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a b s t r a c t

A fundamental biological question is how diverse and complex signaling and patterning is controlled cor-
rectly to generate distinct tissues, organs, and body plans, but incorrectly in diseased cells and tissues.
Signaling pathways important for growth control have been identified, but to identify the mechanisms
their transient and context-dependent interactions encode is more difficult. Currently computational sys-
tems biology aims to infer the control mechanisms by investigating quantitative changes of gene expres-
sion and protein concentrations, but this inference is difficult in nature. We propose it is desirable to
explicitly simulate events and orders of gene regulation and protein interactions, which better elucidate
control mechanisms, and report a method and tool with three examples. The Drosophila wing model
includes Wnt, PCP, and Hippo pathways and mechanical force, incorporates well-confirmed experimental
findings, and generates novel results. The other two examples illustrate the building of three-dimensional
and large-scale models. These examples support that reconstructed spatiotemporal distributions of key
signaling events help elucidate growth control mechanisms. As biologists pay increasing attention to dis-
ordered signaling in diseased cells, to develop new modeling methods and tools for conducting new com-
putational studies is important.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

How complex and precise developmental signaling and pattern-
ing is accurately controlled during embryogenesis in order to gen-
erate correct and distinct tissues, organs, and body plans is a
fundamental question in biology. The difficulties of examining
interactions between genes and proteins under in vivo conditions
and unravelling positive and negative feedbacks encoded by these
interactions make computational models increasingly used to inte-
grate experimental findings and to unveil control mechanisms. Sig-
naling in a group of connecting cells comprises a series of
spatiotemporally ordered gene and protein interactions. Many
interactions have been defined in signaling pathways (e.g., Wnt
and Notch pathways) [1], but more, including those wrong ones
in diseased cells (e.g., cancer cells) [2], remain unclear, because
they are context-dependent and show emergent behaviors. It is
interesting, important, and challenging to analyze the order and
disorder of gene and protein interactions under varied conditions.
Multicellular computational models fall into two classes - lat-
tice models that examine cells with a regular shape in a fixed array
and vertex models that inspect cell shape, cell growth, cell division,
and tissue growth [3,4]. Since it is difficult to simulate cell divi-
sions in the lattice model framework and it is inconvenient to solve
a large-scale differential equation system in the vertex model
framework, modeling platforms such as Chaste have been devel-
oped [5], and models built using such platforms may share features
of both lattice and vertex models. But, no matter a model is built
using a specific method or a platform, inferring the spatiotemporal
order of gene and protein interactions from protein concentrations
is uneasy and unreliable. It is argued that ‘‘the heart of the matter
(developmental signaling) is not so much the individual molecules,
but more the flow of information and the logic of the system they
participate in” [6]; this argument calls for new methods capable of
directly exploring the order of gene and protein interactions.

To facilitate describing and exploring the order and disorder of
signaling, we have gradually developed a method and tool. The
method is to reconstruct signaling events and the tool is a specific
programming language. The tool, with cellular automata and
object-oriented features (called Cellang++), enables signaling
among genes and proteins to be simulated as message passing
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between objects, and enables cell divisions to be simulated easily
in a lattice model framework. Models built using this method
and tool indicate that gene and protein interactions follow specific
spatiotemporal orders, which help decipher the logic as well as the
control mechanisms of signaling [7,8]. Here this method article
reports the method and tool with three new applications.
2. Methods

2.1. The design principle of the method and tool

Cellular automata are a kind of tools for studying complex and
dynamic systems [9]. The key feature of such systems (including
both physical and biological systems) is that local, simple interac-
tions generate global, complex patterns. It is impressive that sim-
ple signaling among cells creates complex tissues and organs.
Many researchers assume a natural correspondence between a bio-
logical cell and an automata cell and use the latter to model the
former. However, the extra features of biological systems demand
more flexible and extendable cellular automata-style tools. A tissue
or organ contains cells of different types, and these cells can
change their type and position and produce new cells. Within each
cell, genes and proteins have different attributes and functions,
with genes being activated or repressed and proteins being pro-
duced or degraded. Thus, local interactions happen within and
among cells. Moreover, the interactions within and among cells
controlling tissue growth and patterning are not simple; instead,
they have rich semantics and show distinct spatiotemporal orders.

