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REVIEW

The management of metastatic GIST: current 
standard and investigational therapeutics
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Abstract 

Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the gastrointestinal tract. The 
majority of GISTs harbor gain of function mutations in either KIT or PDGFRα. Determination of the GIST molecular 
subtype upon diagnosis is important because this information informs therapeutic decisions in both the adjuvant and 
metastatic setting. The management of GIST was revolutionized by the introduction of imatinib, a KIT inhibitor, which 
has become the standard first line treatment for metastatic GIST. However, despite a clinical benefit rate of 80%, the 
majority of patients with GIST experience disease progression after 2–3 years of imatinib therapy. Second and third 
line options include sunitinib and regorafenib, respectively, and yield low response rates and limited clinical benefit. 
There have been recent FDA approvals for GIST including ripretinib in the fourth-line setting and avapritinib for PDG-
FRA exon 18-mutant GIST. This article aims to review the optimal treatment approach for the management of patients 
with advanced GIST. It examines the standard treatment options available but also explores the novel treatment 
approaches in the setting of imatinib refractory GIST.
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Background
Gastrointestinal stromal tumor (GIST) is the most 
common soft tissue sarcoma subtype. The incidence 
of GIST is between 10 and 15 cases per million world-
wide and ~ 5000 in the USA [1, 2]. The median age at 
diagnosis is 66–69 years, with equal distribution of men 
and women [1, 2]. GIST originates from the interstitial 
cells of cajal (ICCs), and it can arise from any part of the 
gastrointestinal tract, most commonly in the stomach 
(55.6%), followed by the small bowel (31.8%), colorectum 
(6%), other locations (5.5%) and the esophagus (0.7%) [1].

The diagnosis of GIST relies on the combination of 
the clinical scenario, the tumor’s anatomic location, 
the immunohistochemistry (IHC) patterns, as well as 
molecular features. The majority of GIST are immuno-
histochemically positive for KIT (CD117) and DOG-1 

[3]. Other IHC markers frequently expressed in GIST 
include CD34 antigen (70%), smooth muscle actin (SMA, 
30–40%), S100 protein (10%) and desmin (< 5%) [6].

Molecular classification of GIST
The majority of GIST (75–80%) harbor gain of func-
tion KIT mutations (Fig. 1). Exon 11 of KIT is the most 
frequently mutated region, affecting approximately 
two-thirds of GIST. In-frame deletions in KIT exon 11, 
particularly those involving codons 557 and 558, are 
associated with a worse prognosis compared to KIT exon 
11 point mutations [4]. Mutations in KIT exon 9 occur 
in approximately 8–10% of GIST and are most commonly 
associated with small or large bowel tumors. Primary 
mutations in KIT exons 13, 17 and 18 are rare. Platelet-
derived growth factor receptor alpha (PDGFRA)-mutant 
GIST represents the next most common molecular sub-
type, occurring in approximately 10% of GIST and gener-
ally arises in the stomach [5]. Exon 18 of PDGFRA is the 
most frequently mutated region, affecting approximately 
8% of GIST. PDGFRA exon 18 D842V mutations account 
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for 70% of PDGFRA mutant cases [7]. Rarely PDGFRA 
mutations occur within exon 12 or 14 [5].

Approximately 10–15% of GISTs are KIT and PDG-
FRA wild-type and are associated with genetic altera-
tions in RAS-MAPK pathway (gain-of-function RAS/
BRAF mutations or loss of function neurofibromatosis 
type 1 [NF1] mutations) or succinate dehydrogenase 
(SDHA/B/C/D) deficiency. SDHA/B/C/D deficiency 
GIST may be caused by a germline inactivating muta-
tion in the suppressor genes encoding the SDH complex 
(SDHA, SDHB, SDHC and SDHD subunits) or by SDHC 
promotor-specific CpG island hypermethylation (SDHC 
epimutation) [5]. Other new molecular sub-classifica-
tions within GIST are oncogenic RTK translocation asso-
ciated GIST or quadruple wild-type GISTs and quintuple 
wild-type GIST which refer to GISTs that are devoid of 
mutations in KIT/PDGFRA/RAS-MAPK pathway/SDH 
complex and oncogenic RTK translocations [5–7].

