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There has been a major emphasis on defining the role of seizures in the causation of

cognitive impairments like memory deficits in epilepsy. Here we focus on an alternative

hypothesis behind these deficits, emphasizing themechanisms of information processing

underlying healthy cognition characterized as rate, temporal and population coding. We

discuss the role of the underlying etiology of epilepsy in altering neural networks thereby

leading to both the propensity for seizures and the associated cognitive impairments.

In addition, we address potential treatments that can recover the network function

in the context of a diseased brain, thereby improving both seizure and cognitive

outcomes simultaneously. This review shows the importance of moving beyond seizures

and approaching the deficits from a system-level perspective with the guidance of

network neuroscience.

Keywords: epilepsy, cognition, neural coding, information processing, place cells, population coding, phase

precession

INTRODUCTION

Epilepsy is a disorder of the brain characterized by an enduring predisposition to generate seizures
and by the neurobiological, cognitive, psychological, and social consequences of this condition (1).
Although seizures are an important part of the definition, the associated cognitive and behavioral
impairments and learning and memory problems are also important determinants of quality of
life (2, 3). The quality of life is highly affected in patients with epilepsy especially if they are in
adolescence, affecting the patient’s self-esteem and sense of coherence (4). Self-esteem is a main
contributor to psychosocial wellbeing, personal reflection, and positive attitude (5), and coherence
is the ability to recognize stressors as manageable and solvable (4, 6). In a 5-year follow up study,
it was shown that sense of coherence decreased in adolescents with epilepsy. Adolescents who still
had seizures showed a greater decrease compared to seizure-free teens, with no effect of seizure
frequency on sense of coherence (4). Self-esteem was also decreased in adolescents with epilepsy,
however, self-esteem was affected by the seizure frequency where higher seizure frequency was
associated with lower self-esteem (4). This indicates that psychosocial wellbeing is affected in
adolescents with epilepsy seen by the decrease of both self-esteem and sense of coherence.
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Gauffin et al. (7) examined the experience of living with
epilepsy and cognitive decline. Their study found out that
cognitive decline is persistently present in adults with intractable
epilepsy and living with epilepsy and cognitive deficits affected
education, employment, self-esteem, social life, and future plans
(7). The cognitive deficits are seen in both focal and generalized
seizures. Focal seizures occur in a lateralized network in contrast
to generalized seizures occurring in a widespread network
encompassing both hemispheres (8), however similar cognitive
impairments are seen in both epilepsies (9). Patients with
focal epilepsy experience various cognitive impairments such as
language abnormalities, executive dysfunction, attention deficit
and long-term episodic and semantic memory deficits (9–11).
Patients with generalized epilepsy experience the same cognitive
impairments in addition to acquired knowledge deficits and long-
term information processing and retrieval impairment (9, 12, 13).

A common pathophysiological argument for the mechanisms
of the relationship between epilepsy and cognition is that the
seizure and epileptiform discharges in the EEG directly injure
neural networks that are the normal substrate for cognitive
function. An alternative hypothesis is that the relationship is
indirect; both the seizures and the additional morbidities arise
from neural networks that have been disrupted by the etiology of
the epilepsy e.g., single gene disorders, malformations of cortical
development, or traumatic brain injury. Our starting position is
that the action potential is the fundamental unit of information
processing in the brain, and that sequences of action potential
firing in neuronal populations over time are therefore considered
to be mechanisms of cognition, as cognitive function is explicitly
about information processing (14, 15). Our goal in the current
article is to explore the latter hypothesis in detail, starting at
the systems level physiology of brain function and relating this
exploration to our understanding of epilepsy. We will describe
these system level mechanisms in physiology (Figure 1A) and
discuss how these mechanisms are changed or altered in brain
diseases associated with epilepsy (Figure 1B), especially in the
hippocampus and neocortex, which are important structures
involved in memory.

