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A B S T R A C T   

Recently, the whole world witnessed the fatal outbreak of COVID-19 epidemic originating at Wuhan, Hubei 
province, China, during a mass gathering in a film festival. World Health Organization (WHO) has declared this 
COVID-19 as a pandemic due to its rapid spread across different countries within a few days. Several research 
works are being performed to understand the various influential factors responsible for spreading COVID. 
However, limited studies have been performed on how climatic and socio-demographic conditions may impact 
the spread of the virus. In this work, we aim to find the relationship of socio-demographic conditions, such as 
temperature, humidity, and population density of the regions, with the spread of COVID-19. The COVID data for 
different countries along with the social data are collected. For the experimental purpose, Fuzzy association rule 
mining is employed to infer the various relationships from the data. Moreover, to examine the seasonal effect, a 
streaming setting is also considered. The experimental results demonstrate various interesting insights to un-
derstand the impact of different factors on spreading COVID-19.   

1. Introduction 

Coronavirus Disease 2019 (COVID-19) is an acute respiratory disease 
caused by a highly virulent novel coronavirus strain, SARS-CoV-2, which 
is a single-stranded RNA virus [1]. Due to its highly contagious nature, it 
rapidly propagates from person to person causing a pandemic situation 
worldwide. Since the first appearance in late 2019, the ongoing 
pandemic of COVID-19 has resulted in approximately 25,00,000 
confirmed cases and more than 1,70,000 deaths in over 200 countries 
worldwide ( https://coronavirus.jhu.edu/). In India, it has already 
caused more than 940705 confirmed cases and almost 98678 deaths ( 
https://www.mohfw.gov.in/). Most of the initial efforts in analyzing the 
spread and outcome of COVID-19 focus on setting complex mathemat-
ical models to pandemic data for predicting the spread and peak of the 
disease transmission [2]. These works have mainly used the data of the 
number of cases reported daily in different COVID-19 tracker websites. 
It may be noted that the spread and vulnerability of COVID-19 vary from 
one place to another and from one person to another. Therefore, it is 
expected that certain climatic and socio-demographic factors, which 
vary from place to place and person to person, are likely to have an 
immense effect on determining the outbreak intensity and outcomes of 

COVID-19 pandemic. However, no systematic effort has been reported 
in the literature that deals with this issue. The proposed study addresses 
the problem of identifying important factors that explain the spread and 
outcome of COVID-19 through data-driven association analysis. 

Association analysis is a rule-based machine learning technique that 
is used to discover interesting associations between the variables or at-
tributes of a large data set [3,4]. It has been successfully utilized in 
biological information processing [5] and disease outbreak prediction 
[6]. In this proposed study, we mainly consider the problem of identi-
fying important climatic and socio-demographic factors responsible for 
the intensity of COVID-19 outbreak in a particular country, state, or 
region. The intensity can be measured in terms of the number of cu-
mulative cases of the disease at a particular point of time. The climatic 
and socio-demographic factors, such as the average temperature of the 
region, humidity, and population density, are considered as the poten-
tial predictor variables. We develop customized association rule 
learning techniques based on the available pandemic data from various 
trackers of COVID-19 cases and publicly available patient details of 
India and other countries to infer possible associations among the above 
variables and their influence in predicting the intensity and outcomes of 
COVID-19. The extracted association rules can also be used for 
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predicting future COVID-19 outbreaks and patients’ survival chances. 
Traditional association rule mining methods like Apriori algorithm 

[3,4] deal with categorical datasets, where each attribute–value pair is 
considered as an item. However, the attributes of the COVID-19 data-
sets, except a few, are mostly numeric and continuous. A possible so-
lution to make these datasets ready for traditional rule mining is to 
categorize the quantitative attributes by defining some intervals taking 
coarser granularity. For example, the temperature attribute is contin-
uous. This can be categorized by selecting two thresholds l and h so that 
a temperature t falls in interval low if t⩽l, in interval medium, if l < t⩽h, 
and in interval high if t > h. However, it is difficult to determine these 
thresholds universally as it is very subjective and the accuracy of the 
obtained rules is very sensitive to these threshold values. Therefore the 
better alternative is to define these intervals as linguistic variables in 
terms of fuzzy sets, where different intervals may overlap in fuzzy 
context. 

In this proposed study, the work is performed in a twofold manner. 
Initially, the COVID data is collected for various countries with diverse 
characteristics for a particular time period. Then the corresponding 
socio-demographic data are collected from these countries. Finally, 
these data are combined as the raw dataset for our experiments. The 
values of different parameters (like temperature, humidity) change due 
to the seasonal effect. Therefore to understand the behavior of different 
attributes, various membership functions are needed to be defined. 

Most of the research conducted on the COVID data considers the 
dataset as static data or time-varying data. As the data about different 
death rates and recovery rates are generated each day, this situation is 
considered as a streaming one. There is minimal research that deals with 
the dynamic behavior of the COVID data. This dynamic behavior arises 
from different preventive actions like lockdown, vaccination drives 
taken by the Government. Hence the relationship between the different 
attributes can vary with time, the rules generated from them also vary. 
In this situation, as time changes, the different climatic conditions like 
temperature, humidity, etc., also change. Therefore, the effect of various 
seasonal changes can be captured if the streaming fashion is considered. 
In this method, the weighted average approach is used to update the 
rules in a streaming manner. While considering the streaming condition, 
the most persistent rules over different seasons are also observed. 
Moreover, the goal is to discard some of the rules which are no longer 
effective while the new attributes arrive with the seasonal changes. This 
work aims to develop customized association analysis techniques based 
on COVID-19 pandemic data for understanding the impact of various 
climatic and socio-demographic factors. The main contributions of the 
research are summarized below.  

• Identifying interesting associations among climatic and socio- 
demographic factors responsible for the region-specific outbreak 
intensity. 

• Predicting possible region-specific future outbreaks and under-
standing the fuzzy relationships between various attributes in the 
fuzzy context.  

• Identifying the relationship of different rules over the different time- 
spans considering the streaming mode and recognizing the persistent 
rules across different time windows.  

• Providing a model to be used as a customized tool that can study the 
static behavior as well as dynamic behavior of different socio- 
demographic conditions on COVID data. 

The rest of the paper is organized as follows. Section 2 describes the 
state-of-the-art approaches dealing with various COVID data to under-
stand the behavior of the virus spread. Section 3 depicts the proposed 
methodology. The experimental design and results are explained in 
Section 4. Section 5 concludes the article by providing some future 
directions. 