GISTs are generally resistant to conventional chemo-
therapy. The survival of metastatic GIST has greatly 
improved since 2002, when the US Food and Drug 
Administration (FDA) approved imatinib mesylate [8]. 
KIT exon 11 and 9 mutant GISTs are sensitive to imatinib. 
KIT exon 11 mutant GIST yields significantly higher 

response rates to imatinib and has longer overall survival 
than those with KIT exon 9 mutant or KIT/PDGFRA 
wild type GIST [9]. PDGFRA exon 18 D842V mutant 
GIST is resistant to imatinib. Avapritinib was recently 
FDA approved for this indication. Beyond this, a clini-
cal trial should always be considered. Other PDGFRA 
mutant GISTs are generally responsive to imatinib. KIT 
and PDGFRA wild-type GIST have no standard/effective 
therapeutic alternative; therefore, clinical trial options 
should always be considered [5].

Knowledge of the molecular landscape in GIST is 
important because it provides prognostic information 
but also guides therapeutic selection. This review aims to 
discuss the management of advanced GIST focusing on 
the standard-of-care therapeutic options and novel ther-
apeutics in clinical investigation.

Medical management of advanced GIST
Imatinib‑sensitive GIST: first line therapy
Imatinib is a selective, small molecule inhibitor of three 
receptor tyrosine kinases: the transmembrane recep-
tor KIT, the chimeric BCR-ABL fusion oncoprotein of 
chronic myeloid leukemia and PDGFRA. In 2002, the 
FDA approved imatinib for the management of patients 
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with advanced GIST. This accelerated approval was based 
on the results of a multi-center, randomized study that 
evaluated the safety and efficacy of imatinib at two dose 
levels (either 400  mg and 600  mg daily) in 147 patients 
with advanced GIST [8]. The clinical benefit rate of 
imatinib was 81%; with 53.7% of patients achieving a 
RECIST partial response. The median time to an objec-
tive response was 3  months. Almost 14% of patients 
had early progressive disease despite imatinib therapy. 
No complete responses were observed. The majority of 
patients experienced mild to moderate adverse effects. 
The most common adverse events included edema (74%, 
frequently periorbital in location), nausea (52%), diarrhea 
(45%), myalgia or musculoskeletal pain (40%), fatigue 
(35%), dermatitis or rash (31%), headache (26%) and 
abdominal pain (26%).

The optimal imatinib dose (400 mg daily) to use in the 
first line setting was determined in two-phase III trials 
that randomized patients with advanced GIST to receive 
imatinib at 400 mg or 800 mg daily. The EORTC 62005 
trial enrolled 946 patients. The higher imatinib dose arm 
yielded a statistically significant progression free survival 
(PFS) rate of 56% versus 50% for the lower dose arm, (esti-
mated hazard ratio 0.82 [95% CI 0.69–0.98]; p = 0.026) 
[10]. The overall response rates were similar between the 
two treatment arms. The higher dose arm was associated 
with greater toxicity. The SWOG S0033/CALGB 15105 
trial enrolled 746 patients. After a median follow-up of 
4.5  years, no significant difference was observed with 
respect to median PFS (18 vs. 20 months), median OS (55 
vs. 51 months) and objective response rate (40% vs. 42%), 
between the standard dose and the higher dose arms, 
respectively [11].

In the EORTC 62005 trial, the strongest prognostic fac-
tor of risk for progression and death was the presence 
of a KIT exon 9 mutation. In patients with KIT exon 9 
disease, the PFS was significantly longer in patients that 
received double-dose imatinib compared to those that 
received the standard dose. For patients that crossed over 
to double-dose imatinib, the response rates observed 
were significantly higher among patients with KIT exon 
9 (57%) compared to KIT exon 11 (7%) mutant disease. 
The phase III SWOG S0033/CALGB 15105 trial failed 
to demonstrate a PFS benefit favoring the KIT exon 9 
mutant cohort that received the higher dose imatinib. 
However, it did show improved response rates in the 
KIT exon 9 mutant cohort compared to the KIT exon 
11 mutant cohort that crossed over to receive double-
dose imatinib (67% vs. 17%, respectively). A preplanned 
meta-analysis of both the EORTC 62005 and SWOG 
S0033/CALGB 15105 studies confirmed a PFS advan-
tage in favor of patients with KIT exon 9 mutant disease 
who received double-dose imatinib (400 mg, twice daily) 

compared to standard dose [12]. As a result, the standard 
dose for patients with KIT exon 9 mutant advanced GIST 
receiving first-line imatinib is 400 mg twice daily.