To facilitate describing heterogeneous cells and molecules (e.g.,
genes and proteins), it is advisable to add object-oriented facilities
into a cellular automata language, allowing to encapsulate mole-
cules into objects and to describe objects and cells using ‘‘local”
programs. This also allows interactions between molecules to be
simulated as message passing between objects, and allows signal-
ing between cells to be simulated as message passing between
cells. By continuously capturing all message passing events in each
and every cell, how local interactions generate global and complex
growth patterns can be revealed. Thus, we implemented a cellular
automata language with object-oriented features to realize the
three abstractions: using an automata cell to simulate a biological
cell, using an object to simulate a molecule, and using message
passing between objects/cells to simulate interactions between
molecules/cells. Except several types of sophisticated cells (e.g.,
neural and muscle cells), many biological cells can be simulated
as automata cells if the pattern of tissues and organs, but not the
shape of individual cells, is studied. Like the development of many
programming languages, we used the C language to realize the cel-
lular automata language, and a model built using the language is
first translated into C programs and then complied into an exe-
cutable file.
2.2. Encapsulating genes and molecules into objects

Programmed using this cellular automata language, each model
comprises three parts: a Cellang++ program that describes the
structure and activities of the cell (the program is shared by all
cells) and the molecules within, a text file that describes the cell
array and initial input, and two precompiled C files that contain
the generic graphic windows. The modeler needs to develop only
the first two parts.

The Cellang++ program includes (a) a set of cell fields, (b) a cell
program, (c) a message queue (called msgq, implicitly defined by
the system), and (4) a set of objects. Each molecule (e.g., a gene
or protein) is encapsulated into an object, which includes (a) a
set of molecule fields, (b) a molecule program, and (c) a message
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queue called msgq (implicitly defined by the system) (Fig. 1). Cell
fields describe cell attributes (e.g., cell type and age) and molecule
fields describe molecule attributes (e.g., protein concentration).
Cell and molecule fields are updated in each round of computation.
In the cell and molecule programs, variables (which are used to
compute cell and molecule fields and to process messages) can
be declared. Except the two built-in variables rtime and time
(which report the current time and current running step), all vari-
ables have only temporary values (they are cleared and re-declared
in each round of computation). A set of constants can be declared
ahead of cell fields; their values are fixed and most constants are
model parameters.

In the cell and molecule programs, the sendmsg statement sends
messages from one cell/molecule to another cell/molecule, and the
if msge $ operation checks messages in an msgq from other
cells/molecules. Each message has four components: the target
cell, the target molecule, the message, and a parameter that carries
quantitative information. For example, if A activates B, A sends an
activating message to B, which is captured in B as A_Act_B_0_0
(0_0 indicates B and A are in the same cell) or A_Act_B_p1_n1
(p1_n1 indicates B is in the cell at the relative address [+1,-1]).

2.3. Defining message passing between molecules

A message can be defined upon an event (a change of gene state
or protein concentration), or upon the occurrence of related events
(i.e., the receiving of related messages). If Hill functions are used to
describe the nonlinear transcriptional activation/repression and
protein activation/repression, the coefficients in Hill functions
can be used to define signaling events. When A’s concentration
exceeds the half-maximal activation/repression coefficient in the
Hill function that describes A nonlinearly activating/repressing B,
A sends an activating or repressing message to B.

