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Abstract 

Background: Reidentification of prior nodules for temporal comparison is an important but time-consuming step in 
lung cancer screening. We develop and evaluate an automated nodule detector that utilizes the axial-slice number of 
nodules found in radiology reports to generate high precision nodule predictions.

Methods: 888 CTs from Lung Nodule Analysis were used to train a 2-dimensional (2D) object detection neural net-
work. A pipeline of 2D object detection, 3D unsupervised clustering, false positive reduction, and axial-slice numbers 
were used to generate nodule candidates. 47 CTs from the National Lung Cancer Screening Trial (NLST) were used for 
model evaluation.

Results: Our nodule detector achieved a precision of 0.962 at a recall of 0.573 on the NLST test set for any nodule. 
When adjusting for unintended nodule predictions, we achieved a precision of 0.931 at a recall 0.561, which corre-
sponds to 0.06 false positives per CT. Error analysis revealed better detection of nodules with soft tissue attenuation 
compared to ground glass and undeterminable attenuation. Nodule margins, size, location, and patient demograph-
ics did not differ between correct and incorrect predictions.

Conclusions: Utilization of axial-slice numbers from radiology reports allowed for development of a lung nodule 
detector with a low false positive rate compared to prior feature-engineering and machine learning approaches. This 
high precision nodule detector can reduce time spent on reidentification of prior nodules during lung cancer screen-
ing and can rapidly develop new institutional datasets to explore novel applications of computer vision in lung cancer 
imaging.
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Introduction
The National Lung Screening Trial (NLST) demonstrated 
that low-dose computed tomographic (CT) screen-
ing of high risk patients can result in a 20% reduction in 

mortality, leading to organizations to update their guide-
lines for lung cancer screening [1]. The U.S. Preventive 
Services Task Force recommends annual low-dose CT 
screening for patients with ≥ 30 pack year smoking his-
tory, and Fleischner Society Guidelines provide specific 
details for follow-up of incidental pulmonary nodules [2, 
3]. As a result of these changes, Smieliauskas et al. pro-
jected an increase in CT scans and radiologist workload 
for lung cancer screening throughout the U.S., especially 
in low income regions with higher rates of smokers [4]. 
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With over 8.6 million individuals eligible for low-dose 
lung cancer screening each year, 575 screens must be 
performed per lung cancer death avoided [5, 6]. Moreo-
ver, longer workdays and the associated fatigue have been 
shown to decrease radiologist diagnostic accuracy for 
pulmonary nodules [7].

The workflow for nodule detection and evaluation can 
be time consuming for a radiologist. In addition to iden-
tifying nodules on a new CT, radiologists must identify 
old nodules from prior scans and determine if there has 
been any temporal change. Despite having the nodule 
axial-slice number available in prior radiology reports, 
the process of identifying old nodules to cross-reference 
on the new CT is labor intensive. While advances in 
deep learning and computer-aided nodule detection have 
shown promise in nodule identification [8, 9], they do not 
focus on augmenting this critical aspect of the lung nod-
ule screening workflow—locating previously identified 
nodules to observe changes over time by utilizing prior 
knowledge available in radiology reports (i.e. axial-slice 
location).

In this study, we utilize Lung Nodule Analysis 2016 
(LUNA) to develop the deep learning model and NLST 
to evaluate a computer vision model to automatically 

identify lung nodules using the axial slice number to 
improve accuracy, thus helping reduce the workload 
required for manual reidentification of previously labeled 
nodules.

Methods
Data
This study utilized the LUNA database for training the 
deep learning model and the NLST database for model 
evaluation. LUNA is a subset of the publicly available 
Lung Image Database Consortium (LIDC) dataset [10, 
11]. LIDC contains 1018 anonymized helical chest CT 
scans positive for lung nodules and provides 3D coordi-
nates for each nodule, which were determined by four 
thoracic radiologists. LUNA contains only CT scans 
from LIDC with a slice thickness of < 2.5 mm and classi-
fies nodules with a diameter > 3 mm as “positive nodules.” 
LUNA data was split into a training (85%) and validation 
(15%) sets to optimize hyperparameters (Fig. 1). Prior to 
application on the external test set (NLST), the model 
was trained on the entire LUNA dataset to maximize 
performance by maximizing training set utilization.