2. Related work 

A spectrum of research works is being carried out to combat the 
COVID outbreak and forecast the possible spread [6–8]. One important 
work is the prediction of the actual spread of the pandemic. To deal with 
this issue, a set of classifiers, namely, SVM, logistic regression, neural 
network-based models, and two variants of Bayesian Network classifiers 
have been applied over the dataset of patients collected from STEMI [9]. 
In [10], the authors used the ARIMA model for forecasting the outbreak 
in 15 countries. The COVID-19 data including cumulative number of 
cases, cumulative number of deaths and recovery cases of top 15 
affected countries in April 2020 were considered and they tried to pre-
dict 30 days forecast of COVID-19 outbreak where their prediction 
showed really very scary outcomes for especially some European 
countries like Italy, Spain, and France. In [11], an objective-based 
approach was proposed for the prediction of the continuation of 
COVID-19 using live forecasting. In this work, the authors tried to 
anticipate the live forecasting of COVID-19 assuming the past pattern 
will continue in the future. Here Exponential smoothing models were 
adopted to predict the forecast of COVID-19 confirmed cases because the 
Exponential smoothing family provides really good forecast accuracy 
especially for short series. Among other studies, the modified SEIR 
model was also used in [4] to design a model for COVID-19 pandemic 
considering quarantine and treatment. Here, the authors also applied 
the particle swarm optimization (PSO) algorithm on the data of Hubei 
province for estimating parameters of the SEIR model. 

Additionally, many research works introduced different kinds of 
mathematical models like SIR, SEIR models for prediction, and tested 
the performance of the models on different real data collected from 
different countries [12,13]. Several analytical approaches of the SIR 
models have been introduced in the literature. As the different countries 
follow different strategies to control the spread of the epidemic, there-
fore, the SIR-based model can be adopted with the different local as-
sumptions specific to the countries. It has been noticed that the major 
success of SIR models depends on the context of the applications and 
adoption of proper assumptions [14,15]. Hence, a large number of 
variants of SIR model, namely, SIS (susceptible-infectious-susceptible), 
SIRD (susceptible-infected-recovered-deceased), MSIR (Maternally- 
derived-immunity-susceptible-infected-recovered), SEIR (Susceptible- 
exposed-infected-recovered), SEIS (Susceptible-exposed-infected-sus-
ceptible), etc. have been considered as the popular methods to predict 
the COVID-19 spread. Another advanced version of the SIR model, 
namely, SIR-d model has taken into account another two important 
characteristics, namely, vital dynamics and constant population [15]. 

Zhang et al. [16] proposed a segmented Poisson model by using the 
power-law and exponential law to study the COVID-19 outbreak in six 
major countries. In another study, a parsimonious model was proposed 
that identified the infected individuals and fixed various measures for 
the containment policy. Apart from this, different deep learning-based 
techniques like Long short Term Memory (LSTM) models and curve- 
fitting have also been proposed [17] for prediction of the month-wise 
COVID-19 cases. Here the impact of various measures like social isola-
tion and lockdown duration during that time are considered. Mean-
while, using the epidemiological SIR model, Khrapov et. al. [18] 
developed a mathematical model for forecasting the epidemic devel-
opment of COVID-19 in China. Another group of researchers extended 
the SEIR model for understanding the importance of testing and quar-
antine policy [19]. 

Another interesting research mentioned in [20] attempted to detect 
the possible outbreak of COVID-19 pandemic in India, employing linear 
regression, Multilayer perceptron and Vector autoregression method. 
Machine learning-based model by employing the power of cloud 
computing framework for predicting the growth of COVID-19 in coun-
tries worldwide was presented in [21]. Another study reported in [22] 
utilized the Support Vector Regression (SVR) model to foresee the 
spread of novel coronavirus along with the number of patients who 
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would recover. They also used Pearson’s Correlation measure to find the 
correlation between coronavirus and different weather conditions like 
temperature, humidity, and wind. Similarly, another recent work finds 
the correlation among a large number of countries and socio-economic 
indicators to predict COVID-19 spread using various machine learning 
techniques [23]. In this work, the authors employed a univariate feature 
selection method to choose the most relevant features (i.e., indicators) 
and use ANOVA for this purpose. Thereafter, based on the spread of 
COVID, the countries were classified into four categories and different 
traditional classifiers are used to classify the countries. But the number 
of classes based on the COVID statistics may not always be four and also 
due to several other external effects, the covid cases can abruptly rise up 
or fall down. Thus it makes the classification task more difficult. In the 
same line, another recent research [24] finds the environmental effects 
on COVID spread in different regions of India and in New York city. In 
this method a number of statistical analysis is performed in order to 
understand the effect of different environmental factors like Tempera-
ture, Relative humidity and COVID cases per day. This work finds the 
pairwise correlation between any two features. Importantly, the impact 
of different preventive measures like lockdown, vaccinations, etc can 
impose some kind of dynamic nature in the system and identifying those 
patterns over different instances with their stability is important. 
However, as the dataset is considered as a static one, the complex re-
lationships among a large number of environmental indicators in 
streaming situation cannot be identified in this work [24]. 

Although most of the research works are aligned toward predicting 
the growth or pointing out the final size of the spread, a very limited 
study has been performed on how to find the effect of different socio- 
demographic factors over the COVID-19 spread. In the present study, 
we try to understand the complex relationships of various socio- 
demographic attributes affecting COVID-19 spread. Different seasonal 
attributes like temperature, humidity etc., and the various measures 
(like lockdown, imposing various restrictions, and locating some 
containment zones, etc.) taken by the Government of the respective 
countries may change over time. Here, during this process, some old 
rules are faded away and new rules can be generated. So identifying the 
most stable rules across different time windows is important for the 
authority or decision maker to make proper decisions. However, finding 
this kind of relationships in streaming situation to infer the effect of 
persistent associations among various environmental factors on COVID 
data has not been studied in other research works. Therefore, in this 
work, in addition to understanding the complex relationships among 
various socio-demographic factors, the static and dynamic behaviors of 
the COVID data are also captured by considering the association rule 
mining in both the situations, viz., static rule mining and streaming rule 
mining. This is expected to help adopt various measures to prevent the 
spread of the epidemic and take requisite healthcare initiatives. 

3. Proposed methodology 

In normal association rule mining methods like Apriori algorithm, 
the items i.e., attribute–value pairs are not numeric and continuous. 
Therefore, the traditional association rule mining fails to quantify some 
intervals (like low, middle and high temperature) considering the 
coarser granularity. As an alternative means, the intervals can be termed 
as the linguistic variables considering fuzzy sets. Here overlapping be-
tween the different linguistic variables over fuzzy set can remove the 
discrepancy. 

A fuzzy association rule [25] will then look like (X is AX) ⇒ (Y is BY), 
where the itemset X = {x1, x2,…, xp} is the antecedent and the itemset 
Y = {y1, y2,…, yp} is the consequent. AX = {Fx1, Fx2,…, Fxp} and BY = {

Fy1, Fy2,…, Fyq} consist of the linguistic variables defined by fuzzy 
membership functions for the corresponding items in X and Y, respec-
tively. An example of fuzzy rule can be (Temperature is high) ⇒ (In-
tensity is high). We aim to develop efficient fuzzy association rule 

learning algorithms to discover interesting fuzzy association rules from 
the region-wise COVID-19 pandemic data, where the different regions 
are considered as the transactions. 