RATE CODING

The firing rate of neurons in the brain is a mechanism of
information transfer (15). For example, in motor neurons, the
degree of muscle flexion depends on the number of action
potentials per unit time (14). Tactile and texture perception in
rodents is also, at least in part, a function of rate coding (16). In
hippocampus and entorhinal cortex, rate coding is illustrated by
place, time, and grid cells, respectively (17, 18).

Place cells are hippocampal pyramidal cells that fire when
an animal visits a specific region of the environment: the cell’s
“place field” (19, 20). In any given environment, place fields
cover the entire space to create a hippocampal cognitive map that
is a representation of that space (19, 20). Repeated recordings
of place cell populations have shown that the same cells are
activated whenever the animal visits the same region in physical
space, which suggests that the cells’ representation is held in the

network once the animal explores that specific field (21). This
representation allows recollection of specific spaces and accurate
navigation through the environment. This is further supported
by the observation that lesioning the hippocampus results in loss
of spatial memory (22). Similarly to place cells, time cells in the
hippocampus fire at specific times in a task (e.g., the beginning,
middle, or end) called time fields (23). These cells can be time
locked to an external stimulus, like a tone, or intrinsically by a
neural circuit or an oscillation (14, 15).

Grid cells are entorhinal cortical cells that provide activity-
based maps of speed and direction in a certain environment
(24). Grid cells fire in different locations in an environment
forming a triangular grid. Recording different cells at the same
location indicates that these cells have the same orientation
to the environment (24, 25). It is important to note that the
orientation of the grid relative to the environment is dependent
on the hippocampal place cell map (20, 25, 26). Interestingly,
the map formed by the grid cells is based on external cues,
however the formed map persists even in the absence of these
cues (24). Together with the place cell map, the grid cell map
is believed to be part of the greater hippocampal cognitive map
(20). Given what we know from work on place and grid cells,
further experiments have shown that firing rate variations in
CA3 place cells depended on signals from the lateral entorhinal
cortex (24, 27). Lesioning the lateral entorhinal cortex impairs the
hippocampal rate remapping upon changing the configuration
of the environment (24, 27) suggesting that inputs from the
entorhinal cortex are important for hippocampal rate coding in
the formation of the spatial memory and cognitive map.

POPULATION CODING

Rate coding as measured in individual neurons is essential
for information processing. However, neurons are functionally
connected into a network and interactions between the neurons
is also critically important (15, 28). This is known as population
coding. Population coding increases robustness of network
function and minimizes the effects of noise carried by an
individual neuron, ensuring that the signal and processing times
are not affected (15). For example, damage to one cell will not
have a devastating effect on the information being carried since
it is carried by many cells (28). Population coding is common
in the nervous system and is illustrated in mammalian visual
pathways (29), primarymotor cortex activity in cats andmonkeys
(30), owl auditory cortex, cricket nervous system (31), and
mice visual cortex (32–34). Neurons in the visual cortex in cats
and monkeys and the auditory cortex in owls have shown the
ability to synchronize their firing on a few milliseconds time
scale through time cells (14, 35). Synchrony seen in the visual
cortex of cats and monkeys takes place when the neurons are
activated by one stimulus (35), and this synchrony is lost when
the neurons are activated by two independent stimuli. Once
two neurons synchronize to represent a certain stimulus, these
two neurons always synchronize to represent the same stimulus
and will desynchronize when representing two independent
stimuli (14).
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FIGURE 1 | Neuronal firing mechanisms and information processing. (A) Shows the normal information processing and synaptic plasticity feedback loop based on

the neural coding mechanisms. Rate coding is shown as the firing rate in time (top) with respect to each firing field in space (bottom) coded by the same color.

Temporal coding shows the action potentials as raster ticks riding on the LFP with respect to theta oscillation indicating theta phase precession with each successive

peak of theta, with action potentials also represented as a letter at the bottom of the LFP representing firing from the same neuron over time (top). Over many LFP

cycles, theta phase precession can be seen in the downward slope of the clouds of dots in the bottom panel, each representing an action potential from three

representative neurons show in the top panel. Population coding shows the connections between neurons forming a population network, green representing an

excitatory connection between two neurons and red representing an inhibitory connection between two neurons. Synaptic plasticity refines and is refined by these

firing mechanisms. (B) Shows the disrupted information processing and synaptic plasticity feedback loop based on the neural coding mechanisms in epileptic brain.