2.4. Displaying signaling events in cells and in the cell space

To display captured signaling events, three sets of graphic win-
dows are developed in the precompiled C files. These windows are
opened and closed using hotkeys during simulation. The first set
are for debugging models, the second set are for displaying protein
concentrations and signaling events in specific cells, and the third
set are for displaying protein concentrations and signaling events
in the cell space (Supplementary Fig. 1; Fig. 2). The size and names
of the first and second sets of windows and the number and names
of the third set of windows fit the number and names of fields in
the cell and the number and names of fields in molecules automat-
ically, thus these windows are generic. To display these graphic
windows, one or multiple color map files should be defined.

2.5. Simulating cell division and cell movement

The copyto([i, j, k], s) statement performs cell division. If [i, j,
k] = [0, 0, 0] (i.e., the relative address of the current cell), the
daughter cell is inserted into a random position adjacent to the
mother cell, otherwise it is inserted into the position specified by
the relative address (e.g., [1, 1, 0]). If the specified position is occu-
pied by a cell, the movement of the cell, and possibly also related
cells, is performed automatically (Supplementary Fig. 2). In ([i, j,
k], s), s = 0 or 1 indicate symmetric or asymmetric cell division
(i.e., the daughter cell inherits the same protein concentrations
from the mother cell or adopts random protein concentrations).
After a cell division, the mother and daughter cells use the current
time rtime as their new birth time (this makes the mother cell not
immediately dividable). The swapto[i, j, k] statement performs cell
movement, moving the current cell at [0, 0, 0] to [i, j, k].



Fig. 1. Using message passing to simulate molecular interactions. (A) An object can receive messages from multiple objects and take actions accordingly, making its activities
event-driven. (B) When the Warts concentration (indicated by the field v whose value ranges between 0 and 10) exceeds the parameter para1, Warts sends a Rep message to
Yorkie. Warts checks if the message queue msgq contains Act and Rep messages from Yorkie and Dachs. (C) Yorkie checks if msgq contains Rep message from Warts. If Yorkie
concentration exceeds the parameter para2, Yorkie sends an Act message to Vestigial. ‘‘cell” is used in the messages if the event occurs in the same cell, otherwise a relative
address such as [+1,+1] and [-1,+1] is used. Abbreviations: Warts (Wts), Yorkie (Yki), Dachs (D_P, with P indicating the proximal compartment).
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2.6. Solving differential equations

If differential equations are defined in objects to compute pro-
tein concentrations and gene states, the codes for solving these
equations are generated automatically when the Cellang++ pro-
gram is compiled into the C programs. Partial and ordinary differ-
ential equations in all cells are solved simultaneously using the
method of lines [10] (in detail, using the Runge-Kutta method with
adaptive time steps). In the error control term |err|<|U|�relerr + ab-
serr, the default value for the two error thresholds relerr and abserr
is 0.001. As long as |err|>=|U|� relerr + abserr occurs in any equation
in any cell, the time step is halved and the current round of com-
puting is repeated in all cells. An initial condition should be defined
for each differential equation, and four kinds of boundary condi-
tions (Neumann, Dirichlet, mixed, and periodic) can be defined
for partial differential equations. The nonlinearity and stiff of equa-
tions, the number of equations, the number of cells, and the value
of relerr and abserr together determine a model’s running speed
(i.e., steps of numerical solution per second). To run the Drosophila
wing model (see Application A) on a personal computer with one
CPU (i5-2400, 3.1 GHz), 8G memory, and CentOS 6.0, it takes
1 min to run 627 steps and needs 3–5 h (it takes more time if more
graphic windows are opened) to reach T = 210 (T = rtime, and it is
non-dimensional).
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2.7. Built-in functions

Several sets of built-in functions are implemented. First, pos(1),
pos(2), and pos(3) return the position of the current cell on the X, Y,
and Z axis. These functions are used to define conditions to locate
specific cells (a cell that matches the conditions is called the cur-
rent cell and its relative address is [0, 0, 0]). Second, Hr() and Ha
() compute activating and repressive Hill functions. Third, del()
computes molecule diffusion in a 2D or 3D space. In addition, all
mathematical functions in the C language can be called in the Cel-
lang++ program to perform quantitative computation.
3. Application A

3.1. Background

During embryogenesis cell divisions must be precisely con-
trolled to make tissues and organs reach the correct size and shape
[11–13]. Early studies suggested that growth and patterning is
activated by morphogen gradients and that growth stops when
these gradients become shallower than a threshold [14,15]. How-
ever, subsequent findings from Drosophila wing and eye develop-
ment contradicted this simple hypothesis (Supplementary Note 2).