As mentioned above, consider I be the set of itemsets and the itemsets 
X,Y⫅I. Again, suppose X⇒Y be the rule and T be a set of transactions. 
The support quantifies how frequently the itemsets occur together in the 
database. The support of an itemset X with respect to T is defined as the 
proportion of transactions in the dataset that contains X. Mathemati-
cally, this support can be expressed as Supp(X) =

|{X∈T}|
|T| . The quantifi-

cation of confidence of X⇒Y is the proportion of transactions in the 
dataset that holds the item X, in which item Y also occurs. Confidence of 
the rule X⇒Y is defined as Conf(X⇒Y) =

Supp(X∪Y)
Supp(X) . 

For the region-wise data, we primarily consider the association rules 
in which the consequent is the intensity of the outbreak in a region. 
Fuzzy rules to be obtained from this data explain the relationships 
among the different factors and the intensity of the COVID-19 outbreak 
in a particular region. The factors or variables in the antecedent of the 
rules will be identified as the most relevant factors responsible for the 
intensity of the outbreak. 

3.1. Association rule mining in static setting 

Different symbols are utilized to represent the different attributes as 
shown in Table 1. This COVID data, including the socio-demographic 
data are taken. Table 2 contains region-wise COVID-19 data and their 
corresponding socio-demographic information like temperature, hu-
midity and population density. Fuzzy membership sets utilized to map 
the quantitative data into sets are demonstrated in Figs. 2–6. The ten 
steps for extracting the different important rules are provided below.  

• Step 1: First, the quantitative values of the different attributes are 
transformed into fuzzy membership values. From Table 2, consider 
903 in the first record of attribute D as an example and it is converted 
into fuzzy set using fuzzy membership function. The membership 
values of 903 are (0.2425|mid + 0.2575|large) as 903 lies in both 
“mid” and “large” classes (as demonstrated in Fig. 3). This step is 
repeated for all the attributes of the dataset.  

• Step 2: After converting all the values into fuzzy sets, fuzzy 
normalization process is done by using the ratio of two components. 
The first component is “The membership value of attribute X in one 
of its fuzzy class” and the second term is “Sum of the membership 
values of attribute X in all of its fuzzy classes”. 

Applying the ratio of the two terms to the first record in Table 3, 
we get that 0.2425/(0 + 0.2425 + 0.2575) is equal to 0.4850 and 
0.2575/(0 + 0.2425 + 0.2574) is equal to 0.5150. So, after 
normalization (0.4850|mid  + 0.5150|large) become the new 
membership values of 903. Normalization is done for all attributes by 
following this step. While Table 3 shows a set of raw membership 
values of attribute D, Table 4 shows the normalized equivalents.  

• Step 3: After normalization, we add all the normalized values of the 
same fuzzy class. Then, the summation value is divided by the total 

Fig. 1. Demonstration of streaming scenario.  
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number of records present in the dataset to calculate the support of 
each fuzzy class and put them in set Y, where Y is called “itemsets”. 
We consider attribute D as an example and the support values are 
determined individually for “small”, “mid” and “large” fuzzy classes 
of attribute D as they are three different fuzzy classes of D. To 
demonstrate the calculation, here we choose “small” class of attri-
bute D. We take the values of D.small from each record in Table 4 and 
add them together, i.e., (0 + 0 + 0 + 1 + 0 + 1 + 1 + 1 + 1 + 1) = 6. 
After that, the summation value (here 6) is divided by the number of 
records (here 10) for obtaining the support of the “small” class of 
attribute D. So, here (6/10) = 0.6 becomes the support of D.small. 

• Step 4: Next, we compare each fuzzy class’s support with the pre-
defined minimum support value, which is 0.2 here. Taking the sup-
port of D.small from Table 4 as 0.6 > 0.2, D.small is qualified as 
“frequent 1-itemset (Y1)” for further calculation. However, if the 
support of any fuzzy class (1-itemset) is smaller than the minimum 
support value, then that fuzzy class is rejected for further processing.  

• Step 5: Fuzzy classes from frequent 1-itemset (Y1) are used to form 
all possible 2-itemset combinations. The support of each 2-itemset is 
calculated by selecting the minimum normalized value from two 
fuzzy classes (forming a 2-itemset) in each record. We sum up all the 
minimum values for a 2-itemset taken from all the records in the 
dataset, and then the summation value is divided by the total number 
of records. Table 5 contains the normalized values of two fuzzy 
classes {I.small} and {D.small} for 10 records. To demonstrate, 
consider {I.small, D.small} as a 2-itemset. In Table 5, for the first 
record {I.small} is 0 and {D.small} is also 0. Therefore, we get 0 for 
the first record. 

Similarly, we find the minimum values for 2–10 records. After that 
all of them are summed up, i.e., (0 + 0 + 0 + 1 + 0 + 1 + 1 + 0 + 0 +
1) = 4 and then (4/10) = 0.4 becomes the support value of 2-itemset 
{I.small, D.small}.  

• Step 6: After getting the support of each 2-itemset, the support 
values are compared with the predefined minimum support value. If 
the support value of a 2-itemset is greater than or equal to the 
minimum support value, then the 2-itemset qualifies as “frequent 2- 
itemset (Y2)” for further calculation. Otherwise, it is rejected.  

• Step 7: Forming all possible higher level combinations of itemsets, 
steps 5 and 6 are repeatedly performed until the point when there are 
no more combinations available. In this experiment, 3-itemsets and 
4-itemsets are found to be developed.  

• Step 8: From each Yi (i >=2), all possible association rules are 
extracted and then find the confidence value for each rule. Take if {P. 
low, H.wet} then {D.small} as an example and calculate the confi-
dence value as Support(P.low,H.wet,D.small)∗ 100

Support(P.low,H.wet) = 0.2026 ∗ 100
0.2893 = 70.03%.  

• Step 9: After obtaining the confidence value of each rule, it is 
compared with the minimum confidence value, which was defined 

Table 1 
The symbols of the different attributes.  

Parameters Symbols 

Temperature T 
Infected I 
Death D 
Recovery R 
Humidity H 
Population density P  

Table 2 
The historical data of COVID-19 pandemic (January 2020 to June 2020).  

Country Region Total Infected after 50 Days (I) Total Deaths after 50 Days (D) Avg Temp (T) Population density (P) Avg humidity (H) 

USA Colorado 17364 903 5 19.9 61 
USA Wisconsin 7964 339 4 40.6 74 
USA Connecticut 25997 2012 7 285 61 
USA Alaska 371 10 0 0.49 75 
USA New York 257216 15302 6 159 58 
INDIA Kerala 28 0 29 859 71 
INDIA Telengana 873 23 30 312 59 
INDIA Rajasthan 1890 27 23 201 47 
INDIA Uttar Pradesh 1449 21 23 828 63 
INDIA Haryana 262 3 22 573 65  

Fig. 2. Fuzzy membership sets for the temperature attribute.  

Fig. 3. Fuzzy membership sets for the Number of Deaths attribute.  

S. Chatterjee et al.                                                                                                                                                                                                                              



Methods 203 (2022) 511–522

515

earlier. In this experiment, we set the minimum confidence value to 
60%. Therefore, only those association rules are reliable and quali-
fied whose confidence values are greater than or equal to 60%. 
Otherwise, the rules are rejected.  