In epilepsy, rate coding is disrupted shown here as a decreased firing rate in time with respect to each firing field in space, with decreased overlap in the firing and

place fields from each of the three color-coded neurons. Temporal coding is also altered; firing of the colored neurons with respect to theta oscillation is disorganized

and there is an absence of theta precession as shown by a flat relationship between the clouds of action potentials from each of the three colored neurons. Population

coding shows fewer connections between neurons forming a smaller population network, with potentially different proportions of positive (green) and negative (red)

connections in the epileptic brain compared to controls in (A). Aberrant synaptic plasticity occurs as a result of the aberrant firing dynamics.

Population coding influences information processing in mice
visual systems. Whole cell recordings in layers 2/3 (L2/3) of
awake mice have shown that the excitation/inhibition ratio
changes based on the visual stimulus (33). Different studies

revealed that patterns of excitation and inhibition are generated
in response to various visual stimuli (36, 37). For example, as
the stimulus contrast or size increases, the excitation/inhibition
ratio decreases. This change in ratio is important for tuning and
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sharpening of the information processing in the visual system
(38) and is thought to be controlled by the somatostatin (SOM)
neurons and parvalbumin (PV)-expressing cells. SOM neuron
suppression was able to enhance the excitation and inhibition
for size tuning, indicating that contrast and size in the visual
system in mice depends on excitation/inhibition ratio and tuning
of total synaptic input (33). PV cell manipulation was shown
to modulate L2/3 pyramidal cells spikes in response to visual
stimuli without affecting the cells tuning properties suggesting
that PV cells create a connection between certain neuron
types and specific computations during sensory processing
(32, 39). Furthermore, the excitation/inhibition ratio for the
same set of stimuli differs between anesthetized and awake
mice and even differs between various behavioral states (33).
This change in the ratio is influenced by the recruitment
of SOM and vasoactive intestinal peptide-expressing (VIP)
inhibitory cells in V1 in both wakefulness and alertness
for instance (40–42). The Stabilized Supralinear Network
(SSN) model proposes that cortical dynamics can change the
excitation/inhibition ratio based on single neurons input/output
supralinear relationships, strong recurrent excitation, and
feedback inhibition (33, 43). This suggests that the dynamic
change of excitation/inhibition ratio depends on the dynamic
connections between different cortical regions and the feedback
loops between the recruited regions. Further support to this
suggestion was seen in experiments investigating the rhythmic
activity across cortical layers. Population of excitatory neurons
in the mouse’s primary visual cortex expressed gamma band
oscillation following layer-specific optogenetic stimulation (34).
Importantly, rhythm-generating circuits in each layer were able
to provide layer-specific excitation/inhibition balances hence
influencing the information flow between cortical layers (34).
These studies provide evidence that neuronal populations can be
recruited through precise synchrony contributing to information
processing at a system level.

Notably, place cells in the hippocampus are an excellent
example of not only rate coding, but also population dynamics.
We previously mentioned that the place cells fire whenever
the animal is in a specific place field and these cells are
distributed within the hippocampus in a way that covers the
whole environment the animal occupies. This distribution within
the hippocampus will cause a certain degree of overlap between
the place fields, thus a population of cells will respond when the
animal goes into the field rather than an individual cell since the
cells in the hippocampus are receiving multiple sensory inputs to
encode a multidimensional map (44).

