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Deep learning (DL) is a rapidly developing field in machine learning (ML). The

concept of deep learning originates from research on artificial neural networks

and is an upgrade of traditional neural networks. It has achieved great success

in various domains and has shown potential in solving medical problems,

particularly when using medical images. Bladder cancer (BCa) is the tenth

most common cancer in the world. Imaging, as a safe, noninvasive, and

relatively inexpensive technique, is a powerful tool to aid in the diagnosis and

treatment of bladder cancer. In this review, we provide an overview of the latest

progress in the application of deep learning to the imaging assessment of

bladder cancer. First, we review the current deep learning approaches used for

bladder segmentation. We then provide examples of how deep learning helps

in the diagnosis, staging, and treatment management of bladder cancer using

medical images. Finally, we summarize the current limitations of deep learning

and provide suggestions for future improvements.
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Introduction

According to the latest statistics from Global Cancer, bladder cancer (BCa) is the tenth

most common cancer in the world, with approximately 573,000 new cases and 213,000

deaths in 2020 (1). Early diagnosis and treatment are key to reducing morbidity and

mortality associated with BCa (2, 3). In current clinical practice, pathological examination

following transurethral resection of bladder tumor (TURBT) and cystoscopy are the gold

standard for diagnosing BCa (4). However, these methods are expensive and invasive,

making it difficult for many patients to afford them, which may delay diagnosis (5).

Therefore, as a noninvasive and inexpensive method, imaging techniques play an

increasingly important role in the diagnosis of BCa (6). At present, magnetic resonance

imaging (MRI), positron emission tomography (PET), and computed tomography (CT) are

the conventional imaging methods for diagnosis before treatment (7). However, due to the

complex and variable imaging features of BCa, it is difficult for radiologists to make an
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accurate BCa diagnosis based only on their experience. Therefore,

there is an urgent need for better imaging methods to achieve a

noninvasive and accurate diagnosis of BCa.

Deep learning (DL) is a rapidly developing field in machine

learning (ML). Compared with classical ML algorithms, manual

selection of features is not necessarily required in advance in DL. In

contrast, the algorithm can learn the most relevant features for

classification or prediction (8). In addition, it easily takes advantage

of increases in the amount of available computation and data, with

very little engineering by hand. This makes DL particularly useful for

solving complex computational problems involving large-scale image

classification, speech recognition, and many other domains (9, 10).

Medical images contain a vast amount of data with extremely

valuable signals and information, which is far beyond the ability of

human beings to analyze. ML is naturally and rapidly used in this

field because of its unique ability to integrate, analyze, and make

predictions based on large amounts of data (11). As an emerging

technology in recent years, DL has the potential to make better use

of a large amount of data and provide better results (12, 13). In this

review, we describe the research status of DL in the image

segmentation, diagnosis, staging, and treatment response

prediction of BCa (Figure 1). We are the first comprehensive

review to present the current state of research on DL in BCa

imaging. We focus on the purpose, DL methods, advantages, and

limitations of the current research and discuss possible future

directions in the field.
Methods

We conducted a literature search in the PubMed, Web of

Science, and IEEE Xplore databases using the term “Bladder
Frontiers in Oncology 02
Cancer,” combined with the terms “Deep Learning”, “Diagnostic

Imaging”, and “Medical Imaging”. In order to obtain articles that

met the requirements of this review, we applied the following

eligibility criteria: ① The paper is written in English; ② the paper

is not a review article or editorial; ③ the paper is mainly related

to BCa; ④ the paper discusses DL; and ⑤ the paper discusses

imaging data. Figure 2 illustrates the process of selecting articles

based on the PRISMA criteria. To conduct our review, we

extracted the names of the papers, authors, year of publication,

DL modules, number of patients included, performance

evaluation parameters, and many other features.
Deep learning in bladder cancer
segmentation

Medical image segmentation plays an important role in

current medical imaging systems (14). In BCa, the accurate

segmentation of normal bladder structures and tumor regions is

an important step in tumor diagnosis and tumor stage

evaluation (15). Figure 3 illustrates the workflow of bladder

cancer image segmentation using deep learning. The deep

learning model is first trained by the training dataset and the

ground truth label. Then the model can automatically analyze

the input validation images and output the corresponding

segmented images of all regions and compare them with

ground truth for verification. However, as a hollow organ, the

bladder undergoes various changes in position, shape, and

volume. In addition, complex noise and artifacts are prevalent

in medical images, which makes segmentation difficult (17–19).