• Step 10: Finally, those rules are treated as importance rules where D 
and I are present in the consequent part only because the effect of 
different attributes on death or infection can be realized better if it is 
present in the rule. 

3.2. Association rule mining in streaming scenario 

The proposed method for the streaming setting is described in a 
nutshell here. In this scenario, the data concerning COVID statistics 
arrive continuously. That means the number of deaths, infected and 
recovered persons are gathered in a day-by-day manner. The COVID 
statistics like temperature, population density and humidity may differ 
from region to region for a particular country. Hence, to study the 
behavior, we focus on a specific region and the day-wise data of COVID 
patients, including the climatic and socio-demographic data are 
collected. In this context, motivated by the work in [26], we introduce 

the streaming model for the COVID data considering the Fuzzy scenario, 
although the previous work does not consider the Fuzzy setting. In this 
work, a particular chunk of data, termed as window, is considered at a 

Fig. 4. Fuzzy membership sets for the Number of Infected attribute.  

Fig. 5. Fuzzy membership sets for the population density attribute.  

Fig. 6. Fuzzy membership sets for the humidity attribute.  

Table 3 
The raw membership values of attribute D.  

Quantitative value of attribute D D.small D.mid D.large 

903 0 0.2425 0.2575 
339 0 1 0 
2012 0 0 1 
10 1 0 0 
15302 0 0 1 
0 1 0 0 
23 0.6750 0 0 
27 0.5750 0 0 
21 0.7250 0 0 
3 1 0 0  
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time. Therefore, in each time point, the frequent item-set algorithm is 
applied iteratively. In this context, we update the frequent item database 
every time. This frequent item database contains those itemsets that are 
present for a long time. At the same time, the support of each item is 
calculated for each time window. Therefore, if any of the old item-sets 
appears again in the next time window, the support value is computed 
using the weighted average approach. Similarly, the updation in the 
frequent item database is also needed to be performed. The step-by-step 
approach of the proposed model is described in the next few subsections.  

• Fetching Data using Sliding window 
When the new data appears at each time-instant, there is a 

requirement to identify the changes and the distribution of the at-
tributes. Therefore, we need to detect the changes in the distribution 
and relationships among the attributes. To remove the rules that are 
no longer valid, and to include new rules, we need to update the rule 
database accordingly. Fig. 1 illustrates this technique showing the 
different time windows of the data. A window contains a chunk of 
data collected in a given time period, e.g., the data collected in the 
first 15-days are stored in the first window, the data collected in the 
second window are for the next 15-days (excluding the first day), and 
so on.  

• Finding Frequent Itemsets 
Here, all the attributes of the dataset are numeric. So, to find the 

frequent itemsets in the current window, we just follow the Steps 1 to 
7 as described before in the methodology of Association Rule Mining 
in Static Setting (mentioned in Section 3.1).  

• Updating Frequent Itemset database 
After collecting the frequent itemsets (with support value greater 

than or equal to the minimum support) for the current window, we 
update the frequent itemset database (FID). FID contains the itemsets 
that are either frequent for the current window, or they are not 
frequent for the current window but have been frequent for a long 
time (for the number of windows that is greater than or equal to the 
predefined minimum value), with their corresponding “stored sup-
port value”. We calculate the “stored support value” of each itemset 
in the FID with the help of a simple weighted average strategy. The 

equation of the weighted average technique for calculating the 
stored support value for an item (denoted as Si

FID) at ith time instant is 
given below. 

Si
FID =

(n − 1)
n

S(i− 1)
FID +

Scurrent

n
(1)  

Here, S(i− 1)
FID denotes the stored support value of the same itemset in 

the last FID. Scurrent be the support value of a frequent itemset (FI) in 
the current window. Considering the minimum support α, we apply 
the weighted average technique for a new frequent itemset (FI) in the 
current window with support greater than or equal to the minimum 
support α. In this scenario, for a new itemset the first part i.e., 
((n − 1)/n) ∗ S(i− 1)

FID becomes zero as it was not present in the FID 
before and the second part, i.e., (Scurrent/n) will be stored in the FID as 
the “stored support value” of the FI. In this situation, for a new 
itemset that appears for the first time, to alleviate the full weightage 
of it in the current window (as it appears for the first time in the 
current window), the second term (Scurrent/n) is computed. Thus, the 
support of a new item that appears just one time in a new current 
window cannot be highly weighted. At the same time, if an itemset is 
found to be infrequent all of a sudden but has been frequent for a long 
time, instead of immediate removal of that itemset from the FID, we 
decrease its “stored support value” in the FID by using the above 
described weighted average technique. For this situation, (Scurrent/n)
will be zero and only ((n − 1)/n) ∗ S(i− 1)

FID part will be stored in the FID 
as the “stored support value” of the itemset. Let the minimum 
number of occurrences of an item in FID be θ. If the total number of 
occurrences of an itemset becomes less than θ (starting from the 
window where it first occurred as FI), only that itemset is deleted 
from the FID.  

• Updating Association Rules 
When we update the FID for each window, simultaneously, the 

association rules extracted from the corresponding FID itemsets are 
kept updated. For each FID, all the possible association rules along 
with their corresponding confidence values are generated. Then, 
each rule’s confidence value is compared with the predefined mini-
mum confidence value (Let, β), and only the rules having confidence 
greater than or equal to β are kept.  

• Extracting Stable Association Rules 
In the final step, the stable rules that are consistently present in 

different time windows are identified. Considering a stability 
threshold value as γ, if the frequency of obtaining the same rule from 
different windows is greater than or equal to γ, then the rule is 
considered stable. Thus, it signifies that even though some rules are 
not generated in successive windows, they are not removed imme-
diately. Instead, the rules remain persistent in the database for a 
certain time, and thus it reflects the long-term dependency among 
the attributes showing the utility of the streaming approach. 

4. Experimental design and results 

In this section, the two different kinds of datasets used for the ex-
periments (static and streaming scenario) are described. The experiment 
was performed in MATLAB 2015 and the environment is an Intel(R) CPU 
2.4 GHz machine with 8 GB RAM running Windows 10. 

4.1. Dataset preparation for static fuzzy association rule mining 

World-wide 13 countries are selected to prepare the dataset for 
mining static association rule. These countries are USA, INDIA, ITALY, 
PAKISTAN, FRANCE, RUSSIA, NIGERIA, CHINA, JAPAN, AUSTRALIA, 
BRAZIL, SPAIN and SWEDEN. For each of these 13 countries, we further 
chose 3 to 5 specific regions (in total 83 regions) to collect region-wise 
COVID-19 pandemic data like the total number of infected individuals, 

Table 4 
Normalized membership values for attribute D.  

Quantitative value of attribute D D.small D.mid D.large 

903 0 0.4850 0.5150 
339 0 1 0 
2012 0 0 1 
10 1 0 0 
15302 0 0 1 
0 1 0 0 
23 1 0 0 
27 1 0 0 
21 1 0 0 
3 1 0 0  

Table 5 
Normalized values of the two fuzzy class of I 
and D.  