Fig. 2. Graphic windows display protein concentrations and signaling events in the 3D cell division model. (A1-A3) The distribution of cells in different planes (the YZ-plane
of X = 18 and the XY-plane of Z = 29 and Z = 35) and a time point (T = 158). (B1-C3) Cyclin E and cyclin B concentrations in the same planes and time point (warm and cold
colors indicate high and low concentrations). (D-F) The distributions of the E2F1_Act_CycE, E2F1_Act_E2F1, and APCFzr_Ubi_CycA events in the XY-plane of Z = 29 at T = 158
(blue color indicates the occurrence of events). Abbreviations: cyclin E (CycE), cyclin B (CycB), the APC and Fzr complex (APCFzr), ubiquitination (Ubi). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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In Drosophila wing development, cell divisions are initiated in
the middle of the wing disc along the dorsal–ventral (DV) bound-
ary and growth is mainly along the proximal–distal (PD) axis
(Fig. 3A). Key protein interactions controlling wing growth along
the PD axis have been characterized (Fig. 3BC). Interactions
between these proteins make these proteins form spatial gradients
in the wing and biased distributions in each cell. Cell divisions gen-
erate a mechanical force, which decreases cytoskeletal tension
(especially in the periphery of the wing, i.e., the proximal region,
making cells stretched) and increases compression stress (espe-
cially in the center of the wing, i.e., the distal region, making cells
compressed) [16]. The stress activates Warts (and consequently
represses Yorkie) in adjacent cells, downregulating cell divisions
[17–19]. Hence, the core mechanism controlling wing growth
along the PD axis includes four elements: Wnt/PCP/Hippo signal-
ing, and mechanical force (Fig. 3C). When and where the four ele-
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ments interact with each other to initially promote but later stop
growth remains poorly understood. Especially, the activation of
Warts by the mechanical force created by cell divisions generates
a spatiotemporal negative feedback, which should be important
for growth arrest. In addition, experiments reveal that the increase
of Dachs activates Hippo signaling and that Dachs is degraded by
the ubiquitin ligase FbxL7 (Fig. 3C) [20,21]; but how the increase
of Dachs can be reconciled with the degradation of Dachs in the
same cells remains unclear. We wish to use a new model to
address the two questions.

Lattice models were used to examine Wnt signaling (the diffu-
sion and downstream targets of Wg) and PCP signaling (the gradi-
ents of and interactions between Fat, Dachsous, and Four-jointed)
in the wing [22–24]. After it was proposed that cell proliferation
is regulated by the mechanical force generated by proliferating
cells [25], vertex models focusing on the mechanical force were