To date, many DL studies have focused only on the

segmentation of the bladder wall (20–24). This is due to the
FIGURE 1

The development history of DL in BCa imaging. Each node corresponds to a research, named after the DL architecture that the research
primarily used. DL, deep learning; BCa, bladder cancer.
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high variability in tumor shape and intensity, making it difficult

to distinguish between the bladder wall and a tumor. Therefore,

it is more difficult to obtain accurate segmentation results than

with normal bladder segmentation. In this review, we focus only

on the literature that contains the segmentation of tumor

regions (Table 1).

In 2016, Cha et al. (25) developed a network consisting of

two convolution layers, two locally connected layers, and one

fully connected layer, which is based on the well-known AlexNet

(30) backbone. They then used level sets to perform minor

refinements to the contour to identify the tumor boundary.
Frontiers in Oncology 03
However, these methods have many limitations, including a

considerably slow process, sensitivity to initialization and image

intensity, and independent pixel prediction. The achieved results

were not significantly improved when compared with manual

segmentation; therefore, they were quickly replaced by fully

convolutional architectures.

U-Net (31) is undoubtedly one of the most successful

methods in the fully convolutional architectures in image

segmentation tasks, serving as the backbone of many new

medical image segmentation methods. In 2018, Dolz et al. (26)

added dilated convolutions to the U-Net model, where the
FIGURE 3

An example for bladder cancer image segmentation using deep learning. Image from Ref (16). Copyright © 2020, IEEE.
FIGURE 2

Summary of study selection process.
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dilation rate within each module progressively increased. The

dilated convolutions can provide a larger receptive field that can

leverage more contextual information. The increasing dilation

rate allows the use of multi-scale information to better meet the

segmentation requirements for both small and large objects. The

model was trained and evaluated on T2-weighted (T2W) MR

image datasets of 60 BCa patients and compared with the

original U-Net, E-Net (32), and ERF-Net (33). The mean Dice

similarity coefficient (DSC) values of their model were 0.98, 0.84,

and 0.69 for the segmentation of the bladder inner wall, bladder

outer wall, and tumor region, respectively, which were the best

values of all the models trained. In addition, even though U-Net

was improved with progressive dilated convolutional modules to

avoid too much computation, the model’s inference time for the

entire 3D volume is still less than 1 s. In 2019, Liu et al. (27)

proposed a CNN architecture called the Pyramid in Pyramid

Network (PiPNet), which is based on the U-Net model. The

proposed PiPNet consists of a pyramid backbone similar to that

of U-Net and adopts atrous spatial pyramid pooling (ASPP) of

four parallel atrous convolutions with increasing dilation rates.

In addition, the proposed model generates three prediction
Frontiers in Oncology 04
masks for the segmentation in the feature map of the last

three layers to compute an overall loss function to extract

multi-scale features. Depthwise separable convolution was

used to improve the efficiency and performance of the model.

The model was trained and evaluated on T2W MR images of 47

patients with BCa and compared with SegNet (34), U-Net, and

Dolz’s (26) model. The DSC values were 0.89 and 0.95 for the

outer wall and tumor, respectively, which were better than those

of other models. Interestingly, in this study, Dolz et al.’s (26)

model also achieved better results than the original, with DSCs

of 0.86 and 0.92 for the outer wall and tumor, respectively. All

models achieved better segmentation accuracy on tumors than

on the bladder wall, contrary to the findings of Dolz et al. (26).