Another interesting example of population coding is
pattern separation. Pattern separation depends on the
discrimination between two closely related places, episodes,
or spatial configurations based on experience and can influence
successful memory encoding. Pattern separation involves
different brain regions where experiences are represented by
neural populations. Notably, if the same population or neural
pattern established during encoding is activated during retrieval,
it can lead to a successful memory retrieval (45). For instance,
both the posterior occipitotemporal cortex (OTC) and the
hippocampus were recorded while participants performed

item recognition tasks. Upon retrieval, both regions showed
encoding-specific high frequency activity (HFA) where the
strength of this activity was associated with enhanced retrieval,
however the discrimination between similar items required a
hippocampal activity (45) as the pattern separation mechanism
is based on orthogonalizing similar input during encoding thus
enabling the distinguishing between highly similar memories
with minimal interference (46). Animal and human studies
have shown that dentate gyrus (DG) and its projection to CA3
underlie the pattern separation process (47–52).

A final relevant example of population coding is working
memory in the prefrontal cortex. Working memory is the
temporary maintenance of information involving specialized
components of cognition that allows retaining immediate past-
experience, supporting new knowledge acquisition, solving
problems, reasoning, and planning (53). Early models of working
memory suggested that persistent firing activity of the neurons
in the prefrontal cortex (PFC) throughout the delay phase of the
working memory task was required to maintain information in
working memory, however, due to the heterogeneity of neurons
within the PFC, recent work has shown that the persistent activity
of PFC can be weak or absent (54–56). This was seen during the
delay phase of an image-sequence matching task in monkeys and
humans. In this task, spiking activity in the PFC decreased during
the delay phase of the task in monkeys, and BOLD signal on
fMRI decreased during the delay phase in humans performing
the task, thus challenging the persistent firing working memory
model (57, 58). However, the spiking activity and the BOLD
signal re-emerge during image presentation and testing period,
indicating that, despite a decrease in firing rate throughout the
task, the working memory information is maintained in the
collective synaptic weights of populations of neurons in the
PFC. The heterogeneity of the neurons allows different neurons
to signal during different task events as well. For example,
parvalbumin-positive neurons will respond to sensory cues and
trial outcomes while somatostatin-positive neurons will respond
to a motor action like licking (59). These neurons can fire
together in working memory maintenance through population
coding when a robust mnemonic stimulus is present (60) as
seen in monkeys performing oculomotor delayed response and
vibrotactile delayed discrimination, which are working memory
tasks, while recording single neurons of lateral PFC (60).

TEMPORAL CODING AND OSCILLATORY
FIRING

Oscillatory activity is divided into frequency bands as described
in Table 1: infra-slow oscillations (0.5–1Hz), delta (1.5–4Hz),
theta (4–8, 10Hz), alpha (8, 10–12Hz), beta (15–30Hz), gamma
(30–80Hz), in addition to fast (80–200Hz), and ultra-fast
(200–600Hz) ripples (61). Each band is thought to be related
to specific aspects of cognition (Table 1). Both in vivo and
in vitro experiments suggest that synaptic inhibition plays a
role in generating neuronal oscillations through two different
mechanisms, either through interneuron network activity or
reciprocal excitatory-inhibitory loops (62). Theta, as previously
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discussed, and gamma are two important readouts of the
hippocampal function and function of connected regions.

Theta rhythm indicates a network that is actively involved
in spatial navigation, working memory, and temporal coding
(63, 64). It is important to note that theta oscillations and
phase-locked neuron discharges with respect to theta oscillations
are seen in theta non-generating regions like entorhinal cortex,
perirhinal cortex, cingulate cortex, subicular complex, and
amygdala (63, 65–67). Lesion or inactivation of the medial
septum-diagonal band of Broca neurons recognized as the theta
rhythm generators eliminates theta oscillation in all connected
cortical regions (68) and leads to spatial and working memory
deficits (69–71).

Gamma oscillations ride on top of theta in the hippocampus
and dynamically couple hippocampal networks to specific
behavioral demands (39, 72, 73). The gamma oscillation is
thought to be a readout of information transfer fromCA3 to CA1,
where CA3 is influencing the activity of CA1 for hippocampal
memory retrieval to underlie memory encoding, consolidation,
and episodic memory retrieval. Movement sequences, memory
encoding and formation, sensory processing and planned
trajectories underlying spatial navigation are thought to be
temporally organized through timing mechanisms seen through
gamma oscillations (74, 75).

