleaves 
sphingomyelin releasing ceramide that activates PKCζ and inacti-
vates the cPKCs (15). These observations support the “sequential 
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PKC isoform activation” hypothesis and an inter-isoform regula-
tion (Figure 1A).

inTER-iSOFORM REGULATiOn AnD 
THEiR SiTES OF pERTURBATiOn

Coordination between the concomitantly expressed and activated 
PKC isoforms within a temporal framework seems to be regulated 
by transphosphorylation of the isoforms (33). Following receptor 
stimulation, classical isoforms are acutely activated as the release 
of calcium is fast and transient. Calcium sequestration into the 
endoplasmic reticulum is also rapid (Figure 1B), so deactivation 
of the classical isoforms likely occurs earlier than the others. 
Studies have noted a feedback inhibition of cPKCs on activation 
of novel and atypical isoforms (8, 15). PKCδ and ϵ have opposing 
effects in multiple pathological conditions, including cardiac 
ischemia, cancer, apoptosis, and cell proliferation (34). During 
endosome formation in phagocytic cells, the initial calcium burst 
activates the PKCα leading to initiation of phagosome formation 
(35). This is sequentially followed by translocation and activa-
tion of PKCδ and ϵ that play a role in phagosome maturation 
and lysosomal fusion (36). PKCα can phosphorylate PKCϵ, so 
it is possible that the effects of PKCα are shared by PKCϵ (37). 
Ceramide generated by PKCδ activates PKCζ that inhibits 
PKCα/βII at the perinuclear space (15, 38). PKCζ has constitutive 
kinase activity that can activate other PKC isoforms. Sequential 
activation of PKC isoforms thus explains the dynamic modula-
tion of cellular responsiveness dictated by the strength of stimulus 
(Figure 1B). Following TCR activation, PKCα acts upstream of 
PKCθ to activate NFκB (39). Inhibition of PKCθ abrogates the 
PKCα response indicating presence of a feedback loop between 
the isoforms or, as proposed here, a sequential activation of PKCα 
and PKCθ. Conversely, PKCθ and PKCβ seem to have physiologi-
cally redundant roles in TCR/CD28-dependent NFκB and NFAT 
transactivation in primary mouse CD3+ T cells (40). In intestinal 
epithelium, PKCα downregulates while PKCϵ upregulates cyclin 
D1 thus contributing to the opposing effects of these isoforms in 
tumor progression (41). nPKC isoforms are sequentially recruited 
to the immunological synapse with PKCϵ and η being recruited 
first followed by PKCθ (42). Opposing effects of PKCη and 
PKCθ on relative numbers of CD4+ and CD8+ T cells have been 
observed in mice (43). PKCα and PKCβ cooperate functionally in 
CD3-induced de novo IL2 mRNA transcriptional transactivation 
in primary mouse T cells independently of the actions of PKCθ 
(44). PKCϵ acts upstream of PKCα in the signal transduction of 
ischemic preconditioning of human myocardium (45). These 
inter-PKC regulations through feedback loops and sequential 
activation constitute a functioning PKC module. Mechanistically, 
an adaptor with dynamically controlled multiple scaffolds may 
connect one PKC isoform to the next.

DiFFEREnTiAL pKC iSOFORM 
REGULATiOn in inFECTiOn

With so many available isoforms, PKC is an ideal candidate 
for intracellular perturbators (Figure  1C). Reciprocal action 

of PKC isoforms has been observed in many infection and 
disease models. Histone deamination in neutrophils during 
pathogen infection or chronic inflammation is activated by 
PKCζ while PKCα inhibits it (28). In bone marrow-derived mast 
cells (BMMs), PKCα and θ positively regulate IL6 and TNFα 
production against filarial nematode Acanthocheilonema viteae 
infection, whereas PKCβ and ϵ act as negative regulators (46). 
cPKC activation seems to be associated with proinflammation as 
evident by the activation of these isoforms on coincubation with 
IFNγ (47). In Mycobacterium tuberculosis-infected macrophages, 
PKCα upregulates proinflammatory response in conjugation 
with TLR2 on pretreatment with arabinosylated lipoara-
binomannan (48). While PKCα/β mediates CD40-induced 
p38MAPK phosphorylation and IL-12 expression, PKCδ and 
ζ inhibit it reciprocally by enhancing ERK1/2 phosphorylation 
and IL-10 production (8). PKCα degrades periphagosomal 
F-actin required for phagosomal maturation (49). This is key to 
the survival or elimination of the pathogens, which are either 
phagocytosed or internalized via receptor-mediated endocy-
tosis. Infection might cause impairment of Ca2+-host signal 
transduction, which in turn may affect classical PKC isoforms. 
Leishmania donovani infection or recombinant IL-10 treatment 
of macrophages inhibits both the activity and expression of the 
cPKC isoforms (50). Leishmania major also impairs PKCα, βI, 
βII isoforms while enhancing PKCδ and ζ isoforms in mac-
rophages (8, 37). Increased generation of membrane ceramide 
(51) and concomitant cholesterol extrusion (52) may cause the 
inhibition of PKCα/β and activation of PKCζ in macrophages 
during Leishmania infection (8). Comparison between DAG and 
ceramide elucidates the different kinetics of aPKC isoforms from 
the other two. Ceramide activates the alternate signaling path-
ways leading to anti-inflammatory responses. PKCζ has been 
shown to be involved in the activation of arginase I, the enzyme 
responsible for inhibition of iNOS and inflammatory responses 
toward parasites (53). Intracellular pathogens can interfere with 
any of these mechanisms in order to tune the PKC-mediated 
signaling pathways according to their convenience (Figure 1C). 
Being least specific in regards to cofactor and activator require-
ments, nPKCs play a dual role in inflammation (8, 36, 47, 54). 
So, the PKC isoforms and the inter-isoform regulation might 
serve as targets for cellular signaling modulation for therapeutic 
intervention against pathophysiological conditions.

COnCLUSiOn

From the evidences gathered, the existence of inter-PKC regula-
tion and a PKC-signaling module seem a logical plausibility. 
The signaling specificity is generated by the combinatorial 
assemblies and spatio-temporal dynamics of the PKC isoforms 
allowing calibration and kinetic modulation of the pathways 
of the receptor-regulated cellular responsiveness. Although 
the extreme diversity of PKC responses based on cellular and 
stimulus differences and the lack of appropriate tools and 
specific inhibitors pose a major hurdle in building of a generic 
PKC-signaling map, the analyses provide a conceptual frame-
work placing all PKC isoforms in a single space-time network 
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