Therefore, we believe that in the case of less data, different

dataset quality and ground truth annotation methods have a

greater impact on the performance of the trained model. Yu et al.

(29) developed a Cascade Path Augmentation Unet (CPA-Unet)

in 2022. They proposed a two-stage segmentation strategy and a

hybrid loss function to improve the segmentation results. They

first used U-Net for rough segmentation and then used the

segmented image with the original image concatenated as a
TABLE 1 Studies using deep learning approach for bladder cancer segmentation.

Author Year Modality Number of patients
(Train/Val/Test)

CNN structure Target Performance
(validation or
testing dataset)

Cha et al.
(25)

2016 CT 62, LOOCV A network contains 2 convolution layers, 2 locally connected
layers, and 1 fully connected layer with level sets

Tumor AVDIST = 4.7mm
JACCARD = 36.3%

Dolz et al.
(26)

2018 T2W MRI 40/5/15, LOOCV U-Net with progressive dilated convolutional modules, 2D IW/
OW/
Tumor

DSC (IW) = 0.9836
DSC (OW) = 0.8391
DSC (Tumor) = 0.6856
ASSD (IW) =
0.3517mm
ASSD (OW) =
0.4299mm
ASSD (Tumor) =
2.8352mm

Liu et al.
(27)

2019 T2W MRI 40/-/7, n-fold CV PiPNet (U-Net with progressive dilated convolutional modules
and three prediction masks), 2D

OW/
Tumor

DSC (OW) = 0.8874
DSC (Tumor) = 0.9543

Hammouda
et al. (28)

2019 T2W MRI 20, LOOCV DeepMedic (a dual pathway CNN with a learnable adaptive
shape prior model), 2D

IW/
OW/
Tumor

DSC (IW) = 0.9895
DSC (OW) = 0.9775
DSC (Tumor) = 0.9705
HD (IW) = 0.17mm
HD (OW) = 0.18mm
HD (Tumor) =
0.25mm

Hammouda
et al. (16)

2020 T2W MRI 17, LOOCV DeepMedic (two CNN network with a learnable adaptive shape
prior model and CRF), 3D

IW/
OW/
Tumor

DSC (IW) = 0.9802
DSC (OW) = 0.9742
DSC (Tumor) = 0.9566
HD (IW) = 0.13mm
HD (OW) = 0.19mm
HD (Tumor) =
0.35mm

Yu et al. (29) 2022 T2W MRI 220/-/25, CPA-Unet (a Unet for rough segmentation,a path augmentation
structure for fine segmentation)

IW/
OW/
Tumor

DSC (IW) = 0.9819
DSC (OW) = 0.8224
DSC (Tumor) = 0.8740
AVDST, average distance; JACCARD, Jaccard similarity coefficient; DSC, Dice similarity coefficient; ASSD, average symmetric surface distance; HD, Hausdorff distance; IW, bladder inner
wall; OW, bladder outer wall; LOOCV, leave-one-out cross-validation.
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sample with two channels and input into the path augmentation

structure (PA-Unet) for fine segmentation. The PA-Unet was

based on the Path Aggregation Network (35), and the hybrid loss

function incorporated the dice and cross-entropy losses, which

can improve the performance (36). The CPA-Unet extracts

multi-scale features more accurately, improves small target

classification, and achieves better segmentation results than the

U-Net, Prog Dilated (26), and PiPNet (27) networks.

These methods based on U-net improve the network

performance through a more elaborate network design.

However, these methods do not take advantage of the unique

characteristics of BCa data and only improve the results by

increasing network’s robustness. The advantages of these

methods include better network characteristics and improved

prediction results, which prove their effectiveness. However, as

these methods are not specific in nature, which is not

fundamentally different from other methods and networks in

medical imaging, they do not make good use of data specificity

when designing methods.