The rate of populations of neuronal firing is also modulated
in time in respect to theta frequency. For example, in the
hippocampus, temporal modulation is manifested as burst firing
with bursts occurring at theta frequency (4–12Hz). The fidelity of
burst firing within theta, termed theta modulation, is important
for phenomena such as phase precession, phase preference and
hippocampal replay, which are believed to allow encoding of
space with higher resolution than is possible in the absence of
modulation. Phase preference refers to the phenomenon that
neuronal firing in the hippocampus is often locked in time with
respect to ongoing hippocampal inputs in the theta frequency
of the local field potential (LFP). Specific cells fire preferentially
at specific phases in the ongoing theta oscillation. For example,
directly after the peak of the theta oscillation, PV+ basket cells
in CA2/3 area fire at the same phase as pyramidal cells in CA3,
but later than basket cells in CA1 (76). CA1 pyramidal cells
preferentially fire at the trough of theta (77, 78). Phase precession
describes the observation that place cells will discharge whenever
the rodent is crossing a place field and this firing occurs at
an earlier phase in theta with progressive theta cycle (79, 80).
This phase precession is believed to be an important component
of information processing. Theta-phase precession could be an
indication of item-context associations through spike timing-
dependent plasticity (80, 81) given that synaptic inputs need to be
precisely synchronized within 5ms so that EPSPs from different
locations will be able to induce postsynaptic firing (15). Umbach
et al. showed that neurons in the hippocampus and entorhinal
cortex not only fire for space, but also for time. Interestingly,
time cells also exhibited theta-phase precession during memory
encoding, and the activity of these cells correlates with the use
of temporal location during the retrieval phase of the task (82).
Neuronal firing coordination with the LFP, like phase-locking
and phase precession, offers a key glimpse at the relative timing

of inputs in the LFP with outputs of the information processing
as the neuronal firing, but neural oscillations are also readouts of
synchronized behavior of the network and, as such, are on their
own important mesoscale mechanisms of cognition, memory,
and behavior.

Coordination between oscillations seen in the LFP or EEG
can be an indicator of communication between different brain
regions (83, 84). Coherence is a measure of this synchronization
with values that range between 0 and 1. The higher the coherence,
the more synchronized the regions are (84). The coherence
value differs between different brain regions depending on
the task performed, for example, theta coherence between
hippocampus and striatum during periods of decision is high
(>0.8) which indicate learning (84, 85). Not only theta coherence
changes during a task, but also gamma as well. Attention
tasks in monkeys have shown that gamma coherence increases
between the parietal and prefrontal areas (86). Furthermore,
CA1 can become coherent with the entorhinal cortex or CA3
through fast or slow gamma characteristics of the entorhinal
cortex or CA3, respectively (87). Elevation of hippocampal-
entorhinal cortex synchrony was shown to be important for
declarative memory formation in epileptic patients performing
a memorization task (88). This led to the hypothesis that
synchronized brain activity in the gamma range might be
an important indicator of controlled flow and routing of
information (83, 89), because the rules guiding synaptic plasticity
dictate that inputs will be most effective whenever they coincide
with peaks of oscillatory network excitability (83). Finally, neural
coherence alterations were associated with different disorders like
schizophrenia, attention-deficit hyperactivity disorder (ADHD),
Alzheimer’s disease (AD), and temporal lobe epilepsy (TLE)
(90–95) (Table 2).