I.small D.small 

0 0 
0 0 
0 0 
1 1 
0 0 
1 1 
1 1 
0 1 
0 1 
1 1  
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the number of persons who died after 50 days of the first instance of 
infection. The COVID-19 data for India is available in the link www. 
covid19india.org and the data for other countries are collected from the 
Johns Hopkins University tracker ( https://coronavirus.jhu.edu/). To 
discover the relevant factors that could possibly explain the outbreak of 
COVID-19 in a particular region, we collect climatic attributes like 
Temperature, Humidity and socio-demographic data like Population- 
Density to be augmented in the raw data sets, whatever is available 
publicly. Here, all the attributes of the dataset are available in numeric 
format. Therefore, an effort is made to infer the interesting fuzzy asso-
ciation rules from the region-wise data across different countries that 
can help better decision-making and develop new strategies to alleviate 
the pandemic. 

4.2. Dataset preparation for streaming fuzzy association rule mining 

To prepare the data for the analysis considering the streaming sce-
nario, we collected date-wise COVID-19 pandemic data like the cumu-
lative number of infected, the cumulative number of persons recovered 
and the cumulative number of persons died from March 2020 to June 
2020 for a particular region of India. In this respect, we choose one state 
of India, namely, ‘Maharashtra’. The climatic data like ‘average Tem-
perature’ and ‘average Humidity’ of the corresponding months and 
socio-demographic data like ‘Population-Density’ of Maharashtra is 
collected from the Internet. 

4.3. Experimental results for static fuzzy association rule mining 

In this experimental setting, we apply Fuzzy Association Rule Mining 
Technique for extracting different important rules connecting the 
diverse climatic and socio-demographic factors with COVID-19 
pandemic data. For this experiment, we use 0.2 as the minimum sup-
port and 60% as the minimum confidence. Keeping the rules with the 
confidence value greater than or equal to 60%, some subsets of inter-
esting rules are generated and those are reported in Table 6. Among the 
various rules evolved from the experimental analysis, some important 
rules are demonstrated in this table. It can be noticed that in the regions 
where the temperatures are medium, the number of deaths is small. 
Similarly, there is an effect of humidity over the number of deaths. It can 
be observed that if the humidity is wet, then the number of deaths also 
appears to be small. 

Although the association between a small number of attributes can 
be perceived straightforwardly, it becomes difficult to understand the 
relationship between the different attributes for complex scenarios 
where multiple attributes exist. To exemplify this scenario, in the pres-
ence of multiple attributes like population density, humidity, tempera-
ture, etc., it becomes challenging to infer the relationships among them 
and understand the combined effect of different attributes over the 
number of deaths, number of infected people, or the number of recov-
ered people. 

4.4. Experimental results for streaming fuzzy association rule mining 

In this experiment, we consider the sliding window size as 15. The 
minimum support value is considered as 0.5. Each time when the sliding 
window moves, the Frequent Itemset Database (FID) is updated 
accordingly. FID containing some frequent Itemsets (FIs) and their 
corresponding stored support values for different time periods are re-
ported in Tables 7–11. The itemset I.small has a support value 1 for the 
first sliding window (according to step 3 of Section 3.1 and this support 
value is termed as actual support value hereafter), and it is greater than 
the minimum support value, i.e., 0.5. Thus, to compute the weighted 
support, we need to consider two factors, namely, stored support value 
and actual support value (as mentioned in Eq. (1)). Now stored support 
value means the support of the already existing itemset present in FID. I. 
small becomes a frequent itemset (FI) for this sliding window and is 
inserted into the current FID after evaluating its actual support value 
using Eq. (1). Here, the window’s size is 15, and as it is the first sliding 
window, there was no past FID. Therefore, ((15 − 1)/15) ∗ S(i− 1)

FID con-
tributes to zero and the support value of I.small is (1/15) or 0.0667, 
which is stored in the current FID as mentioned in Table 7. If the itemset 
is consistently found as FI for some time period, then the stored support 
values in the corresponding FIDs are gradually increased. However, 
these values never exceed 1, because the maximum range of actual 
support value of any FI is 1. 

In Table 8, the itemsets are generated after a particular instant while 
FID = 30. It can be observed that the stored support value of I.small is 
equal to 0.8127 because I.small constantly became frequent from the 
first sliding window up to 30th sliding window. In this approach, if an 
itemset had been frequent for a long time, but now it has become 
infrequent, we do not remove it immediately from the FID. Here, we set 
the limit as 60%. If the total number of occurrences of an FI becomes less 
than 60% of the number of windows, starting from the first window 
when it was found to be frequent, the FI will be deleted from the FID. In 
Table 9, the stored support value of I.small is decreased to 0.2259 as I. 
small is not frequent in the current sliding window, but its total number 
of occurrences as an FI is still greater than or equal to 60%. However, I. 
small is no longer present in Table 10. Now, in this instance, I.small is 
purged out from the current FID. Some interesting rules, having confi-
dence values greater than or equal to 70%, generated from different 
windows, are shown in Tables 12–14. Here, we consider 0.5 (50%) as the 
stability factor. If the number of times the same rule is obtained from 
different windows and the count is greater than or equal to 50% of the 
total number of windows, then the rule will be considered as a stable 
rule. Some interesting stable rules corresponding to their stability per-
centage evolved over the different instances (with different window 
sizes) are reported in Tables 15–17, keeping the rules with “Output 
Attributes” (D and R in this case) in the consequent part only. We also 
performed the experiments by varying the window size = 10 and the 
interesting frequent rules obtained for window numbers of 50 and 100 
are demonstrated in Tables 18–19. In these experiments, we choose 50% 
as the threshold value for selecting the stable rules across different 

Table 6 
Some Interesting Rules generated by Static Association Rule Mining.  

Rule Antecedent Consequent Confidence 

1 {T.mid} D.small 78.11 
2 {P.low} I.small 60.90 
3 {P.low} D.small 70.31 
4 {H.wet} D.small 68.59 
5 {T.mid, P.moderate} D.small 76.35 
6 {T.mid, H.wet} I.small 62.10 
7 {T.mid, H.wet} D.small 75.95 
8 {P.low, H.wet} D.small 70.03 
9 {P.low} {I.small, D.small} 60.53 
10 {T.mid, H.wet} {I.small, D.small} 62.10  

Table 7 
Itemsets generated after the experiment while the size of 
sliding window is 15 and FID = 1.  

Items Support value 

I.small 0.0667 
D.small 0.0667 
R.small 0.0667 
T.mid 0.0667 
H.wet 0.0667 
P.moderate 0.0667 
I.small, D.small 0.0667 
I.small, R.small 0.0667 
I.small, T.mid 0.0667 
I.small, H.wet 0.0667  
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windows. However, it can be customized and any threshold value can be 
selected as per the requirement of the decision maker. To exemplify, in 
Table 15 and 16, as we fixed the threshold value as 50%, all the rules 
having greater value than 50% are retrieved. Here, by the nature of the 

data, all these rules have equal stability values, i.e., 55% in Table 15. 
However, it may not always be the same. For example, different stability 
factors of the rules like 69% and 51% can be seen in Table 17. Besides 
this, if the decision maker decides to choose more stable rules then he/ 
she may increase the level of threshold value and eventually it will 
generate more restrictive rules and the number of rules will become less. 
But these rules are more persistent throughout the whole period. In 
Table 18, it can be observed that 4th,5th and the 6th rules have the 
confidence 100% that denotes the importance of those rules. Similarly, 
in Table 19, the 1st ,3rd and 4th rules have the confidence value 100%. 