NLST data, used for model evaluation, was accessed 
through the National Cancer Institute Cancer Data 

LUNA Dataset
n=888

Training Set

NLST Dataset
n > 75,000

Test Set

ExcludedHas slice number

Does not have slice number

Not in random sample

Test Set
n=47

In random
sample

Not in random sample

Validation Set
n = 133

Validation Set

Training Set
n= 755

No nodule at ground
truth location

Nodule at ground truth location

Fig. 1 Cohort selection. Cohort selection for train/validation data and test data. Training data and test data are collected from two different sources. 
“n” refers to the number of CT scans. Each CT scan originates from a different patient
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Access System with an approved Data Transfer Agree-
ment. NLST data was anonymized prior to data trans-
fer. NLST was conducted jointly by the NCI Division 
of Cancer Prevention’s Lung Screening Study (LSS) and 
the American College of Radiology Imaging Network. It 
consists of 53,454 patients enrolled between 2002 and 
2004 in two study arms, chest X-ray and low-dose CT, to 
study the use of CT in lung cancer screening [1]. NLST 
provides annotations specifying the axial slice position of 
identified lung nodules, as well as diameter, lung region, 
and morphology. We randomly select 50 patients with 96 
nodules from LSS sites from the CT-arm of the study to 
use in model evaluation (Fig. 1). 7 nodules were dropped 
because no nodule was identified at the ground truth 
axial-location by a chest radiology fellow. The final NLST 
test set includes 47 patients with 89 total nodules.

Preprocessing
Axial CT scan pixel data was preprocessed to provide 
consistent real world scale regardless of originating CT 
dimensions or slice thickness. CTs were first transformed 
into 1  mm3 voxels, and then a 25 mm overlapping maxi-
mum intensity projection (MIP) was applied twice, once 
in the axial direction and again in the coronal direction. 
MIP allows for nodules to be easily distinguished from 
other lung features, especially blood vessels. However, 
blood vessels traveling perpendicular to the MIP can still 
appear as nodules. Therefore, we performed training and 
inference on both axial and coronal MIP projects. For 
training LUNA 3-dimensional nodule coordinates and 
diameters were used to create 2-dimensional bounding 
boxes for each axial and coronal MIP CT slice.

Model
While algorithm architecture contains multiple steps 
(Fig. 2), the base computer vision model is the 2-dimen-
sional (2D) Retinanet, a state-of-the-art object detection 
algorithm [12]. We utilize an open-source implementa-
tion of Retinanet in PyTorch with resnet101 backbone 
pretrained on ImageNet [13, 14]. Focal loss, a modi-
fied cross-entropy loss that improves performance on 
object detection with extreme foreground:background 
imbalance (e.g. small nodules in a lung), was used with 
an Adam optimizer. A learning rate scheduler was used 
with an initial learning rate of 0.0005 and a reduction on 
plateau of validation set loss. A batch size of 2 was used. 
When training on the full LUNA data prior to inference 
on the NLST test set, no validation set was available. 
Therefore, the learning rate schedule was manually set to 
mimic prior model training with a validation set.

Model input consisted of 2D axial and coronal MIP 
slices. Data augmentation was randomly applied in real-
time during training. Left–right and up–down flip was 

applied randomly to 50% of training slices in each batch. 
Slice height and width was independently scaled up to a 
20% zoom. Slices were rotated up to ± 20 degrees, and 
shear was applied up ± 4 degrees. The Retinanet output 
consisted of bounding box coordinates and a confidence 
score for raw inferences for each input slice, and each 
slice may have more than one prediction.

Post‑processing
Post processing consists of two steps: aggregation of raw 
inferences into nodule candidates (Clustering) and final 
nodule predictions (False Positive Reducer and Axial-
Slice Assisted Selection, Fig. 2).