Imatinib refractory GIST
Sunitinib is another small molecule, receptor TKI. It 
targets KIT/PDGFRα, colony stimulating factor 1 recep-
tor (CSF1R), Fms-related tyrosine kinase 3, RET and has 
anti-angiogenic activity by inhibiting vascular endothe-
lial growth factor receptors (VEGFR1-3). An early phase 
study provided safety and promising efficacy data for 
sunitinib (50 mg, 4 weeks on, 2 weeks off schedule). This 
led to a randomized, double-blind, placebo-controlled, 
phase III trial of sunitinib in patients with advanced, 
imatinib refractory/intolerant GIST. The objective 
response rate with sunitinib was 7% (RECIST partial 
response). However, the study demonstrated a signifi-
cantly longer time to progression, based on RECIST cri-
teria, of 27.3 weeks versus 6.4 weeks in the placebo arm; 
p < 0.0001) [13]. FDA approved sunitinib  in the manage-
ment of advanced GIST in 2006. Another phase II study 
examined the benefit of an alternative dosing schedule of 
sunitinib delivered on a continuous, daily basis (37.5 mg 
once daily) to patients with advanced, imatinib refrac-
tory GIST. The clinical benefit rate was 53%, and median 
PFS was 34  weeks. Most adverse events encountered 
were ≤ grade 2 in severity and manageable. Morning 
or evening dosing was comparable with respect to effi-
cacy and safety [14]. A continuous daily dosing sched-
ule of sunitinib is commonly used to treat patients with 
advanced GIST.

The GIST molecular genotype has been shown to corre-
late with efficacy of sunitinib. Higher response rates were 
observed among GIST patients treated with sunitinib 
that harbored primary KIT exon 9 mutations compared 
to KIT exon 11 mutations (58% vs. 34%, respectively). 
Among patients with advanced GIST treated with suni-
tinib alone, longer PFS and OS were seen for those with 
exon 13 or 14 secondary KIT mutations compared to 
those with exon 17 or 18 secondary KIT mutations [15].

Regorafenib is another oral multi-targeted kinase 
inhibitor that targets a number of pathways involved in 
tumor growth including tumor angiogenesis (VEGFR-
1, -2, and -3, and TIE2), oncogenesis (KIT, RET, 
RAF-1, BRAF and BRAFV600E), and the tumor microen-
vironment [PDGFR and fibroblast growth factor receptor 
(FGFR)]. The safety of regorafenib was first demonstrated 
in a phase I study that enrolled an unselected population 
of patients with solid tumors. This study confirmed the 
recommended phase II dose of 160 mg daily (3 weeks on, 
1 week off schedule) [16]. A phase II GIST specific study 
investigated the efficacy of regorafenib among 34 patients 
with advanced GIST who had previously progressed on 
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at least imatinib and sunitinib. The clinical benefit rate 
observed was 79% (4 patients achieved a partial response 
and 22 patients had stable disease at ≥ 16  weeks). The 
median PFS was 10 months [17]. Regorafenib was subse-
quently investigated in a phase III study that randomized 
240 patients with advanced GIST to receive regorafenib 
versus placebo plus best supportive care in a 2:1 fashion. 
The study met its primary endpoint by demonstrating 
a significant improvement in median PFS (4.8  months 
and 0.9  months, respectively (hazard ratio [HR] 0.27, 
95% confidence interval [CI] 0.19–0.39; p < 0·0001). A 
best response of partial response or stable disease was 
observed in 75.9% on regorafenib and 34.8% in the pla-
cebo arm. The disease control rate was also higher in the 
regorafenib arm compared to placebo, (52.6% and 9.1%, 
respectively) [18]. In 2013, the FDA approved regorafenib 
for use in the  management of patients with advanced 
GIST refractory to imatinib and sunitinib.

A recent phase Ib trial tested the efficacy of rapid alter-
nation of sunitinib and regorafenib: 3  days of sunitinib 
followed by 4  days of regorafenib, and repeated. Toxic-
ity was encountered at the previously determined opti-
mal doses of both agents. The recommended phase II 
dose was identified as sunitinib 37.5 mg and regorafenib 
120 mg. Stable disease was the best response observed in 
4 out of 14 participants. The median PFS was 1.9 months. 
Rapid alternation of tyrosine kinase inhibitors (TKIs) was 
an unprecedented investigational approach in GIST that 
may prove effective when drugs with complementary 
pharmacokinetics are combined in an effort to minimize 
toxicity while allowing optimal drug doses to be used 
[19].