FIRING DYNAMICS SUPPORT PLASTICITY

Temporal, population, and rate coding facilitate plasticity
shaped through experiences that enable the brain to adapt
to new information. These mechanisms underlie the careful
coordination of information between synapses and neurons in
the brain that is necessary to promote synaptic plasticity and
ensure efficient flow of information between different brain
regions required for cognition. In 1949, Donald Hebb postulated
that synapse strength can change based on previous activity,
which led to what we now know as long-term potentiation
(LTP) and long-term depression (LTD), fundamental to network
communication. LTP strengthens synaptic transmission through
high frequency stimulation of synapses. The first stage of
LTP depends on the NMDA and AMPA glutamate receptors
(96, 97). The second and third stages of LTP depend on protein
synthesis to maintain changes in synaptic strength (96, 97).
Maintenance of LTP is essential for place cell stability (98–101).
Even though neural plasticity is not a determinant of place
cell spatial specificity, rats with neural plasticity deficits had
unstable place fields upon revisiting the same environment
(102, 103). This shows that neural plasticity is playing a role in
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TABLE 1 | Frequency bands and cognitive processes.

Bands Frequency (Hz) Cognitive processes

Infra-slow 0.5–1 Show resting state networks (RSNs) in awake human subjects

Delta 1.5–4 Anticipation and predictive coding

Theta 4–8 (humans) 6–10 (rodents) Spatial navigation, working memory, and temporal coding

Alpha 8, 10–12 Suppression and selection of attention

Beta 15–30 Involved in consciousness, logical/active thinking, focus, and stress

Gamma 30–80 Readout of information transfer from CA3 to CA1 for hippocampal memory retrieval.

Show the temporal organization of movement sequences, memory encoding and formation, sensory processing

and planned trajectories underlying spatial navigation.

Fast ripples 80–200 Show synchronous inhibitory postsynaptic potentials (IPSP) generated by interneuronal cell subpopulations

Ultra-fast ripples 200–600 Show synchronous inhibitory postsynaptic potentials (IPSP) generated by interneuronal cell subpopulations

TABLE 2 | Summary of cited clinical literature.

Study Subjects Experiment Main findings

Spencer et al. (90) Healthy and Schizophrenia

Patients

Subjects responded whether

an illusory square was present

or absent in the trial along

with EEG recording

• Abnormal phase-locking and abnormal phase coherence

responses to the perception of an illusory visual stimuli in a

Gestalt perception task that depends on neural synchrony

• Abnormal neural circuit function may be an underlying cause

of schizophrenia.

Herrmann and Demiralp (91) Healthy and patients with

ADHD, AD, epilepsy and

schizophrenia

Gamma oscillations under

various pathological

conditions

• ADHD patients show an increase in gamma amplitudes

• In Alzheimer’s Disease (AD), there is a decrease in gamma

response

• In epileptic patients, there is an increase in gamma response

which might be the readout of both cortical excitation and

perceptual distortions

• In schizophrenia patients, there is a decrease in gamma

amplitude during negative symptoms, while there is an

increase during positive symptoms such as hallucinations

Lega et al. (92) Epilepsy patients Recordings from hippocampal

electrodes implanted in

neurosurgical patients

• During successful episodic memory encoding there is an

increase in the power of slow theta oscillations at 3Hz

• During successful memory encoding, there is a decrease in

the fast theta hippocampal oscillation at 8 Hz

Barry and Clarke (93) Children, adolescents, and

adults with ADHD

Examine the resting-state

EEG power and coherence,

and event-related potentials

(ERPs),

Different readouts that correlate with behavior and cognition:

• Groups with high beta showed symptoms of increased

delinquent behavior and reduced inattention, suicidal ideation,

and physical problems.

• Groups with elevated total power and theta and reduced alpha

and beta showed fewer problems.

• Groups with elevated slow wave activity and reduced alpha

showed more impulsivity, inattention, and bad language.

• Groups with reduced delta showed increased hyperactivity

and ritualistic behaviors.

Wang et al. (95) Healthy and AD patients Recording resting eye-closed

EEG signals followed by

wavelet power spectrum and

bicoherence of EEG analysis

• AD patients showed an increase in gamma and delta rhythms

and a decrease in alpha power

• The increase of the cross-frequency coupling strength

between the beta/gamma and low-frequency bands in AD

patients might be due to the disruption of GABAergic

interneuron network showing an attenuated neuronal network

the organization of place cells and long-term maintenance of
this representation.