Clustering
Because raw inference predictions occur in a 2D plane, 
we utilized density-based spatial clustering of applica-
tions with noise (DBSCAN), an unsupervised density 
algorithm that identifies core high density regions and 
expands outwards to cluster raw inferences into discrete 
nodule candidates [15]. Prior to applying clustering, we 
filtered out any inferences with a confidence score of less 
than 0.1 to reduce background noise. DBSCAN required 
a minimum of 4 inferences to define a cluster, and the 
maximum distance for two inferences to be considered 
neighbors (eps) was set to 10 mm. The axial, coronal, and 
sagittal 3-dimensional position of inferences were used 
for clustering input (Fig. 3).

False positive reduction with cluster metadata
Clustering metadata was collected for use in false positive 
(FP) reduction (Fig. 2). This includes the max and mean 
confidence scores of clustered nodules, number of infer-
ences belonging to each cluster, distance from top and 
bottom of CT scan, and whether a cluster contains both 
axial and coronal inferences. Clusters for true nodules 
were more likely to have higher confidence scores, more 
raw inferences, and both axial and coronal predictions. 
To utilize this metadata in FP reduction, we manually 
labeled a separate training set of 1380 clustered nodule 
predictions on 93 NLST CTs from 36 unique patients 
containing 165 true nodules—each patient could have 
up to 3 CTs from different years. It is important to note 
that none of these CTs or patients overlap with the NLST 
test set used for final evaluation of the nodule detector. 
We then trained XGBoost [16], a boosted tree classifier, 
on the aforementioned clustering metadata using Grid-
Search and fivefold cross-validation for hyperparameter 
search. A learning rate of 0.05, max tree depth of 6, 200 
estimators, a scale positive weight of 2.7 to adjust for class 
imbalance, column subsampling of 0.6, and row subsam-
pling of 0.8 were used in the final XGBoost classifier.
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Axial‑slice assisted selection
The final post-processing step was utilization of 
axial-slice labels from NLST. The FP Reducer was 
applied to the NLST test and would output a final 

nodule confidence score. Any nodules with a confi-
dence score < 0.20 were automatically dropped as low-
confidence FPs. Then, the closest remaining nodule 
within X distance of the specified axial slice number 
was selected as the final nodule candidate. X was tested 
at 10 mm and 20 mm.

2D Object Detection Model

Retinanet

Raw 2D Inferences
(X,Y, Height, Width,

Confidence)

Loss and Optimizer

Ground Truth
Nodule Bounding

Boxes
(X,Y, Height, Width)

Model Update

Preprocessing:
Apply Coronal and

Axial MIP,
Separate into Slices

2D CT Slices

Training
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Raw 2D Inferences
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Confidence)
and Slice Number
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Preprocessing:
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Axial Slice NumberRadiology Report
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Visualization
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Fig. 2 Algorithm schema. Training and inference pipeline for slice-assisted nodule detection. Training consists of using 2-dimensional axial 
and coronal MIP slices from each CT being input into a Retinanet model. Inference adds three additional steps to the Retinanet raw inferences: 
unsupervised clustering, false positive reduction using clustering metadata (max and mean confidence scores, whether the cluster contains both 
axial and coronal raw inferences, the number of raw inferences clustered together, and distance from top and bottom of the CT in mm)
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Evaluation
Predicted nodule candidates were visualized on the CT 
using Slicer3D [17]. Nodule predictions were evaluated 
by a chest radiology fellow and a medical student under 
the supervision of an attending chest radiologist. Preci-
sion, recall (sensitivity), and false positive rate per scan 
were calculated for distance thresholds of 10  mm and 
20  mm and a confidence score of 0.20 (the minimum 
possible threshold) and 0.50. A free-response receiver 

operating characteristic curve was plotted at 10 mm and 
20  mm distance thresholds. In seven instances, a true 
nodule was detected by our model but was different from 
the intended nodule, as determined by additional NLST 
data specifying lung lobe location and nodule visual 
features. To account for this, adjusted evaluation met-
rics were also reported with these cases marked as false 
positives. A manual error analysis was conducted of each 
incorrect and correct prediction to identify any patterns 