Ripretinib is a potent switch pocket control inhibi-
tor of KIT and PDGFR kinases and has activity against 
a broad range of mutations. The phase I study enrolled 
142 patients with advanced GIST with KIT (95%) or 
PDGFRα (5%) mutations. The recommended phase II 
dose of ripretinib was 150  mg once daily. The ORR in 
second-, third- and fourth-line patients was 19.4%, 14.3% 
and 7.2%, respectively [20]. The INVICTUS, phase III, 
randomized, double-blind, placebo-controlled trial rand-
omized 154 patients with advanced GIST in a 2:1 fashion 
to receive ripretinib or placebo. GIST patients had pro-
gressed on or were intolerant of imatinib, sunitinib and 
regorafenib. The study met its primary end point show-
ing a significant improvement in median PFS favoring 
the ripretinib arm [6.3  months vs. 1·0  months (hazard 
ratio 0.15, 95% CI 0.09–0.25; p < 0.0001)]. The median 
OS was 15.1  months in the ripretinib group compared 
to 6·6  months in the placebo group (HR 0.36, 95% CI 
0.21–0.62). Ripretinib yielded an objective response rate 
(ORR) of 9%. There was no response observed in the pla-
cebo arm. Ripretinib was generally well tolerated. The 

most common (≥ 20% of patients in the ripretinib group) 
treatment-related adverse events were alopecia, myal-
gia, nausea, fatigue, palmar–plantar erythrodysesthesia 
and diarrhea [21]. In May 2020, the US FDA approved 
ripretinib for patients with advanced GIST that had 
progressed on three or more receptor tyrosine kinase 
inhibitors including imatinib [22]. Intrigue, a phase III 
trial examining the efficacy of ripretinib compared to 
sunitinib in patients with advanced GIST who have pro-
gressed on or are intolerant of imatinib in the second line 
setting is currently ongoing [23].

Primary imatinib‑resistant GIST/PDGFRA D842V‑mutant 
GIST: first line therapy
PDGFRA-mutant GIST accounts for 5–10% of GIST and 
exhibits primary resistance to imatinib and sunitinib 
therapy. The median PFS of PDGFRα D842V mutant 
advanced GIST on placebo from retrospective analysis 
was reported to be 2.8 months [24]. Notably, the median 
PFS of unselected patients with GIST on placebo is less 
than 6  weeks [13, 18]. This highlights that PDGFRA 
D842V mutant GIST is clinically distinct from imatinib-
sensitive disease. It often follows a more indolent disease 
course. Until January 2020, there was no standard of care 
systemic therapy available for this GIST molecular sub-
type and surgical resection was preferred in the setting 
of small volume disease progression. In a phase II trial, 
dasatinib yielded a response in one patient with PDGFRA 
D842V-mutant GIST. Based on this preliminary efficacy, 
dasatinib was added to NCCN compendium of approved 
agents for this molecular subtype [25].

Avapritinib is a potent, highly selective oral inhibi-
tor of PDGFRα mutant kinases. The Navigator, phase 
I dose escalation/dose expansion study enrolled 231 
patients with advanced GIST: PDGFRA exon 18 D842V 
mutant = 56 (24%), non-D842V mutant = 8 (4%) and KIT 
mutant disease = 167 (72%). In the PDGFRA D842V-
mutant population, the ORR was 88%. There were five 
(9%) complete responses and 44 (79%) partial responses. 
The clinical benefit rate was 98%, which is remarkable in 
a GIST molecular subtype that was known to be refrac-
tory to all previously FDA-approved TKIs for GIST [26]. 
Avapritinib was generally tolerated. Cognitive effects 
emerged as an adverse event of special interest. Most 
cognitive effects, primarily driven by memory impair-
ment, were grade 1 and generally manageable with dose 
modification. However, 8.3% of patients discontinued 
avapritinib for a treatment-related toxicity, of which 2% 
discontinued treatment because of intracranial bleeding 
[26]. The recommended phase II dose was determined 
to be 300  mg once daily and the FDA approved avapri-
tinib in January 2020 for adults with inoperable GIST 
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harboring a PDGFRA exon 18 mutations, including the 
D842V mutation.

Imatinib refractory GIST: alternative options
Enrollment in a clinical trial
Resistance to imatinib appears to confer a general resist-
ance to non-selective TKIs. A number of novel therapeu-
tic approaches to treat GIST are being investigated.

Next‑generation selective tyrosine kinase inhibitors
Secondary KIT mutations are found in 50–67% of 
patients with secondary imatinib resistant, KIT mutant 
disease [27, 28]. They commonly arise in KIT exons 17, 
13 and are less frequently observed in exons 18, 14 or 
within the PDGFRA gene. Next-generation TKIs target-
ing specific secondary KIT mutations are under inves-
tigation. Examples of selective TKIs include PLX3397, 
PLX9486 and AZD3229.