Fig. 3. Drosophila wing and the wing growth model. (A) Third instar wing disc (left) and ex vivo everted wing (right) (adapted from [50]). Colors show which regions in the
wing disc will form which structures in the developed wing. A, P, D, and V indicate anterior, posterior, dorsal, and ventral. The red line in the center of wing pouch but at the
distal end of the developed wing indicates the DV boundary. In the developed wing the ventral part of the disc ends up on the back side. (B) A schematic depiction of the
Wingless, Vestigial, Four-jointed, and Dachsous gradients along the PD axis. Red arrows indicate Wingless diffusion. (C) A schematic of the model. The a, b, and c shaded areas
indicate theWnt, PCP, and Hippo pathways, respectively. Numbered links indicate experimentally reported protein interactions. Links with an arrow, hammer, or dot indicate
activation (e.g., A ? B), repression (e.g., A-|B), or binding (e.g., A–B). Dashed links indicate interactions with less experimental support (and not in the primary model). The
parentheses around FatDs indicate that the Fat-Dachsous binding is not explicitly modeled. Proteins with a caret (^) have a constant production rate. Proteins that are
underlined have a biased (polarized) intracellular distribution along the PD axis, and two differential equations are used to compute its concentration in the distal (shaded
blue) and proximal (shaded in pink) compartments. At the two cell junctions D and P indicate the distal and proximal compartments, and big and small fonts of Fat and
Dachsous indicate high and low concentrations, respectively. (D) The model’s initial conditions (IC). ‘‘#” indicates that Wingless is expressed only in the DV boundary cells.
Abbreviations: Wingless (Wg), Frizzled (Fz), Vestigial (Vg), Dachsous (Ds), Four-jointed (Fj), Warts (Wts), Yorkie (Yki), Wg-bound Frizzled (FzB), Dachs-Dachsous (DDs), Fat-
Dachsous (FatDs), FbxL7 (F7), Fat-FbxL7 (FatF7), Activating (Act), Repressive (Rep), Stress (Sts), ubiquitination (Ubi). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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developed. One model reveals that cells are compressed in the cen-
ter of Drosophila wing and that growth stops once the compression
level in the center reaches a threshold and the compression gradi-
ent in the other areas drops below a certain level [26]. After Warts
was identified as the molecular target of the mechanical force [19],
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studies revealed that cell divisions reduce cytoskeletal tension (or
increase cell compression) and decrease Yorkie activity [17], and
that the spatiotemporal changes of Yorkie activity and mechanical
force are correlated [18]. We wish to use reconstructed signaling
events to unveil these spatiotemporal changes in more detail, espe-



Fig. 4. The spatial distributions of protein concentrations and signaling events at different time points during wing growth. In all panels the vertical bar indicates the DV
boundary. (A-A’’) show the experimentally observed growth process (from [16] with permission). In (B-C’’) warm and cold colors indicate high and low concentrations of
Warts and Yorkie. In (D-D’’) blue and white sites indicate the presence and absence of the Warts_Rep_Yorkie event in cells, and a ring-shape dense distribution of the event in
the periphery is apparent at T = 210. (E-E’’) show cell division rates. As experimentally observed, Yorkie concentration varies less significantly than Warts concentration does,
and cell division rates are initially high (light blue), then decline (deep blue). The parameter settings were agepara = 10, randpara = 0.99, stresspara = 0.04 for controlling cell
age, random cell divisions, and stress. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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cially, when and where the mechanical force represses Yorkie via
Warts.
3.2. The model

Using the described method and tool, we built a model that
includes the Wnt, PCP, and Hippo pathways and mechanical force.
It includes features of lattice and vertex models in a straightfor-
ward way: protein diffusion and interaction described by differen-
tial equations as in lattice models, and tissue growth simulated by
cell divisions as in vertex models. Some simplifications were made
to manage the complexity of the model without significantly com-
promising its power and validity. First, cell division was simulated,
but cell growth was not, and cell age was used as a proxy for cell
size because cell size does not matter much for control of wing
growth. Second, if a protein has a biased (polarized) distribution
in a cell (i.e., intracellular distribution) along the PD axis, two equa-
tions were used to compute its concentrations in the proximal and
distal compartments in each cell; this implicitly divided a cell into
two compartments. Third, all proteins were assumed to have the
same half-lives.