In addition to U-Net, another well-known CNN architecture

for medical image segmentation, DeepMedic (37), has also been

used for BCa segmentation. It can make better use of the

geometric information of the bladder. Hammouda et al. (28)

adopted a dual pathway 2D CNN to segment T2-weighted MRI

images. In addition to inputting MRI image data, they also input

subject-specific shape information that is adaptively built during

segmentation. The adaptive shape prior (ASP) information

comes from the results of co-aligning MRI images and ground

truth images using an Affine transformation followed by a B-

spline based transformation. The use of adaptive shape and

contextual information significantly enhanced the segmentation

performance, with DSC values of 0.99, 0.98 and 0.97 for the

bladder inner wall, outer wall, and tumor, respectively. In 2020,

Hammouda et al. (16) further improved their study. They

extended their work to 3D bladder segmentation using T2W

MRI. The proposed 3D CNN contains two branch networks.

The first network aimed to segment the bladder wall with the

tumor, and the second network only extracted the bladder. They

used a 3D ASP model mixed with the original training data to

feed the second network, and the outputs were refined using a

fully connected conditional random field (CRF). The CRF can

effectively reduce isolated small regions or small holes caused by

local minima during training and noise in the input images. The

performance of the proposed model significantly outperformed

that of U-Net. These methods improved the results because the

novelty of these methods changed from a simple network layer

design to combining geometric information for segmentation.

When comparing the results of the existing segmentation

works, we found that different literature often adopted different

evaluation metrics. Most articles used the popular evaluation

metric in medical image segmentation, the Dice coefficient

(DSC). It can be computed as follows:
Frontiers in Oncology 05
DSC =
2 A ∩ Bj j
Aj j + Bj j

DSC is a metric to assess the similarity between the predicted

area and ground truth area based on the number of pixels of the

overlapping region. A similar evaluation metric to it is the

Jaccard index, which can be defined as:

JACCARD =
A ∩ B
A ∪ B

However, region-based evaluation metrics are not sufficient to

evaluate the segmentation of the bladder wall or to evaluate the

contour consistency between the predicted area and ground truth

area. Therefore, some articles included distance-based evaluation

metrics, such as the average distance (AVDIST), the average

symmetric surface distance (ASSD) and the Hausdorff distance

(HD). AVDIST (25) is the average of the distances between the

closest points of contours A and B and can be calculated as follows:

AVDIST3DðA,BÞ

=
1
2

oa∈Amin
b∈B

d(a, b)

NA

 !
+

ob∈Bmin
a∈A

d(b, a)

NB

 !

NA and NB denote the number of voxels on A and B,

respectively. The function d is the Euclidean distance. The

ASSD is also used to calculate the average distance between 2

contours, which can be defined as follows:

ASSDðA, BÞ = 1
Aj j + Bj j oa∈A min

b∈B
d(a, b) +ob∈Bmin

a∈A
d(b, a)

0
@

1
A 

The HD is also a commonly used distance-based evaluation

metric that is sensitive to segmentation boundaries. It can be

computed using the following equation:

HDðA, BÞ = max max
a∈A

min
b∈B

d(a, b)f g
� �

;max
b∈B

min
a∈A

d(a, b)f g
� �� �

However, the use of diverse evaluation metrics makes it difficult

to directly compare the performance of different models. In

addition, metrics that are closely related to the clinical application

such as model computation time should also be included. We

believe that the adoption of consistent and comprehensive

evaluation metrics, such as DSC and HD, can help us recognize

the effects of different methods andmake reasonable improvements.