In preclinical models, PLX3397 appears to be a more 
potent KIT inhibitor than imatinib [29]. PLX9486 has 
selective activity against primary KIT mutations (exons 9 
and 11) and activation loop mutations (exons 17 and 18). 
A phase I study of PLX9486 in GIST examined safety up 
to a dose of 1000 mg daily. The clinical benefit rate was 
64%, and the median PFS was 6 months. Analysis of cir-
culating tumor deoxyribonucleic acid (ctDNA) in this 
cohort confirmed the selectivity profile of PLX9486 with 
reductions in KIT ex 11, 17 and 18. PLX9486 (500 mg qd) 
was examined in combination with PLX3397 (600  mg 
qd). The median PFS for this combination was 6 months. 
Reduction in ctDNA levels of KIT exons 13 and 14 was 
not observed [30]. PLX9486 was also explored in com-
bination with sunitinib creating synergistic potential 
against a broader range of KIT mutations by blocking 
active and inactive conformations. A total of 18 patients 
received this combination therapy. This was a heavily 
pre-treated cohort,  67% had received three or more prior 
lines of therapy. The maximum tolerated dose was not 
reached. The recommended phase II dose was PLX9486 
1000  mg daily and sunitinib 37.5  mg once daily admin-
istered in 28 day cycles. The safety profile of the combi-
nation therapy was comparable to that of single agent 
sunitinib. The ORR was 20%. The median duration of 
response was 10 months. The median PFS for the combi-
nation therapy was 12 months [31, 32].

In preclinical models, avapritinib was highly active 
against imatinib-resistant patient derived GIST xeno-
grafts. The “Navigator,” phase I study of avapritinib 
demonstrated promising activity in ≥ 4th line patients 
(n = 109), 3rd line [regorafenib-naïve] (n = 23) and 
2nd line non-D842V mutant GIST (n = 20) the ORR 
was 20%, 26% and 25%, respectively. The median dura-
tion of response was 7–10 months in the ≥ 4th line and 

3rd line cohorts. Best response by mutational profile in 
the ≥ 4th line cohort failed to demonstrate activity in 
tumors harboring KIT V654A and T6701 mutations [33]. 
The “Voyager,” randomized, phase III study of avapri-
tinib compared with regorafenib in 3rd or 4th line KIT/
PDGRFA mutant GIST enrolled 476 patients [34]. In 
April 2020, a press release regarding the Voyager trial 
reported no statistically significant difference in median 
PFS between the avapritinib arm (4.2  months) and the 
regorafenib arm (5.6 months). The ORR was 17.1% in the 
avapritinib arm and 7.2% in the regorafenib arm.

AZD3229 is an oral, potent, pan-KIT/PDGFRα inhibi-
tor. It has demonstrated activity in-vivo and in-vitro pre-
clinical, GIST models across a broad range of primary 
and secondary KIT/PDGFRA mutations that confer 
resistance to standard of care agents [35]. This compound 
was designed to reduce activity against VEGFR-2 thereby, 
attempting to minimize off-target effects which often 
leads to sub-optimal dosing with standard of care agents 
used in GIST [36]. This agent demonstrates promising 
pre-clinical activity in GIST tumor models and merits 
investigation in the clinical setting.

Targeting ETV1
ETS variant transcription factor 1 (ETV1) is a lineage spe-
cific transcription survival factor that is highly expressed 
by GIST cells and their precursor cells the interstitial cells 
of cajal. ETV1 promotes the growth and survival of both 
the ICC and GIST. KIT mutant GIST results in constitu-
tive activation of the MAP kinase pathway. This stabilizes 
the ETV1 transcriptional output, which promotes GIST 
tumorigenesis. ETV1 may also be critical for the survival 
and maintenance of the intrinsically imatinib-resistant, 
KIT-independent stem cell/progenitors in GIST, sug-
gesting that this may be a therapeutic target to consider 
in KIT wild-type GIST [32]. Combination inhibition of 
MAP kinase and KIT signaling represents a promising 
therapeutic approach. In preclinical studies, the combi-
nation of imatinib and binimetinib destabilized the ETV1 
protein resulting in greater suppression of GIST cell 
growth compared to either drug alone and also induced 
apoptosis [37].

The combination of imatinib and binimetinib was 
investigated in patients with advanced  GIST of any gen-
otype. The phase Ib/II trial demonstrated safety and iden-
tified the recommended phase II dose (imatinib 400 mg 
daily and binimetinib 30  mg twice daily). The phase II 
study met its primary endpoint by demonstrating an 
ORR of 66.7% (n = 26/39)  in the first-line management 
of advanced GIST. The median duration of response was 
30  months. Notably, the rate of conversion to resection 
was 88.9% (95% CI, 52–100%)] among 9 patients who 
had initially inoperable disease. The median PFS for the 
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combination therapy was 29.9  months, and the median 
overall survival had not yet been reached [38]. These 
results compare very favorably with imatinib alone and 
warrant further evaluation in a larger, randomized, con-
trolled, phase III trial (Table 1).