The frequency of action potential timing matters; low
frequency firing induces LTD, which decreases synaptic efficacy.
LTD is also essential for memory formation as it counteracts
the LTP to allow new memories to form. Recent evidence has
shown that LTD may be involved in formation and maintenance

of place fields (104), supporting previous experiments showing
that a decrease in the expression of LTD impairs spatial
memory retention and consolidation (105, 106). It is worth
noting that plastic synapses can form positive feedback loops
on the rate, temporal, and population coding mechanisms
where this positive loop aids the mechanisms in refining and
precisely timing the neuronal firing leading to a more efficient
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information processing. Another form of plasticity known
as short-term plasticity (STP) takes place on a millisecond
to minutes timescale and depends on presynaptic calcium
accumulation and vesicle depletion (107). This form of plasticity
is thought to play a role in information transfer across synaptic
connections, activity-dependent synaptic efficacy modulation,
promoting synchronization and working memory (107–109).
Careful coordination of the firing of populations of neurons
in time supports appropriate short and long-term forms of
plasticity that are critical for information processing, learning
and memory.

EPILEPSY AND MEMORY

Cognitive impairments in people with epilepsy are extremely
common and have a major negative influence on quality
of life. Patients with focal epilepsy have shown to have a
significant decrease in their quality of life compared to patients
with generalized epilepsy and healthy controls, however, both
focal and generalized epilepsy patients have a decreased self-
esteem and increased anxiety compared to healthy controls
(9). Identification of mechanisms of cognitive impairment is
important as this will help to guide development of novel
therapeutic strategies to improve outcomes. A major emphasis
has been on studying the impact of seizures on cognition and
exploring the epileptic encephalopathy hypothesis. Researchers
have focused on the time of onset and frequency of seizures,
however, there are few clear correlations between seizure
characteristics and cognitive outcomes. Taken into consideration
that cognitive functions are dependent on complex brain
networks and both focal and generalized epilepsy groups share
the same cognitive impairments (9), we can say that seizure
location is less of a determinant of the cognitive impairments
than an altered or dysfunctional network in the brain. This
suggests that there must be other factors influencing cognitive
outcomes in epilepsy. This assertion is supported by several
lines of evidence. Studies assessing the effect of age of onset
on cognitive impairment have shown that cognitive impairment
already exists at pretreatment baseline in newly diagnosed
children (3, 110–112). This led some researchers to question
whether cognitive deficits could be present even before seizure
onset (113) and this might suggest that the pre-existing
impairments could be a result of the same dysregulation that
underlies the seizures in the first place. Indeed, the need for
special educational services prior to epilepsy onset is more
common in children who were later diagnosed than those who
weren’t (114), suggesting that impairment in cognitive function
may be present even before the first seizure. The best predictor of
cognitive outcome up to 3 years after the diagnosis of epilepsy
in infants is the initial cognitive profile, not any seizure or
medication related factor. In adults, these impairments extend to
deficits in visual motor tasks, mental flexibility, memory, reaction
times, and attention (3, 115).

Others have studied the effects of the disorder duration on
cognition, finding a negative correlation between the number
of years of the disorder and brain volume (116, 117). This