In summary, these researches use different deep learning

networks and algorithms to significantly improve the

segmentation accuracy. Before deep learning methods were

widely used, early literature used methods including Markov

Random Fields, region growing, mathematical morphology,

level-set, Chan-Vese model, geodesic active contour (GAC)

and continuous max-flow algorithm for bladder segmentation

(17–19, 38–47). And most of these researches were not able to
frontiersin.org
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segment tumor regions due to the limitations of algorithm and

dataset size. In the only article that segmented the tumor region

and used JACCARD as an evaluation criterion, they adopted a

level-set-based method on a small dataset of ten patients, and the

JACCARD of tumor regions extracted by it was 86.3% (45). The

best DSC of tumor segmentation among the deep learning

methods, on the other hand, reached 97.05% (28). For the

segmentation of the bladder wall, the best DSC achieved by

the method before deep learning was 87.28% (47). In contrast,

the DSC of bladder wall segmentation of deep learning methods

generally achieves over 90%. Deep learning methods have

different innovations and produce satisfactory results that

beyond traditional methods.
Deep learning in bladder cancer
diagnosis and staging

BCa is divided into non-muscle-invasive bladder cancer

(NMIBC) and muscle-invasive bladder cancer (MIBC)

according to whether the cancer invades the muscle (4).

NMIBC accounts for approximately 75% of BCa cases and

MIBC accounts for approximately 25%. MIBC is associated

with a high degree of malignancy and a poor prognosis. The

5-year survival rate of MIBC patients after radical cystectomy is

approximately 45-68%, whereas the survival time of MIBC

patients with metastases generally does not exceed 2 years

(48). Therefore, early and accurate diagnosis of BCa and

assessment of the tumor stage are crucial for guiding clinical

treatment and evaluating patient prognosis (49, 50).

In the past, the combination of artificial intelligence and

radiomics has replaced traditional methods of manually defining
Frontiers in Oncology 06
the region of interest (ROI) and extracting image features and has

achieved good results in the diagnosis and staging of BCa (51).

However, DL can perform the above tasks automatically and

achieve better results (Table 2). Yang et al. (52) proposed a small

DL-CNN containing four convolutional and max-pooling layers to

differentiate NMIBC from MIBC. The small DL-CNN was trained

on their own database of 369 patients. In contrast, they developed

eight well-known models that were pretrained on the ImageNet

dataset. The results show that the possibility of overfitting for the

small-CNN is minimized with a sensitivity of 0.722 and a specificity

of 1.000. This may be because of the relatively low complexity of the

model. Among the eight pretrained DL-CNNs, VGG16, VGG19,

etc. (56) showed high performance, with an AUROC of 0.997-0.762.

In general, DL-CNNs can achieve a favorable performance.

However, in this study, an additional artificial enhancement step

was required before the data were fed into the DL-CNN model

rather than being fully automatic. This prevents the fully automated

processing capability of DL from being fully exploited. Zhang et al.

(53) used CT urography images of 441 patients from two medical

centers to predict the muscular invasiveness of BCa. To date, this is

a rare multicenter study of DL in BCa with a large dataset. The

model is based on a novel 3D DL-CNN, a Filter-guided Pyramid

Network (FGP-Net) (57). Dense blocks were applied to the network

to enhance the transmission of features and alleviate vanishing-

gradient problems, and discriminative filter learning (DFL)

modules were used to enhance the mid-level representation by

learning a bank of convolutional filters that capture class-specific

discriminative patches. The network adopted a 2-channel input,

and the input data consisted of a vertical superposition of the

original and masked tumor regions. They compared the evaluation

results of the model with those of two radiologists. Notably, they

applied an external cohort evaluation to assess performance more
TABLE 2 Studies using deep learning approach for bladder cancer diagnosis and staging.

Author Year Modality Number of patients
(Train/Val/Test)

CNN structure Performance
(validation or
testing dataset)

Yang et al.
(52)

2021 CT 369 patients,1200 images (70%/
15%/15%)

A small convolutional network contains four conv_layer
+max_pooling_layer stages/eight pretrained models, 2D

Accuracy (small) = 0.861
AUROC (small) = 0.998
Accuracy (VGG16) =
0.939
AUROC (VGG16) =
0.997

Zhang et al.
(53)

2021 CT 183/110/73 (internal)/75
(external)

FGP-Net (a novel convolutional network contains Dense Blocks and
DFL modules), 3D