Immunotherapy
The role of the immune system has been explored in 
preclinical KIT mutant GIST mouse models. Imatinib 
treatment induces a dramatic increase in CD8 + T cell 
number and proliferation and produces an increased 
ratio of CD8 + effector T cell: CD4 + regulatory T cells. 
Imatinib-sensitive KIT mutant tumors contained greater 
frequencies of CD3 + and CD8 + T cells, but a lower 
percentage of CD4 + T cells and T regs compared to 
imatinib-resistant KIT mutant GIST tumor mouse mod-
els. The anti-tumor effects of imatinib are reduced in the 
setting of depleted CD8 + but not CD4 + T cells, natu-
ral killer (NK) cells or myeloid cells. This underlines the 
contribution of CD8 + effector T cells to the anti-tumor 
effect of imatinib. Imatinib has been shown to regulate 
the intratumoral T cells and immune microenvironment 
through inhibition Indolamine 2,3-dioxygenase 1 (IDO1) 
[39]. Given the role of CD8 + effector T cells in imatinib 
response, concurrent administration of imatinib and an 
immune checkpoint inhibitor (ipilimumab) were tested 
in KIT mutant GIST mouse models. The combination 
was shown to be synergistic and significantly reduced 
tumor size compared to either treatment alone [39].

This preclinical work led to a phase Ib study that exam-
ined the combination of dasatinib, a multi-TKI and 
ipilimumab, an anti-CTLA4 antibody, in patients with 
advanced sarcomas. Twenty patients had advanced GIST. 
The combination was shown to be safe, however, not 
synergistic in its effect. Many patients progressed prior 
to the first disease assessment at 3 months (median PFS 
was 2.8 months). The ORR was 0%. The study population 
was heavily pre-treated (median number of prior thera-
pies = 3) [40]. Dasatinib monotherapy was previously 
shown to have limited benefit in this setting producing a 
median PFS of less than 2 months [41]. Preclinical studies 
previously discussed highlighted that imatinib’s immu-
nostimulatory effect on the tumor immune microenvi-
ronment is greatest in the setting of imatinib-sensitive 
disease. Hence, dasatinib was recognized as a poor TKI 
choice for the first immunotherapy-based trial in GIST. 
Combination therapy with an ICI and an approved TKI 
in a TKI sensitive population warrants exploration.

Two-phase II trials have examined nivolumab with or 
without ipilimumab in advanced GIST. The first study 
enrolled 29 patients and demonstrated a clinical ben-
efit rate of 50% (n = 8/16) in the nivolumab alone arm 
compared to 23% (n = 3/13) in the combination arm. A 

partial response was observed in the combination arm. 
The median PFS was 12.1 weeks in the nivolumab alone 
arm and 8.3 weeks in the doublet checkpoint inhibition 
arm [42]. The Alliance A091401 included an expansion 
cohort in GIST. This cohort demonstrated poor activ-
ity for immune checkpoint inhibition among 21 heavily 
pre-treated patients. The clinical benefit rate was ~ 10% 
in each arm. No objective responses were seen in either 
arm. The median PFS was 2.9 months in the doublet arm 
versus 1.5 month in the monotherapy arm [43].

Targeting actionable genomic alterations in GIST 
beyond known oncogenic drivers
Oncogenic activation of the Phosphoinositide 3-kinase/
protein kinase B/mammalian target of rapamycin (PI3K/
AKT/mTOR) pathway represents a downstream effec-
tor in the KIT signaling pathway. In preclinical GIST cell 
line studies, cell growth arrest resulted from PI3K inhibi-
tion, and to a lesser degree from MEK/MAPK and mTOR 
inhibition. In imatinib-resistant GIST cell lines, only 
PI3K inhibition was shown to halt GIST cell growth and 
produce apoptosis. Hence, this work postulated that tar-
geting critical downstream signaling proteins in imatinib-
resistant disease, such as PI3K, represented a promising 
therapeutic avenue to explore [44].` Knowledge of the 
genomic landscape of GIST continues to evolve. Next-
generation sequencing is increasingly being utilized in 
cancer patients in an effort to identify genomic altera-
tions that may represent potential therapeutic targets [45, 
46]. Studies examining the molecular spectrum of GIST 
have identified actionable alterations in the PI3K kinase 
and mTOR pathways, albeit at relatively low frequencies 
[47].