Fig. 3 Unsupervised clustering of Retinanet raw inferences. Visualization of unsupervised clustering of raw Retinanet inferences using DBSCAN. 
Diameter of each production corresponds to the Retinanet inference confidence score. Higher density clusters containing both axial and coronal 
predictions with high confidence scores are more likely to be real nodules. The 3 large clusters in (b)—green, purple, and dark teal—were true 
nodules
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in errors with the detector. Demographic and nodule 
characteristics were compared between correct and 
incorrect/missed/unintended predictions using NLST 
metadata. Correct nodules were determined using a con-
fidence score of 0.20 at a 20 mm threshold. Welch’s T-test 
and Chi-square test were used to compare continuous 
and categorical variables, respectively.

Model preprocessing, training, and testing code is 
available at https:// bit. ly/ 3ivlF xt. Model was developed 
using Python 3.6 (Python Software Foundation).

Results
Demographics
The NLST test set consisted of 47 patients with a mean 
age of 62  years old that were mostly male and white 
(Table  1). 51% of patients were current smokers when 
undergoing their first NLST screening CT, and the 
remainder were former smokers. Patients had an aver-
age smoking history of 56.37 ± 34.33 pack years (Table 1). 
Among these 47 patients, there were 89 nodules, with 
an average incidence of 1.89 nodules per patient and an 

average diameter of 4.88 ± 2.26 mm per nodule (Table 2). 
Nodules characterized as soft tissue (88%) and smooth 
margins (82%) made up a majority of the nodules.

Model results
At a confidence threshold of 0.50, our axial-slice assisted 
nodule detector was found to have a precision of 0.962 
with a recall of 0.573 for identifying nodules at a 10 mm 
distance threshold and to have a precision of 0.931 and 
recall of 0.607 at a 20 mm distance threshold (Table  3). 
This translates to a false positive rate of 0.040 FP/scan 
(i.e. 1 FP every 25 scans) and 0.080 FP/scan (i.e. 1 FP 
every 12.5 scans) for 10  mm and 20  mm thresholds, 
respectively. When adjusting for cases where a different 
nodule was detected instead of the intended nodule, pre-
cision and recall both fall slightly to 0.943 and 0.561 at 
the 10  mm threshold and to the 0.862 and 0.562 at the 
20  mm threshold. When utilizing a more sensitive con-
fidence threshold (0.20), recall increased but precision 
fell slightly (Table  3). Figure  4, a free-response receiver 
operating characteristic (FROC) curve, visualizes recall 

Table 1 NLST test set patient demographics

Adjusted nodule performance with the highest recall score at a 20 mm distance threshold was used to split missed/incorrect/unintended and correct nodule 
predictions

SD standard deviation
a For patients with > 1 nodule, if at least one nodule was correctly identified for that patient, this patient was classified as a correct prediction

Variable Missed/incorrect/unintended nodule 
 predictionsa

n (%)

Correct nodule  predictionsa

n (%)
p Totals

n (%)

Patients 15 (100%) 32 (100%) – 47 (100%)

Age 0.586

 (mean ± SD) 61.07 ± 4.74 61.91 ± 5.12 61.64 ± 4.97

Sex 0.806

 Female 5 (33%) 8 (25%) 13 (28%)

 Male 10 (67%) 24 (75%) 34 (68%)

Race 0.180

 White 12 (80%) 31 (97%) 43 (91%)

 Black 1 (7%) 0 (0%) 1 (2%)

 Asian 1 (7%) 1 (3%) 2 (4%)

 > 1 Race 1 (7%) 0 (0%) 1 (2%)

BMI 0.256

 (mean ± SD) 29.72 ± 6.15 27.56 ± 5.35 28.25 ± 5.64

Smoker at start of NLST 0.468

 Yes 6 (40%) 18 (56%) 24 (51%)

 No (former smoker) 9 (60%) 14 (44%) 23 (49%)