Table 8 
Itemsets generated after the experiment while the size of 
sliding window is 15 and FID = 30.  

Items Support value 

I.small 0.8127 
D.small 0.8579 
R.small 0.8738 
T.mid 0.8738 
H.wet 0.8738 
P.moderate 0.8738 
I.small, D.small 0.8127 
I.small, R.small 0.8127 
I.small, T.mid 0.8127 
I.small, H.wet 0.8127  

Table 9 
Itemsets generated after the experiment while the size of 
sliding window is 15 and FID = 50.  

Items Support value 

I.small 0.2259 
I.mid 0.5544 
D.small 0.3228 
D.mid 0.5196 
R.small 0.3564 
T.mid 0.6200 
H.wet 0.9682 
P.moderate 0.9682 
I.small, D.small 0.2259 
I.small, R.small 0.2259 
I.small, T.mid 0.2259 
I.small, H.wet 0.2259  

Table 10 
Itemsets generated after the experiment while the size of 
sliding window is 15 and FID = 61.  

Items Support value 

I.mid 0.2423 
I.large 0.4860 
D.mid 0.7393 
R.small 0.1557 
R.mid 0.7804 
T.mid 0.2709 
T.high 0.4560 
H.wet 0.9861 
P.moderate 0.9861 
I.mid, H.wet 0.2423 
I.mid, P.moderate 0.2423  

Table 11 
Itemsets generated after the experiment while the size of 
sliding window is 15 and FID = 70.  

Items Support value 

I.large 0.7040 
D.mid 0.5436 
D.large 0.1456 
R.mid 0.8529 
T.mid 0.1560 
T.high 0.5416 
H.wet 0.9920 
P.moderate 0.9920 
I.large, H.wet 0.7040 
I.large, P.moderate 0.7040  

Table 12 
Frequent rules obtained when the window size is 15 and window number is 35.  

Rule Antecedent Consequent Confidence 

1. I.small D.small 100 
2. I.small R.small 100 
3. T.mid D.small 90.93 
4. {I.small, T.mid} D.small 100 
5. H.wet {D.small, R.small} 89.83 
6. {T.mid, H.wet} D.small 90.93 
7. {I.small, H.wet, P.moderate} {D.small, R.small} 100  

Table 13 
Frequent rules obtained when the window size is 15 and window number is 50.  

Rule Antecedent Consequent Confidence 

1. I.mid D.mid 74.27 
2. I.mid R.mid 70.26 
3. {I.small, T.mid} R.small 100 
4. {I.mid, H.wet} D.mid 74.27 
5. {I.mid, P.moderate} R.mid 70.26 
6. {T.high, H.wet, P.moderate} {D.mid, R.mid} 100  

Table 14 
Frequent rules obtained when the window size is 15 and window number is 85.  

Rule Antecedent Consequent Confidence 

1. H.wet I.large 78.55 
2. I.large D.large 70.99 
3. {I.large, T.mid} R.large 80.54 
4. {I.large, T.mid, P.moderate} {D.large, R.large} 80.54 
5. {T.mid, H.wet, P.moderate} {D.large, R.large} 84.62 
6. {I.large, T.mid, H.wet, P.moderate} {D.large, R.large} 80.54  

Table 15 
Some interesting stable rules when window size is considered as 15.  

Rule Antecedent Consequent Stabilty 

1 {I.small, T.mid} D.small 55% 
2 {I.small, H.wet} D.small 55% 
3 {I.small, P.moderate} D.small 55% 
4 {I.small, T.mid} R.small 55% 
5 {I.small, H.wet} R.small 55% 
6 {I.small, P.moderate} R.small 55% 
7 {I.small, T.mid} {D.small, R.small} 55% 
8 {I.small, H.wet} {D.small, R.small} 55% 
9 {I.small, P.moderate} {D.small, R.small} 55% 
10 {I.small, T.mid, H.wet} D.small 55% 
11 {I.small, T.mid, P.moderate} D.small 55% 
12 {I.small, H.wet, P.moderate} D.small 55% 
13 {I.small, T.mid, H.wet} R.small 55% 
14 {I.small, T.mid, P.moderate} R.small 55% 
15 {I.small, H.wet, P.moderate} R.small 55% 
16 {I.small, H.wet, T.mid} {D.small, R.small} 55% 
17 {I.small, T.mid, P.moderate} {D.small, R.small} 55% 
18 {I.small, H.wet, P.moderate} {D.small, R.small} 55% 
19 {I.small,T.mid, H.wet, P.moderate} D.small 55% 
20 {I.small,T.mid,H.wet, P.moderate} R.small 55% 
21 {I.small, T.mid, H.wet, P.moderate} {D.small, R.small} 55%  
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In a normal situation, the support values of an itemset for different 
time points are calculated. These support values change abruptly 
depending on the presence of the itemset in specific time windows. We 
consider a specific time-span to observe the behavior of the support 
value of a particular itemset temperature (i.e., T.mid) and notice the 
changes of the support value across different time durations as demon-
strated in Fig. 7. The nature of the stored support value for the streaming 

situation when the support values are weighted based on the previous 
window and current window is demonstrated in Fig. 8. Fig. 7 shows that 
the support value becomes constant for a specific time period and that it 
becomes zero during the window number 47 to 71. This is due to the 
absence of that item in the original data at that time-span. The imme-
diate effect in support value is reflected while ignoring the long-term 
effect. However, from Fig. 8, the gradual rise and fall of the stored 
support value instead of abrupt changes can be noticed in the streaming 
situation. Similar observations can be made from Figs. 9 and 10, for the 
Infected number of people (i.e., I.small) in both the situations. To 
illustrate, the normal support value of another itemset I.small for 
different time windows is shown in Fig. 9 where sudden fall of support 
value is noticed after window number 25. Although, Fig. 10 exhibits the 
window-wise observation while considering the stored support value of 
I.small. Here, the stored support value of I.small gradually increases as 
long as this itemset is present across different time windows and its 
sudden absence in a particular time window did not remove this itemset 
from the database immediately, rather the stored support value de-
creases slowly. 

In Table 6, from row number 10, we can observe the rule {T.mid,H.

wet}⇒{I.small, D.small}. Basically, this type of situation happened in 
some states of India (e.g., Haryana) where the range of T.mid is between 
12 and 32, while the value of H.wet is greater than 60. In this case, the 
threshold value of I.small and D.small are 1000 and 50, respectively. 
Similarly, it can be noticed from the 7th rule that {T.mid,H.wet}⇒D.small 
and this condition reflects the COVID situation in two provinces (e.g., 
Mayatte and Martinique) of France. Here the values of average tem-
perature, humidity and number of deaths in Mayatte were 29, 77, and 
11. Another important observation can be made from the 18th rule of 
Table 17. It can be inferred that the intensity of recovery becomes 

Table 16 
Some interesting stable rules when window size is considered as 30.  