A phase II study investigated the efficacy of the combi-
nation imatinib (600 mg daily)/everolimus (2.5 mg daily) 
in patients with advanced GIST. A total of 75 patients 
were enrolled into one of 2 cohorts stratified by line of 
treatment [36]. There was a high proportion of grade 3/4 
adverse events observed in both cohorts [54–75%]. The 
ORR for this combination was low at 0% and 2% in cohort 
1 and 2, respectively. The median PFS was 1.9  months 
and 3.5 months in cohort 1 and 2, respectively [48]. Early 
studies using mTOR inhibitors have shown limited suc-
cess, which may be due to the activation of AKT that 
occurs following mammalian target of rapamycin com-
plex 1 (mTORC1) inhibition. Therefore, targeting PI3K or 
AKT, which lie upstream of mTORC1, may translate into 
more complete pathway inhibition.

GIST xenograft preclinical studies have demonstrated 
enhanced activity for combination of a PI3K inhibitors 
with imatinib compared to either drug alone [49, 50]. 
A phase Ib trial of Imatinib and an oral PI3K inhibi-
tor, buparlisib enrolled 60 patients with advanced GIST 
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refractory to imatinib and sunitinib. The combination 
failed to generate an objective response and was not 
developed further [51].

The most frequently observed gene specific copy 
number alteration in GIST is within the cyclin-depend-
ent kinase inhibitor 2A (CDKN2A) locus that encom-
passes the tumor suppressors p16 and p14 [47, 52]. 
French investigators evaluated the efficacy of palboci-
clib, a CDK4/6 inhibitor, in 71 patients with advanced 
imatinib- and sunitinib-refractory GIST, 29 had con-
firmed CDKN2A gene loss. An interim analysis revealed 
that 86% of evaluable patients experienced progression of 
disease at 4 months. CDKN2A status was not shown to 
correlate with survival or outcome to prior therapy [53].

Absence of an appropriate clinical trial
In the absence of an appropriate clinical trial, other ther-
apeutic options include (1) an alternative TKI (off-label 
use), (2) re-challenge with imatinib or other TKI (3) the 
addition of an mTOR inhibitor to imatinib or sorafenib.

Alternative TKIs previously investigated in patients 
with advanced GIST
A number of other multi-tyrosine kinase inhibitors 
have been examined in the setting of imatinib refractory 
advanced disease. These studies were small phase II tri-
als. The drugs investigated include sorafenib, pazopanib, 
cabozantinib, nilotinib, dasatinib, masitinib, linsitinib, 
dovitinib, vatalanib and ponatinib [34, 41, 54–63]. The 
response and survival outcomes reported in these studies 
are conveyed in Table 2. Some of these drugs are National 
Comprehensive Cancer Network (NCCN) compen-
dium listed for the management of imatinib refractory 
advanced GIST. In the absence of a clinical trial, it is rea-
sonable to consider one of these agents where available.

Re‑challenge with Imatinib or other TKI
In the setting of limited progression, when standard and 
investigational therapies fail to control disease, con-
sideration can be made to re-challenge with a TKI that 
was previously tolerated and effective. A retrospective 
analysis of 71 patients with advanced GIST refractory 
to imatinib, sunitinib and regorafenib, re-challenged 
with imatinib (400  mg daily) demonstrated a median 
time to progression of 5.4 months and overall survival of 
10.6 months [64].

Notably, in the setting of progression on TKI therapy, 
discontinuation of therapy may result in accelerated 
tumor growth due to withdrawal of treatment for sen-
sitive clones of the disease. Therefore, in the absence of 
a standard, investigational or clinical trial option, TKI 

therapy should be continued as an element of best sup-
portive care [2].

Addition of an mTOR inhibitor to imatinib or other TKI.
As previously highlighted activation of the mTOR path-
way is a downstream effector of KIT signaling. Hence, in 
the setting of imatinib refractory disease in the absence of 
standard or clinical trial options the addition of sirolimus 
to a TKI can be considered. Safety has been confirmed 
for the addition of sirolimus to sorafenib or sunitinib in 
patients with advanced cancer [65]. However, we do not 
have efficacy data for this treatment approach.

PDGFRA D842V‑mutant GIST: investigational options
Crenolanib is a selective inhibitor of PDGFRα and FLT3 
with nanomolar activity against PDGFRα D842V mutant 
GIST. A phase I study confirmed an objective response 
rate of 12.5%    (2/16) and a clinical benefit rate of 31% 
(partial response, n = 2, stable disease, n = 3) in heavily 
pretreated patients with PDGFRα D842V mutant GIST. 
An international, randomized phase III trial of creno-
lanib versus placebo in 120 patients with PDGFRα D842V 
mutant GIST continues [66].