AUC (internal) = 0.861
Accuracy (internal) =
0.795
AUC (external) = 0.791
Accuracy (external) =
0.747

Liu et al.
(54)

2022 T2W MRI 51/8/16 ResNet18 with the super-resolution module and the Non-local attention
module, 2D

Sensitivity = 94.74

Taguchi
et al. (55)

2021 T2W MRI 68 The denoising Deep Learning Reconstruction (dDLR) –
AUC, area under curve; Sensitivity=TP/(TP+ FN).
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rigorously (58). Although its final performance is not satisfactory

and needs to be improved, the DL model can obtain slightly better,

more objective, andmore stable results compared with the results of

the two radiologists. However, the objective results had another

advantages. Radiologists may subjectively improve tumor staging in

some ambiguous patients because of concerns about the negative

consequences of losing MIBC, which may help in early clinical

intervention. Liu et al. (54) adopted the ResNet18 (59) network for

the diagnosis and staging of BCa based on MRI. They applied the

super-resolution module and non-local attention module to

improve the quality of MRI images and enhance the model’s

ability to perceive features at longer distances.

In addition to diagnosis, DL can be used to improve other

parts of the imaging workflow, such as removing image noise

and indirectly improving diagnostic capabilities in conjunction

with other systems. The vesical imaging reporting and data

system (VI-RADS) (60) is a tool for evaluating BCa staging

using MRI images. Taguchi et al. (55) used a convolutional

neural network to improve the signal-to-noise ratio in high-

spatial-resolution images. Although they did not develop the

network themselves, this study also showed the potential of DL

in assisting in BCa diagnosis.
Deep learning in bladder cancer
treatment assessment

Neoadjuvant chemotherapy has been shown to improve

overall survival for patients with BCa (61). However, not all

patients benefit from neoadjuvant treatment and instead suffer

from severe side effects (62). Therefore, it is important to assess

changes in tumor size and treatment response early to help

doctors make personalized treatment plans. Nevertheless, there

are two major problems with the current clinical treatment

assessment. First, although accurate, surgery may not be

appropriate for patients undergoing chemotherapy. Second,

the current World Health Organization (WHO) criteria (63)

and Response Evaluation Criteria in Solid Tumors (RECIST)

(64) are inaccurate. Neither set of criteria address three-

dimensional (3D) measurements, and the results are heavily

influenced by observer experience, especially for tumors with

complex and irregular shapes (65). At the same time, because

organs and tumors are not rigid bodies, they will have different

deformations in the human body, making the design of direct

networks for ML very difficult. These problems make ordinary

ML methods not particularly adaptable, and therefore drive the

progress of DLmethods in this field. DL has been recognized as a

powerful tool to solve these problems (Table 3).

Cha et al. (25) used the network they developed to segment

and measure the gross tumor volume (GTV) from CT images to

predict treatment response. As described in the bladder
Frontiers in Oncology 07
segmentation section, classification-based networks cannot

accurately segment tumors because of their limitations,

particularly those that shrink after treatment. Their DL-CNN

was comparable to radiologists’ manual predictions. In 2017, Cha

et al. (66) developed a DL-CNN with a structure similar to that in

previous studies. However, DL-CNN was used to predict the

response to neoadjuvant chemotherapy in this study. They first

used their auto-initialized cascaded level set (AI-CALS) (69)

system to segment the tumor region. They then paired ROIs

extracted from pre- and post-treatment tumor regions of the same

patient’s scans to form 6700 image pairs. They compared the

model with two radiomic feature-based approaches. Owing to

their relatively simple DL-CNN structure, the three methods they

tested achieved similar results and were also similar to the manual

methods. However, it also demonstrates the potential of DL

techniques in predicting the treatment response. In 2019, Wu

et al. (67) developed seven DL-CNNs based on a previous study

(66) and adopted the same image-processing method (66). They

modified the filter size, filter stride, and padding type of

convolutions and max pooling performed in layers C1 and C2

to develop three different models, and developed two models by

freezing different layers. Furthermore, they pretrained the model

on the CIFAR10 (70) image set. Only one network variation (DL-

CNN-2, C1 convolution filter stride 1!2, C2 max pooling size

3×3!2×2, stride 2!1) exhibited significant performance

improvements. The performance of the DL-CNN generally

decreased as more layers were frozen, but there was a slight

improvement in performance when the C1 layers were frozen.