Cigarettes/day 0.251

 (mean ± SD) 32.67 ± 20.08 26.22 ± 9.00 28.28 ± 13.65

Smoking total years 0.978

 (mean ± SD) 39.87 ± 8.68 39.94 ± 7.03 39.76 ± 7.41

Smoking pack years 0.320

 (mean ± SD) 63.53 ± 54.91 51.62 ± 17.72 56.37 ± 34.33

https://bit.ly/3ivlFxt
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at various low FP rates of < 0.30 FPs/scan. On the FROC 
curve, recall increases as the FP rate increases. At the 
10  mm threshold, recall plateaus at a max of 0.629 
(adjusted recall of 0.596), while the FP rate is zero at a 
recall of 0.360 (adjusted recall of 0.303). At the 20  mm 
threshold, recall plateaus at 0.674 (adjusted recall of 
0.607), while the FP rate is zero at a recall of 0.382 (Fig. 4).

Error analysis
We stratified characteristics of patients (Table  1) and 
nodules (Table  2) using the 0.20 confidence score 
threshold and a 20 mm distance threshold by incorrect 
and correct nodule predictions. We found no difference 
between the 2 cohorts in any patient characteristics. 
The only nodule characteristic that differed between 
incorrect nodule predictions and correct nodule pre-
dictions was predominant attenuation (p = 0.028, 

Table  2). Compared to incorrect predictions, correct 
predictions had higher rates of soft tissue attenuation 
nodules (94% vs 77%) and lower rates of ground glass 
(2% vs 9%) and undeterminable nodules (0% vs 11%, 
Table 2).

Test set predictions were manually analyzed to iden-
tify trends in errors. Selected predictions are displayed 
in Fig.  5. Soft tissue (Fig.  5b–d) and calcified nodules 
(Fig. 5f ) were more easily identified. The algorithm con-
sistently struggled with ground glass nodules (Fig. 5f ) and 
subpleural nodules (Fig. 5h). Due to the MIP and cluster-
ing step, the predicted location was occasionally slightly 
displaced from the true nodule position in areas with lots 
of “noise,” such as atelectasis. Notably, the average diame-
ter of the predicted bounding box of correct nodules was 
9.29 mm, nearly twice the value of the true diameters of 
these nodules (4.94 mm ± 1.75 mm, Table 2).

Table 2 NLST test set nodule characteristics

Adjusted nodule performance with the highest recall score at a 20 mm distance threshold was used to split missed/incorrect/unintended and correct nodule 
predictions

SD standard deviation

*p < 0.05 using Chi-square test for categorical and Welch’s T-test for continuous variables to test for difference between correct and missed/incorrect nodule 
predictions

Nodule variable Missed/incorrect/unintended nodule 
predictions
n (%)

Correct nodule predictions 
n
(%)

p Totals
n (%)

N 35 (100%) 54 (100%) – 89 (100%)

Location 0.307

 Left lower lobe 7 (20%) 10 (19%) 17 (19%)

 Left upper lobe 6 (17%) 7 (13%) 13 (15%)

 Lingula 0 (0%) 6 (11%) 6 (7%)

 Right lower lobe 12 (34%) 12 (22%) 24 (27%)

 Right middle lobe 4 (11%) 10 (19%) 14 (16%)

 Right upper lobe 6 (17%) 9 (17%) 15 (17%)

Central versus peripheral 0.332

 Central 3 (9%) 1 (2%) 4 (4%)

 Peripheral 32 (91%) 53 (98%) 85 (96%)

Subpleural versus parenchymal 0.807

 Subpleural 19 (54%) 32 (59%) 38 (43%)

 Parenchymal 16 (46%) 22 (41%) 51 (57%)

Margins 0.254

 Smooth 27 (77%) 46 (85%) 73 (82%)

 Poorly defined 5 (14%) 5 (9%) 10 (11%)

 Spiculated 1 (3%) 3 (6%) 4 (4%)

 Unable to determine 2 (6%) 0 (0%) 3 (2%)

Diameter (mm) 0.752

 (mean ± SD) 4.77 ± 2.78 4.94 ± 1.75 4.88 ± 2.26

Attenuation 0.028*

 Soft tissue 27 (77%) 51 (94%) 78 (88%)