Biomarker development in GIST
Molecular classification of GIST is imperative to inform 
optimal therapeutic selection in the management of 
GIST. Testing GIST tumor tissue obtained from a surgical 
or biopsy procedure is the standard diagnostic approach 
used to determine the molecular landscape of GIST. 
Intra-tumoral heterogeneity within GIST limits the abil-
ity to detect the complete genomic spectrum from test-
ing isolated tumor tissue samples. As previously outlined, 
the molecular spectrum of GIST may change following 
exposure to tyrosine kinase inhibition. Many novel thera-
pies under investigation are selective for specific KIT/
PDGFRα mutations. Hence, there is an emergent need 
to develop a noninvasive approach to molecularly char-
acterize GIST in a serial manner. CtDNA extracted from 
plasma may overcome the limitations of tumor tissue. 
Sequenced ctDNA has detected primary and secondary 
mutations in patients with advanced GIST [67, 68]. The 
detection of ctDNA has been shown to correlate with 
tumor burden and response to treatment in GIST and 
other tumor types [69–71].

To date, studies examining sequenced ctDNA in GIST 
have been small and used older sequencing technolo-
gies. Sequenced ctDNA represents a candidate blood 
biomarker of GIST molecular behavior and treatment 
response that warrants further investigation and valida-
tion in a prospective manner. Several clinical trials are 
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incorporating sequencing ctDNA material in an effort to 
add to this evolving area of research.

An exploratory analysis of ctDNA extracted from 
patients with PDGFRA D842V-mutant GIST enrolled 
in the phase 1 study of avapritinib was presented at the 
European Society of Medical Oncology annual meeting 
in 2018. They found that baseline ctDNA levels were the 
strongest independent baseline predictive indicator of 
PFS over established predictive indicators including East-
ern Cooperative Oncology Group (ECOG) performance 
status, lesion size and age. Moreover, in the majority of 
patients with PDGFRα D842V-mutant GIST treated with 
avapritinib, ctDNA levels fell below the limit of detection 
(0.05%) by two months on treatment and large declines 
in on-treatment ctDNA levels were associated with high 
baseline ctDNA, an independent risk factor for progres-
sion. These data indicate that baseline ctDNA levels may 
have utility as a predictive biomarker in patients with 
advanced GIST; however, further research is warranted 
to understand the role and utility of sequenced ctDNA in 
the management of advanced GIST [72].

Conclusion and future directions
The management of GIST was revolutionized in 2001 
following the introduction of imatinib. Since then the 
landscape of advanced KIT- and PDGFRA-mutant GIST 
management has evolved to include second-, third- and 
fourth-line TKIs, sunitinib, regorafenib and ripretinib, 
as well as avapritinib for advanced PDGFRA D842V 
mutant GIST. The obvious clinical challenges that we 
face now are how to treat patients who have progressed 
on ripretinib fourth-line therapy, and how to leverage 
molecular data to optimize the treatment paradigm.

While there has been tremendous progress in the clini-
cal management of advanced GIST, some fundamental 
challenges remain: (1) imatinib resistance. For the major-
ity (90%+) of patients, they derive clinical benefit to front-
line imatinib therapy, but this is not indefinite. Once their 
disease develops resistance to imatinib, subsequent lines of 
TKI therapies, including newer generations of TKIs, have 
limited clinical benefit. Hence, the next phase of clinical 
investigations should focus on intervening early and devel-
oping therapeutic strategies to transform TKI-mediated 
cytostatic effects to cytotoxic effects. Some of these strate-
gies will involve novel combination therapeutic strategies 
of targeting different survival pathways for synergistic cell 
killing effects, and novel therapeutic targets, such as the 
tumor microenvironment including immune and non-
immune stroma and vasculature compartments.

Furthermore, there are significant unmet needs for 
the subset of patients with KIT/PDGFRA-wild type 
GISTs. These include SDH-deficient GIST mainly 

affecting pediatric and young adult population, NF1-
mutant GIST both sporadic and syndromic (associated 
with type I neurofibromatosis), RAS-mutant, FGFR 
mutant GISTs and others. These groups of patients 
shall be considered differently; and therapeutics devel-
opment shall be tailored to their particular genetic 
defects and potential molecular vulnerabilities.

Lastly, a multidisciplinary approach to the manage-
ment of GIST within a dedicated sarcoma center is 
the ideal. The addition of surgical resection, radiation 
therapy and local radiological interventional options to 
TKI therapy may be appropriate in certain situations 
but requires careful selection. Clinical trials explor-
ing novel investigational therapies should always been 
considered.
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