This may be because the subsequent layers are designed to capture

more specific features, such as bladder lesions. The pretrained

network achieved better performance, but it was better to pretrain

with data related to the training images. Overall, they

demonstrated that the use of DL-CNN can match or even

exceed the level of doctors, and using deeper DL-CNN models

and making more effective adjustments to network structures can

further improve its performance in the future. Recently, Cha et al.

(68) developed a computerized CT-based decision-support system

for MIBC treatment response assessment (CDSS-T) based on

their previous work (56). They followed the segmentation system

and their previously developed DL-CNN combined with a

radiomics assessment model. A combined score from the DL-

CNN and radiomic model was used to assist physicians in the

assessment of the treatment response. With the help of the CDSS-

T, 12 physicians improved the assessment accuracy for evaluating

the neoadjuvant chemotherapy response in MIBC. This is the first

observer study to use a CAD system for this purpose.

Interestingly, the accuracy rate of the CDSS-T alone was higher

than that of using CDSS-T to assist physicians in assessment. This

shows that doctors’ experience and trust in using the system still

needs to be cultivated, which is also one of the key issues to be

overcome in the future clinical application of DL.
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Challenges and future directions

DL is a state-of-the-art technology and popular research area

in medical imaging. Its performance is comparable to that of

human experts in many studies and applications and it has good

development prospects and potential (71). However, research on

DL in BCa is still in its infancy, and there are still many

shortcomings compared to other fields with mature applications.
For data

The imaging diagnosis of BCa by clinicians often requires

the integration of various imaging data, such as CT and different

sequences of MRI images. Although CT is the most commonly

used imaging technique for the diagnosis of BCa, MRI has been

shown to be more effective, especially in staging, because of the

increased soft-tissue contrast resolution. Diffusion-weighted

imaging (DWI) and dynamic contrast enhancement (DCE) are

far more useful for assessing tumor invasiveness and infiltration

into surrounding structures. However, most of the current DL

studies on BCa imaging still use CT as the original data.

Moreover, all studies using MRI have chosen T2WI sequences,

and there is a lack of studies on DWI and DCE sequences.

Combining DL with the most appropriate as well as the most
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advanced techniques in BCa imaging will be a research direction.

In addition, based on CT or MRI, most data currently used in

BCa studies focus on only one modality of medical imaging. In

recent years, many studies have shown that processing multiple

modalities simultaneously can significantly improve the

performance of DL models (26, 72, 73).

We can also attempt to improve performance by combining

imaging-based assessment with other available clinical data,

such as genomics and pathology. Multimodal approaches have

been shown to outperform unimodal ones (74). In fact, in both

natural and medical image processing, multimodal fusion is

becoming a mainstream and effective trend. BCa are

heterogeneous at the molecular level, and different molecular

classifications may be useful to stratify patients for prognosis or

response to treatment. The inclusion of multimodal information

helps to complement the shortcomings of BCa imaging in these

areas. However, due to various reasons, such as the small

number of BCa open datasets, there are not many multi-

modality processing methods used in the research of DL in

BCa. In addition, the limited quantity of medical image data

restricts the development of DL. The amount of data

significantly affects the performance of DL models. Transfer

learning (75) and data augmentation can improve performance

to some extent, but they cannot replace the need for a large

dataset. To date, the datasets of many studies of DL in BCa have
TABLE 3 Studies using deep learning approach for bladder cancer treatment.