Model parameters were set based upon experimental findings,
constraints among interacting proteins, and tuning the model to
produce observed phenotypes. Since Vestigial and Yorkie are
required for cell division [27], and cell divisions occur unsynchro-
nized and stochastically [28], four conditions (the concentration of
Vestigial, the concentration of Yorkie, the age of cells, and a ran-
dom number that determines the chance a dividable cell divides.
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As a cell divides, the daughter cell was inserted proximal to this
cell and inherited the protein concentrations from this cell (Sup-
plementary Fig. 2). Experimentally identified protein interactions
were realized, and model robustness was tested by changing indi-
vidual parameters and by performing parameter sampling (Supple-
mentary Table 2, 3).
3.3. Results

The model reproduced many experimentally observed cell and
protein activities (Supplementary Note 4) [29–37], including the
finding that cell divisions occur more frequently in the proximal
regions at late developmental stages. As long as a dividing cell gen-
erated a stress (i.e., the mechanical force, hereafter also called cell
stress, with the parameter stresspara > 0.0) on its neighbors,
growth arrest occurred. A key feature of Drosophila wing growth
is that even when the anterior and posterior regions have different
cell division rates, a wing of normal size and shape is still gener-
ated [38]. We examined whether the model could recapitulate this
subtle phenotype by running the model with cells having different
cell cycle lengths in the anterior and posterior regions. Under all
parameter settings the model eventually generated the same cell
numbers in the anterior and posterior regions (Supplementary
Fig. 4). If the parameter stresspara = 0, unequal numbers of cells
were produced in the two regions. These results provide confi-
dence that the model is accurately reflecting the developmental
process.



Fig. 5. Results of parameter sampling. Panels O2 and O3 (showing the distribution of Warts and Yorkie concentration) indicate that when protein concentrations differ
limited it is uneasy to infer signaling events. (C-E, JK, Y) show the distribution of cell divisions, in these cases the parameter changes failed to make cell divisions. In all other
cases theWarts_Rep_Yorkie event is densely distributed either globally (in panels L, N, S, T1, W1, and X1) or in the periphery. (T2, W2, and X2) show the distributions of Yorkie
concentration, which indicate that Yorkie repression byWarts is more prominent in the periphery. Parameter changes (Supplementary Table 3) and phenotypes are compared
with the default ones (Supplementary Table 2; Fig. 4).
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By examining the spatiotemporal distribution of Yorkie repres-
sion, we next explored when and where cell divisions are repressed
and obtained the following findings. At the early stage the high Wg
and Vestigial concentrations in the center of the wing cause
increased cells, activated Warts, and densely distributed Warts_Re-
p_Yorkie event (Fig. 4A-E). As the wing grows, as experimentally
observed [16], activated Vestigial in proximal wing cells regulates
Four-jointed and Dachsous expression, causing the sharp slope of
the Four-jointed and Dachsous gradients gradually shift proximally
(Fig. 3B; Supplementary Fig. 3). The repression of Yorkie by Warts
(activated by cell stress in the distal (central) region of the wing)
and the activation of Dachs (activated by Fat-Dachsous interaction
in the proximal (periphery) region of the wing) make the cell divi-
sions reduced in the center and increased in the periphery. How-
ever, as Warts is repressed by Dachs continuously, Warts causes
fewerWarts_Rep_Yorkie in the center. Meanwhile, the gradual acti-
vation of Warts by increased cell divisions in the periphery
increases Warts_Rep_Yorkie. Together, these two regulations make
the densely distributed Warts_Rep_Yorkie event shift from the cen-
ter to the periphery (Fig. 4A’’-E’’). We thus propose that the densely
distributed Warts_Rep_Yorkie in the periphery indicates growth
arrest. To examine whether this distribution would occur robustly
under varied conditions, parameter sampling (to change multiple
parameters simultaneously and examine results influenced by
these changes) was performed (Supplementary Table 3). We found
that whenever wing growth occurs, the densely distributed
Warts_Rep_Yorkie in the periphery is generated (Fig. 5), and when
Fig. 6. The expression of cyclin E and cyclin A and the distribution of the Skp2_Ubi_CycE
cyclin E (C) and subsequently cyclin A (D) in the periphery of wing disc agrees with the
from [18]).
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in several cases Warts_Rep_Yorkie occurs in the whole wing, Yorkie
repression by Warts is still more prominent in the periphery
(Fig. 5T2, W2, X2), indicating that Warts_Rep_Yorkie in the periph-
ery is a reasonable indicator of growth control.