 Ground glass 3 (9%) 1 (2%) 4 (4%)

 Mixed 1 (3%) 2 (4%) 4 (4%)

 Unable to determine 4 (11%) 0 (0%) 3 (3%)
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Discussion
Re-identification of lung nodules on prior study is 
an essential task in lung cancer screening. We devel-
oped and evaluated a high precision end-to-end nod-
ule detector that utilizes radiologist-defined axial-slice 
location, information which is widely available in radi-
ology reports. Using a multi-step approach of 2D object 

detection with Retinanet, unsupervised clustering, and 
false positive reduction, our nodule detector can iden-
tify the coordinates of 57% of labeled nodules with a 
very low error rate of 1 FP every 25 scans (0.04 FPs/
scan). Moreover, model testing was conducted on a dif-
ferent dataset (NLST, collected from 33 institutions) 
than training (LUNA, collected from 7 institutions), 
utilizing CT machines from several different compa-
nies (General Electric, Phillips, Siemens, and Toshiba), 
which suggests that this model is robust and generaliz-
able to data from other institutions [1, 10].

In the past, a wide-array of techniques from feature-
engineering approaches to deep learning techniques 
have been applied to nodule detection [18]. While 
feature-engineering techniques utilizing thresholding 
and edge detection struggled with FP/scans > 100, deep 
learning research has focused on optimizing recall at 
relatively lower FPs/scans values, ranging from 0.125 
to 8 FPs/scan [11, 19, 20]. However, to the best of our 
knowledge, no prior approach has considered utiliz-
ing data commonly-found in radiology reports or 
emphasizing precision over recall. Axial-slice informa-
tion is often reported as an image number (e.g. “3 mm 
pulmonary nodule in the right lower lobe—series 2, 
image 15—unchanged”). Existing CAD tools for nod-
ule detection do not utilize this prior knowledge, which 
act as quasi-ground truth labels written by radiologists 
describing prior images.

In a theoretical clinical workflow, our nodule detector 
could extract 3D coordinates from axial-slice labels of 
prior CT images. Initially, these coordinates can be used 

Table 3 Nodule detector performance

a Adjusted precision/recall/FPs counts only predictions on intended nodule 
as a true positive (e.g. if a calcified nodule was predicted, but the ground truth 
NLST label specified a ground glass nodule, this was recorded as an incorrect 
prediction)

Performance metric 10 mm distance 
threshold

20 mm 
distance 
threshold

Nodule confidence score ≥ 0.50

 Precision 0.962 0.931

 Recall 0.573 0.607

 FPs/scan 0.040 0.080

 Adjusted  precisiona 0.943 0.862

 Adjusted  recalla 0.561 0.562

 Adjusted FPs/scana 0.060 0.160

Nodule confidence score ≥ 0.20

 Precision 0.889 0.870

 Recall 0.629 0.674

 FPs/scan 0.140 0.180

 Adjusted  precisiona 0.841 0.783

 Adjusted  recalla 0.596 0.607

 Adjusted FPs/scana 0.200 0.300

a b

Fig. 4 Free-response receiver operating characteristic at 10 mm and 20 mm thresholds. Low false positive (FP) rates were observed with axial-slice 
assisted selection of nodules. * adjusted to count only predictions on intended nodule as a true positive (e.g. if a calcified nodule was predicted, but 
the ground truth NLST label specified a ground glass nodule, this was recorded as an incorrect prediction)
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to reduce search time for radiologists by simply visually 
highlighting nodules on prior CTs for easy comparison to 
new CTs. However, this model also lays the foundation 
for future research to utilize these 3D coordinates for a 
second nodule detection algorithm to focus on regions 
on the new CT that are near known nodule locations. For 
example, since the nodule should not shift significantly, 
a Gaussian kernel can be applied to the 3D coordinates 
to create a probability distribution that can be regis-
tered to lung areas in the new CT. This distribution can 
be utilized as an input for the second algorithm to pre-
dict nodules on the new CT. Additionally, once nodule 
coordinates are known for both old and new CTs, future 
computer vision research can focus on automatic analysis 
of the temporal change in nodule features to risk stratify 
patients. Since existing CAD systems do not utilize prior 
knowledge available in radiology reports, they are inher-
ently limited in accuracy and ability to reliably analyze 
temporal change compared to models utilizing available 
information on prior nodule locations.