Rule Antecedent Consequent Stabilty 

1 {I.small, T.mid} D.small 50% 
2 {I.small, H.wet} D.small 50% 
3 {I.small, P.moderate} D.small 50% 
4 {I.small, T.mid} R.small 50% 
5 {I.small, H.wet} R.small 50% 
6 {I.small, P.moderate} R.small 50% 
7 {I.small, T.mid} {D.small, R.small} 50% 
8 {I.small, H.wet} {D.small, R.small} 50% 
9 {I.small, P.moderate} {D.small, R.small} 50% 
10 {I.small, T.mid, H.wet} D.small 50% 
11 {I.small, T.mid, P.moderate} D.small 50% 
12 {I.small, H.wet, P.moderate} D.small 50% 
13 {I.small, T.mid, H.wet} R.small 50% 
14 {I.small, T.mid, P.moderate} R.small 50% 
15 {I.small, H.wet, P.moderate} R.small 50% 
16 {I.small, H.wet, T.mid} {D.small, R.small} 50% 
17 {I.small, T.mid, P.moderate} {D.small, R.small} 50% 
18 {I.small, H.wet, P.moderate} {D.small, R.small} 50% 
19 {I.small,T.mid, H.wet, P.moderate} D.small 50% 
20 {I.small, T.mid,H.wet,P.moderate} R.small 50% 
21 {I.small, T.mid, H.wet, P.moderate} {D.small, R.small} 50%  

Table 17 
Some interesting stable rules when window size is considered as 10.  

Rule Antecedant Consequent Stability 

1 {I.small, T.mid} D.small 69% 
2 {I.small, H.wet} D.small 69% 
3 {I.small, P.moderate} D.small 69% 
4 {I.small, T.mid} R.small 69% 
5 {I.small, H.wet} R.small 69% 
6 {I.small, P.moderate} R.small 69% 
7 {T.high, H.wet} R.mid 51% 
8 {T.high, P.moderate} R.mid 51% 
9 {I.small, T.mid} {D.small, R.small} 69% 
10 {I.small, H.wet} {D.small, R.small} 69% 
11 {I.small, P.moderate} {D.small, R.small} 69% 
12 {I.small, T.mid, H.wet} D.small 69% 
13 {I.small, T.mid, P.moderate} D.small 69% 
14 {I.small, H.wet, P.moderate} D.small 69% 
15 {I.small, T.mid, H.wet} R.small 69% 
16 {I.small, T.mid, P.moderate} R.small 69% 
17 {I.small, H.wet, P.moderate} R.small 69% 
18 {T.high, H.wet, P.moderate} R.mid 51% 
19 {I.small, H.wet, T.mid} {D.small, R.small} 69% 
20 {I.small, T.mid, P.moderate} {D.small, R.small} 69% 
21 {I.small, H.wet, P.moderate} {D.small, R.small} 69% 
22 {I.small,T.mid, H.wet, P.moderate} D.small 69% 
23 {I.small, T.mid, H.wet, P.moderate} R.small 69% 
24 {I.small, T.mid, H.wet, P.moderate} {D.small, R.small} 69%  

Table 18 
Some frequent rules obtained when window size is 10 and window number is 50.  

Rule Antecedant Consequent Confidence 

1. {I.mid, H.wet D.mid 78 
2. {I.mid, H.wet, P.moderate} D.mid 78 
3. {I.mid, P.moderate} R.mid 76 
4. {I.small, T.mid} {D.small, R.small} 100 
5. {I.small, T,mid, P.moderate} {D.small, R.small} 100 
6. {I.small, H.wet, P.moderate} {D.small, R.small} 100  

Table 19 
Some frequent rules obtained when window size is 10 and window number is 
100.  

Rule Antecedant Consequent Confidence 

1. {I.vlarge, H.wet, P.moderate} {D.large, R.large} 100 
2. {I.large, H.wet} D.large 82 
3. {I.large, T.mid, H.wet} D.large 100 
4. {T.high, H.wet, P.moderate} R.mid 100 
5. {I.large, H.wet, P.moderate} D.large 82 
6. {T.mid. H.wet, P.moderate} R.large 98  

Fig. 7. Variation of support value for T.mid over different time windows while 
normal support value is considered. 
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medium if the temperature, humidity and population density become 
high, wet and moderate, respectively. Interestingly, this rule is identified 
as the stable rule due to its persistence over the whole period of time 
considering all the time windows in streaming situation. As mentioned 
before, understanding these types of complex associations between the 
different intensity levels of climatic and socio-demographic factors 
become difficult. Thus, various preventive measures can be adopted 
based on the different outcomes observed from the derived fuzzy asso-
ciation rules. Importantly, as the streaming situation is also considered, 
policy makers may become aware of the seasonal effect on it. In this 
way, this proposed methodology can assist the decision makers and 
Government to choose the appropriate preventive measures to fight 
against COVID. 

4.5. Further analysis 

In previous analysis for static situations as mentioned in Section 4.1, 
we consider the COVID statistics of the persons who died after 50 days of 
the first instance of infection. However, depending upon the nature of 
symptoms and incubation period, a COVID recovery can take a mini-
mum of 14 days. Hence, we performed a further experiment on the 
COVID data of those 13 countries (comprising 81 regions) considering 
the number of persons who died after 14 days of the first instance of 
infection. The rules obtained from the experiment are demonstrated in 
Table 20. There are some interesting complex relationships that can be 
very difficult to understand without employing the proposed method-
ology. For example, T.mid and P.moderate jointly infer that the infection 
will become small. It is also seen T.low and H.wet implies that the death 
will be small. Furthermore, it can also be observed that if T.mid and P. 
moderate occur jointly then death will become small. So it can be 
noticed that similar kind of rules {T.mid,P.moderate}⇒D.small and {P.
low,H.wet}⇒D.small also appear if 50 days of first instance of infection 
are taken into account (as mentioned in Table 6). However, the confi-
dence of {T.mid,P.moderate}⇒D.small is high in this situation. 

To compare the performance with a recent work mentioned in [24], 
we conduct the same experiment on some common geographical loca-
tions e.g., New York City and Mumbai City considering the streaming 
case. In this experiment, we employed the same dataset available in 
[24]. The window size is kept fixed as 15. At first we carried out our 
analysis for New York city and some important rules extracted from this 
experiment with their corresponding stability percentage are shown in 
Table 21. In this first experiment, the temperature of New York city is 
within the range 5.17–27.5 degree Celsius. As shown in Fig. 2, the 
temperature attribute is divided into three fuzzy sets namely, T.high, T. 

Fig. 8. Variation of stored support value for T.mid over different time windows 
in streaming situation considering weighted support value. 

Fig. 9. Variation of support value for I.small over different time windows while 
normal support value is considered. 