Since Dachs indirectly activates Yorkie and Yorkie stimulates
cell division (Fig. 3C), it would be rational to observe high Dachs
concentration in proliferating cells [39,40]. Both our simulations
and experimental studies generate this observation. However, it
was recently reported that Dachs is degraded by FbxL7 in wing
cells [20,21]; we thus examined how the degradation of Dachs
can be reconciled with the increase of Dachs. Under all parameter
settings, if Dachs has a biased distribution and is degraded only in
the proximal compartment in each cell, Dachs concentration is
slightly increased in the whole cell (Supplementary Fig. 5). Exper-
imental studies did not reveal whether Fat is involved in the degra-
dation of Dachs and Dachsous [20,21]. We found that, if we let both
FbxL7 and the Fat-FbxL7 complex degrade Dachs, Dachsous, and
the Dachs-Dachsous complex (Fig. 3C), the distributions of all these
proteins agree with experimental findings, but otherwise not. This
is an experimentally testable prediction that both FbxL7 and its
complex Fat-FbxL7 degrade Dachs, Dachsous, and the Dachs-
Dachsous complex.
3.4. Discussion

Upon the experimental findings that cells are compressed in the
center, that the stress in compressed cells activates Warts, and that
(Skp2 ubiquitinating cyclin E) event in the developing wing. The high expression of
experimentally observed high expression of Yorkie (A) in the late stages (panel A is
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Warts represses cell division by repressing Yorkie, it is hypothe-
sized that growth arrest is initiated in the center of the wing. But
this hypothesis cannot explain how growth is repressed later in
the periphery [26]. The reconstructed spatiotemporal distribution
of the Warts_Rep_Yorkie event instead suggests that growth arrest
is initiated in the periphery. We also examined another hypothesis,
which is that the global Four-jointed and Dachsous gradients will
eventually become too shallow to activate Dachs and Yorkie, thus
cause growth arrest globally [41,42]. The model indicates that the
changes of Dachsous and Four-jointed gradients are inadequate to
cause growth arrest (Supplementary Note 7).

In a growing tissue or tumor, cell divisions anywhere activated
by any growth-promoting pathway can activate growth, but
growth arrest is coordinated globally, making it difficult to study
growth arrest by examining only an isolated part of the tissue or
a subset of the relevant pathways. Thus, the mechanisms control-
ling growth arrest are less studied and less understood. This wing
growth model recapitulates multiple experimental findings
[16,20,21,35,38,40,43], and generates two novel findings. First,
growth arrest starts in the periphery of the wing, instead of in
the center as has been hypothesized [26], and second, Fat is
involved in the degradation of Dachs and Dachsous. These results
suggest that the distributions of protein concentrations and signal-
ing events together better unveil when and where growth arrest is
initiated.
4. Application B

The growth and patterning of most tissues and organs depends
on the orderly control of cell divisions in the 3D space. It remains
poorly known how different crosstalk among these evolutionarily
conserved signaling pathways generates various signaling cascades
and spatiotemporally ordered cell divisions. It is important to
model cell divisions in 3D space to address the question.

It is easy to use this tool to build 3D models. To indicate this
easiness, here we show how to transform a Drosophila cell cycle
model into a 3D cell division model. Most cell cycle models are
single-cell models and cell divisions are not simulated, but the
one we developed using this tool is a 2D model (Supplementary
Fig. 6) [8]. We first extended the cell cycle model into a 2D cell divi-
sion model by adding the condition that controls cell divisions and
the copyto statement that implements cell divisions, then extended
the 2D cell division model into a 3D one. The 2D and 3D form of the
cell division model has only two differences: the parameter in the
dimension definition and the parameter in the copyto statement
(Supplementary Fig. 7). By pressing the hotkey ‘‘x”, ‘‘y” or ‘‘z” one
can choose to access the YZ-, XZ-, and XY-planes of the 3D model,
and by further pressing the hotkey ‘‘+” and ‘‘-” one can go up or
down along the chosen axis to check and capture protein concen-
trations and signaling events in specific planes (Fig. 2). This cell
division model can be easily integrated with different signaling
pathways (Supplementary Fig. 8), facilitating the investigation of
growth and patterning of tissues, organs, and tumors.
5. Application C