Unlike prior lung nodule detection methods, which 
often use 2-dimensional or 3-dimensional sliding win-
dows to focus on high sensitivity, our pipeline inherently 
is geared towards high precision instead. By applying 
MIP, nodules can be easily visually distinguished from 
blood vessels. Furthermore, the dual-axis MIP (axial 
and coronal), allows nodules to be differentiated from 

blood vessels traveling perpendicular to one of the axes 
during the FP reduction step. Unsupervised clustering 
with DBSCAN has the advantageous property of con-
sidering spatial density when creating clusters, which 
reduces inclusion of nearby inferences that are not likely 
to be part of the nodule [15]. Moreover, clustering gen-
erates important metadata used in FP reduction. The 
most predictive features of a true nodule in the XGBoost 
FP reducer were a cluster having both axial and coronal 
inferences in a cluster and the total number of inferences 
clustered (feature importance scores of 0.659 and 0.157, 
respectively). This is intuitive as real nodules would be 
visible on both coronal and axial MIPs and would have 
many raw inferences on multiple slices due to MIP.

We foresee two potential applications of this high pre-
cision nodule detector: reduction of reading time for lung 
cancer screening and augmentation of research efforts 
applying deep learning to lung cancer screening. Observ-
ing changes in nodules over time is an important step in 
assessing malignancy risk of a nodule, and radiologists 
are required to re-identify nodules on CTs from prior 
time periods. While axial-slice location for prior CTs is 
annotated in radiology reports, the search processes for 
multiple nodules over many CTs may consume a consid-
erable portion of a radiologist’s time. Our nodule detec-
tor can automatically create X, Y, and Z coordinates to 
label nodules on prior CTs with high precision. Current 

Fig. 5 Prediction examples. Top row contains correctly identified nodules in green outline (a–d). Correctly identified nodules include ground glass 
nodule (a) and several soft tissue nodules (b–d). Bottom row contains missed nodules and false positives with yellow crosshairs specifying correct 
nodules (e, f). e FP prediction outlined in red. f Calcified nodule identified (green box) instead of ground glass nodule (yellow crosshair). g Small soft 
tissue nodule missed. h Small subpleural soft tissue nodule missed
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computer-aided detection (CAD) systems struggle with 
relatively higher false positive rates, which limits their use 
in this setting. Christie et  al. found that three commer-
cial CAD systems achieved higher recall (0.82, 0.83, and 
0.68) than our model at the expense of higher FP rates 
(0.62, 13.69, and 73.47 FPs/scan, respectively) on lung 
CT studies with an anthropomorphic thoracic phantom 
[21]. Notably, Christie et  al. found that their two radi-
ologists reference readers had FP rates of 0.14 and 0.27 
nodules/scan, FP rates which are similar to those by our 
lung nodule detector [21]. For re-identification of labeled 
nodules, models with relatively higher FP rates may inad-
vertently lead to increased radiologist workload by having 
to evaluate each of the predictions manually. By focusing 
on a low FP rate, we believe that our nodule detector is 
more likely to reduce workload by reducing search time 
on prior reference-CTs.

Clinical integration of deep learning models is a rela-
tively new, but important, area of investigation and is 
warranted in future studies. New systems and methods 
have only recently been developed to trial these deep 
learning models in the clinic with existing hospital infor-
mation technology infrastructure [22, 23]. We propose a 
basic schema for future clinical integration that utilizes 
text-preprocessing to extract axial-slice information, 
fully automating this pipeline (Fig. 6). In cases where our 
model failed to identify a nodule at an annotated axial-
slice position, the corresponding slice would be marked 
on the PACS viewer to alert the radiologist of a missed 
nodule, further improving workflow efficiency. Existing 
solutions would allow this deep learning pipeline to run 
asynchronously, preventing disruption to the radiologist’s 
workflow [22]. Processing clinical free-text is another 
active area of research. However, we believe the increased 
standardization of lung cancer screening reports and 
advances in free-text processing, or more commonly 
natural language processing, will allow for accurate axial-
slice extraction [24, 25]. Future integration research can 
aim to clarify these and other implementation details and 
quantify workload reduction.