Fig. 10. Variation of stored support value for I.small over different time win-
dows in streaming situation considering weighted support value. 

Table 20 
Some interesting rules considering the incubation period of 14 days after the first 
instance of infection.  

Rule Antecedent Consequent Confidence 

1 {T.low} D.small 78 
2 {T.low, H.wet} D.small 82.2 
3 {T.mid,P.moderate} I.small 76.7 
4 {T.mid,P.moderate} D.small 92.2 
5 {T.mid,H.wet} {I.small,D.small} 74.1 
6 {P.low,H.wet} {I.small,D.small} 73.1  
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mid and T.low. But here we consider the range of T.low is less than or 
equal to 12, whereas we set the range from 10 to 19 for T.mid and the 
range for T.high starts from 18 degree Celsius. From Table 21, one 
interesting stable rule can be noticed that exhibits infections become 
high when temperature becomes low and the stability is 56.8%. The 
threshold value of the stability factor is chosen as 0.5 (50%) like the 
previous experiment. It can be observed that another stable rule appears 
in the database which implies {T.low,P.high}⇒I.large. This similar kind 
of observation is also noticed in this work [24], where negative corre-
lation exists between temperature and COVID cases per day. One more 
interesting rule reveals that infection becomes low when temperature 
remains high, humidity is within the comfort level and population 
density becomes high. As the stability of this rule is 26.3% (i.e., below 
50% which is the threshold value as chosen), even though this is not a 
stable rule but it appears in the database. Thus the negative correlation 
between Temperature and COVID cases can be inferred from these rules 
for this New York City. We also performed another set of experiment on 
other geographical location i.e., Mumbai city and the corresponding 
rules obtained from the experiment are reported in Table 22. In this 
analysis, it can be observed that the joint effect of {T.high,H.wet,P.high} 
implies that Infection will be large. For this city also, similar kinds of 
characteristics can be observed in [24] i.e., infection will become higher 
when temperature becomes high. Hence, the positive correlation be-
tween temperature and COVID cases per day is also observed in this 
current experiment. Here the stability percentage values of all these 
important rules is 41.1 (e.g., less than 50%) while 40% is considered as 
threshold value. In this situation, the decision makers need to be less 
restrictive to choose the threshold value in order to obtain some asso-
ciations. Although the streaming condition considering the dynamic 
behaviour of the data is not considered in this work [24]. Additionally, it 
is difficult to understand the joint effect of a large number of environ-
mental characteristics for different instances of streaming situations if 
only the pairwise correlation is computed. Therefore, it is inconvenient 
in finding the most stable relationships/rules throughout the whole 
period. Thus, it demonstrates the utility and effectiveness of the pro-
posed research over the socio-demographic data to adopt appropriate 
decisions. 

5. Conclusion 

Over the last many months, the whole world has been affected in 
different ways due to the fatal outbreak of COVID-19. Many research 
works have been performed during the pandemic to fight the rapid 
spread of COVID. Most of the research works are focused on forecasting 
the peak of the affected number of people using the improved SIR/SIER 
models. Some researches are also found to be very interesting to ease out 
the different decision making processes by predicting the size of the 

infections while considering the various control measures like incuba-
tion period (time lag between the infection and starting day of disease 
symptoms), latent period (time lag between infection to infectiousness), 
etc. However, limited research has been concerning with the different 
territories’ socio-demographic conditions to understand the behavior of 
the number of deaths, infections, recovered, etc., based on the COVID 
data. Moreover, for complex scenarios, where multiple attributes are 
present, it becomes tough to find the relationship among the attributes 
and find the impact of the critical attributes over the number of deaths. 
In this article, we study the different characteristics of socio- 
demographic conditions like humidity, temperature, population, etc., 
to find the relationship among them with the virus’s spread. This study is 
made considering the Fuzzy environment and we have applied static 
Fuzzy association rule mining for different countries comprising diverse 
geographical nature like temperature, humidity, population density, etc. 
In addition to that, as the data for the spread of COVID-19 are generated 
continuously, and the data is dependent on time, the generated data is 
considered to fit into a streaming model. As the different socio- 
demographic conditions like temperature, humidity, etc., vary in 
different seasons, this can significantly affect the spread of the virus. To 
understand this, we also developed the Fuzzy association rule mining for 
the streaming data and applied it to the COVID data using a time 
window-based model. The experimental results demonstrate the 
different interesting rules in both the conditions (static and streaming) 
that are expected to help the Government, policymakers, and healthcare 
persons implement different strategies to combat the epidemic. In this 
current study, we have considered region-wise COVID infection data. 
However, patient-wise data can be used to infer the possible outcome of 
survival of the patients. Additionally, considering the different measures 
like the number of lockdown days, the number of containment zones in a 
particular territory, etc., can also be considered to find the crucial re-
lationships to cease the spread further. 

This current study does not consider the patient-wise individual data 
during this period. However, the individual patient-wise data can be an 
interesting direction to understand the comorbidity along with the effect 
of different socio-economic conditions that can be studied in future. For 
example, a patient with high blood sugar and with chronic heart disease 
can be more prone to be infected. But it is observed that prediction of 
disease comorbidity can be erroneous if only the clinical data are 
employed. In addition to that, consideration of different attributes like 
population characteristics, age diversity, along with these socio- 
economic conditions can be helpful to understand the relationships 
between the diseases. To understand this type of analysis, mining of this 
kind of Fuzzy association rule can be one of the solutions. Interestingly, 
the analysis of different patient-wise statistics like age diversity among 
the number of cases of infected, deaths can be the important factors. 
More importantly, imposing the weight on the number of recoveries, 
infections and deaths are dependent on the period of lockdown, avail-
ability of vaccines in that locality. So two places which have an equal 
number of infections but having different days of lockdown period 
should be treated with different weights. As an example, the number of 
infections even after imposing ample days’ of lockdown signifies the 
negligence of medical treatment by the local authority. Therefore, 
finding these kinds of relationships is also important to the authority in 
order to arrange various preventative measures. Another interesting 
direction in this work is considering the patient-wise transmission rate. 
As in this work we have not considered the patient-wise individual data, 
however, consideration of transmission rate along with age can infer 
other complex relationships. Thus, in this way, consideration on the 
period of lockdown for each country/state and study of a weighted 
Fuzzy Association rule can be more interesting to derive meaningful 
insights for adopting relevant strategies. The authors are working in 
these directions. 

Table 21 
Some interesting rules for New York City when window size is considered as 15.  

Rule Antecedent Consequent Stabilty 

1 {T.low} I.large 56.8% 
2 {T.low, P.high} I.large 56.8% 
3 {T.high, P.high} I.low 26.3% 
4 {T.high,H.comfort,P.High} I.low 26.3% 
5 {T.high} I.low 5%  

Table 22 
Some interesting stable rules for Mumbai City when window size is considered as 
15.  

Rule Antecedent Consequent Stabilty 

1 {T.high, P.high} I.large 41.1% 
2 {H.wet, P.high} I.large 41.1% 
3 {T.high,H.wet, P.high} I.large 41.1%  
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