To simulate cell divisions in more detail during the growth of
normal tissues and organs and tumors, it is necessary to incorpo-
rate a cell cycle model into a tissue growth model containing mul-
tiple signaling pathways. As an example, we used the tool to
integrate the 2D cell division model into the 2D wing growth
model (Fig. 6A; Supplementary Fig. 6), generating a highly biolog-
ically detailed model for examining the orderly control of cell divi-
sions by the Wnt, PCP, and Hippo pathways and the cell cycle
pathway in the wing. The two models are bridged by the activation
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of cyclin E (a conserved protein that activates cell divisions in mul-
ticellular organisms) by Yorkie [44], thus we used Yorkie to replace
the growth factor in the equation of cyclin E to implement the
Yorkie-activated cyclin E expression. The captured protein concen-
trations and signaling events reveal how the spatiotemporally con-
trolled cell divisions lead to wing growth and patterning (Fig. 6B-
F). This model can be further extended to include more genes
and pathways.
6. Concluding remarks

Experimental studies have revealed that the development of
distinct tissues, organs, and body plans is controlled by a set of
highly conserved genes and pathways. This finding not only sup-
ports the argument that the heart of developmental signaling
and patterning is more about the flow of information and the logic
of the system these genes and pathways participate in [6], but also
implies that these genes and pathways critically control the
growth of various organoids [45,46]. The difficulties of continu-
ously detecting transient protein interaction and gene regulation
changes under in vivo conditions make computational studies
increasingly important. Although multiple modeling tools and
platforms (such as Chaste [5]) have been developed, to build com-
plex models is still challenging. During a signaling process, protein
concentrations may change insignificantly (especially in non-
dimensional models), a gene or protein may be regulated by mul-
tiple regulators simultaneously, and it is difficult to differentiate
the causes from the consequences [47]. These make it difficult to
uncover the order and disorder of signaling using purely quantita-
tive models. As biologists pay increasing attention to disordered
signaling in diseased cells, to develop new modeling methods
and tools for new computational studies is needed.

Biologically detailed models sharing the features of lattice and
vertex models are beneficial; for example, they help examine the
role of Wnt diffusion during wing growth (Supplementary Note
4). This method and tool not only makes it easy to build detailed
models, but also enables reconstructing signaling events. In addi-
tion to revealing the order and logic of normal signaling, recon-
structed signaling events in biologically detailed models can help
reveal how to rectify wrong signaling in diseased cells (Supple-
mentary Fig. 8) [2,48]. For researches using organoids to study
brain development, tissue repair, and tumor growth [45,46], recon-
structed signaling events are especially useful for identifying
mechanisms that can control desired growth and patterning. Even
if reconstructed spatiotemporal distributions of signaling events
may not be readily validated experimentally, they are valuable
for guiding future experiments. If computed protein concentra-
tions agree widely with experimental findings and if subtle pheno-
types are reproduced, one can have confidence in the simulated
signaling events.

We note that the described tool is not necessarily the sole
implementation of the proposed method. The tool is suitable for
building multicellular models but not single-cell ones, for building
biological detailed models but not concise ones, and for modeling
cells without shape and size but not cells with complex shape
and different size. Cells with two compartments can be conve-
niently described, and hexagonal epithelial cells can be described
by dividing a cell into six computational units with a specific cell
neighborhood [49]. Differential equations are not indispensable,
because messages that carry quantitative information can describe
complex molecular interactions. Given that quantitative models
are computationally costly and qualitative models may be incom-
petent, models based on message passing with quantitative infor-
mation in messages provide a choice for the third approach.
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