Author Year Modality Number of patients
(Train/Val/Test)

CNN structure Performance
(validation or
testing dataset)

Cha et al.
(25)

2016 CT 62, LOOCV A network contains 2 convolution layers, 2 locally connected layers, and 1
fully connected layer.

AUC = 0.73

Cha et al.
(66)

2017 CT 82 A network contains 2 convolution layers, 2 locally connected layers, and 1
fully connected layer. Each layer contains 16 kernals.

AUC = 0.73

Wu et al.
(67)

2019 CT 73/9/41 The basic network contains 2 convolution layers, 2 locally connected layers,
and 1 fully connected layer.

AUC (basic-random
weights) = 0.73
AUC (basic-pretrained
weights) = 0.79
AUC (DL-CNN-1) =
0.72
AUC (DL-CNN-2) =
0.86
AUC (DL-CNN-3) =
0.69
AUC (C1 Frozen) =
0.81
AUC (C1,C2 Frozen) =
0.78
AUC (C1,C2,L3
Frozen) = 0.71

Cha et al.
(68)

2019 CT 123, LOOCV DL-CNN with a radiomics assessment model AUC (CDSS-T only) =
0.80
AUC (with CDSS-T) =
0.77
AUC (No CDSS-T) =
0.74
AUC, area under the curve; LOOCV, leave-one-out cross-validation.
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been so small that they do not even have independent validation

or test sets, which biases the assessment of the model

performance. In addition, the different scanning methods and

equipment adopted by different hospitals make the established

models difficult to use across institutions, which also limits the

clinical application of DL. In this case, it is necessary to use semi-

supervised or self-supervised methods to process data. However,

the application of these methods for BCa is limited, highlighting

the need for future research. In this case, we expect increasing

data diversity, multimodal methods, and more comprehensive

BCa datasets including multi-center data or a nationwide BCa

imaging database to significantly advance the field.
For algorithm

Most of the DL models used in the current research only stay

in the application of existing networks and lack optimization of

the imaging characteristics of BCa. The BCa data have many

unique structures, including their unique geometry, empty

structure, and other characteristics. However, in the current

research field on BCa, these characteristics are not well utilized.

Compared with other ML methods, DL is a complex black box.

To optimize this model in the future, it is important to reflect

doctors’ ideas and experiences in the diagnosis and treatment of

diseases in the DL model and improve its interpretability. Only

when the doctor can understand the reason why the DL model

makes the assessment can the model better assist the doctor in

decision-making. Furthermore, many state-of-the-art results in

the field of DL, such as self-supervised learning, pre-training

models, transformers, and contrastive learning, have not yet

been applied in the field of BCa research, which could be the

subject of our future research.
For application

There are many application scenarios and research

directions of DL that people can explore in BCa. For example,

there are various pathological types of BCa, including urothelial

carcinoma and squamous cell carcinoma. NMIBC and MIBC

can also be divided into many molecular subtypes according to

the MD Anderson Cancer Center (MDA) (76), Cancer Genome

Atlas (TCGA) (77), and other classification criteria. Based on the

above criteria, a more complex classification of BCa can be

attempted using medical imaging. In addition, DL can be used to

predict patient prognosis through medical imaging. Whether DL

can predict the outcome of surgical treatment for BCa or be

applied to ROI extraction, feature extraction, and feature

modelling in radiomics remains unclear. At present, a large
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amount of research is still focused on image segmentation, and

we believe that the development of DL can help doctors in

more ways.
Conclusions

This study reviews the applications of DL in BCa imaging.

As a potential technology, DL has extremely broad application

prospects in BCa. Limited by the small number of studies in this

field, we provide a detailed review of the existing studies, but lack

more evidence to demonstrate more possibilities of DL in BCa

imaging. However, in the era of increasing emphasis on

precision medicine and individualized diagnosis and

treatment, how to give full play to the advantages of DL and

transform it into a means that can effectively help physicians in

clinical diagnosis and treatment will be the direction of our

future research. The powerful potential demonstrated by DL is

expected to bring about a new revolution in BCa management.
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