In addition to the clinical impact, we believe a high pre-
cision detector can improve research efforts in applying 
deep learning techniques to lung cancer screening. There 
is a paucity of radiologic data with high quality labels for 
nodule detection, and lung nodules are no exception. 
One of the most popular datasets used to train and evalu-
ate lung nodule detectors is LUNA, which contains only 
888 CTs with 2290 nodules [11, 19, 20]. For comparison, 
the Common Objects in Context dataset is a benchmark 
dataset for everyday object detection tasks and contains 
over 200,000 images with over 1.5 million segmented 
objects [26]. A high precision end-to-end nodule detec-
tor allows researchers to utilize their own institutional 

data to rapidly build custom lung nodule datasets. These 
datasets can be applied to both improve nodule detection 
performance and also be used to address more complex 
problems. For example, future computer vision research 
can automatically characterize changes in nodules over-
time to predict occurrence, type, and severity of cancer 
based on an initial lung nodule. To create these custom 
datasets with high-quality ground truth labels, a model 
must be developed with an emphasis on precision with 
reasonable recall.

Despite the high precision, we were able to identify 
consistent trends in missed nodules. Our classifier strug-
gled to identify nodules with poorly defined margins or 
ground glass attenuation, which are associated with ade-
nocarcinoma spectrum tumors. Computer vision models 
have consistently lower recall for non-solid nodule detec-
tion like ground glass opacities [11]. This may be partially 
due to a significantly lower rate of non-solid nodules 
available in the training set. Additionally, most focal 
ground glass opacities eventually turn out to be infection 
or inflammation. While LUNA does not contain nodule 
margin descriptions, only 7% of the NLST test set nod-
ules were ground glass attenuation, suggesting a low 
general prevalence. As several past studies applying com-
puter vision to nodule classification, rather than detec-
tion, have done, a dataset with high prevalence of ground 
glass nodules may have to be utilized to improve perfor-
mance significantly [27, 28]. Additionally, it is important 
to note that in many cases, like Fig. 5f (yellow crosshairs), 
it is challenging if not impossible for radiologists to 
determine if a ground glass opacity is due to malignancy 
or other causes, such as inflammation or infection, with 
just a single time point. Temporal subtraction has been 
used to improve radiologist performance and could be 
integrated with deep learning-based nodule detectors in 
future studies [29].

Our study faces a few technical limitations. As we 
focused on building a high precision detector, our detec-
tor has a relatively low recall of nodules, which is inher-
ent in the design and objective of the algorithm. This 
strength and weakness of the algorithm’s accuracy pro-
file should be taken into account in its clinical integra-
tion. Because MIP compresses information axially and 
coronally, this can lead to slight offsets in prediction. 
Similarly, when identifying nodule locations through 
clustering, taking the mean of the cluster can lead to an 
additional offset from the true nodule center. However, 
these offsets were slight, and the predicted nodules were 
well within bounding box diameters. Because we set the 
predicted bounding box diameter to the largest diameter 
of an individual 2D inference in the cluster, the bound-
ing diameter values were nearly double the true nodule 
diameters. The bounding box diameter was not intended 
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and should not be used as an estimate of the true nodule 
diameter.

Conclusions
We developed a high precision axial-slice assisted lung 
nodule detector that can be utilized to improve radi-
ology workflow during lung nodule screenings and 
augment research efforts in the application of deep 
learning to lung cancer detection. Future research can 
be directed at improving performance on ground glass 

nodule detection and utilize temporal lung nodule 
screening data to predict malignancy.
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