has been interpreted by some to mean that the length time
since disease onset is related to the amount or significance
of cognitive impairment. However, an alternate interpretation
is that early onset of an epilepsy disorder is an indication of
a more fundamentally dysfunctional network, leading to early
development of recurrent seizures. Similarly, seizure frequency
has been noted to be associated with a detrimental effect on
cognition, with higher seizure frequency being correlated with
lower performance on cognitive tasks and vice versa (9, 118).
This was always interpreted to mean that seizures themselves
were detrimental to cognition, rather thanmore frequent seizures
being an indicator of a more abnormal neural network that
underlies abnormal functioning during the interictal period
manifesting as cognitive impairment. Hence, these impairments
might not be due to age of onset or frequency of seizures, instead
it could be attributed to the fact that children in this situation
have a brain disease that presented earlier, and this difference in
disease presentation may be an indicator of more severe network
dysfunction, andmore severe impairments. Further investigation
of memory dysfunction in patients with epilepsy showed that
people with epilepsy had significant deficits in both semantic
and episodic autobiographical memory (9, 119, 120). This deficit
was associated with young age at onset, more frequent seizures,
and reduced working memory in early-onset epilepsy patients. In
contrast, the same deficit was related to depression and lesion (3,
9, 120). The presence of both neurobiological and psychological
factors suggests that information processing mechanisms might
be altered (121).

Information processing through the mechanisms discussed
in this review is shown to be altered in epilepsy and associated
disorders. CA1 place cells are unstable in epileptic mice and
undergo remapping a few weeks after pilocarpine-induced
temporal lobe epilepsy (TLE). The number of place cells
decreases, and the spatial tuning curve is less stable over time
(122, 123). Prolonged recording over days from populations of
neurons in CA1 and dentate gyrus has shown desynchronized
interneuron firing between these two areas (124), which suggests
that disruption of spatial coding is due to the loss of information
processing control by interneurons. The desynchronized
interneuron firing can affect the timing of the inputs being
sent to the CA1. This was supported by the observation
of theta rhythm temporal coordination loss in the dentate
gyrus, where these neurons were firing at inconsistent phases
of the CA1 theta rhythm (124). Spatial memory alteration
was previously shown to be present even during the latent,
seizure-free, period after either the pilocarpine-induced
status epilepticus (SE) or early life seizures during the 1st
weeks of life (39, 125, 126). These deficits were associated
with a decrease in the power of theta oscillations (125). It is
important to note that spontaneous seizures did not modify
or affect any of the spatial deficits that were already present
(125). Interestingly, Shuman et al. (124), found that place cell
deterioration and place coding alteration occurred several weeks
after pilocarpine induction, showing that the development of
seizures is not solely responsible for place cell deterioration.
Notably, place coding alteration, place cell deterioration, more
dispersed place fields, and fewer place field responses were
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also seen after silencing either CA3, entorhinal cortex or both
(124, 127, 128).

In addition, we and others have shown dysregulated
population coding in epilepsy models. In-vivo single-unit
recording showed that CA1 pyramidal cells are functionally
connected to other pyramidal cells and fire in a coordinated
fashion during spatial memory tasks; this connectivity is altered
in TLE where neuronal reactivation and synchrony predicts the
behavioral outcome in a TLE model (129). Population coding
functional connectivity is also crucial within the hippocampus
and between the hippocampus and PFC to underlie spatial
working memory (SWM) (130, 131). During a SWM task,
the hippocampal-PFC network shows a distributed dynamic
code, seen through temporally regulated firing within and
between brain regions, which is needed to combine separate
processes together to execute a SWM task (131). The coordinated
firing of cells in time is important for several components
like attention, decision making and long-term memory, which
can predict task performance. The temporal modulation of
populations of neurons predicted SWM accuracy in a delayed
non-match-to-sample task in control rats and rats with a cortical
malformation that, in humans, is an important etiology in
epilepsy. Animals with cortical malformations showed deficits
in hippocampal firing modulation in addition to decreased
functional connectivity between neurons (131).

Furthermore, population coding and neural dynamics are
important for pattern separation and this process has been
shown to be altered in hippocampal injury and epilepsy. The
pattern separation depends on a network spanning different
brain regions other than hippocampus, like the dorsal medial
prefrontal cortex (dmPFC), however the hippocampus and
the parahippocampal cortex serve as a hub for this network
(132), thus it is expected that a hippocampal injury will alter
the network communication causing pattern separation deficits
(47, 133, 134). TLE patients and amnestic mild cognitive
impairment (aMCI) patients have pattern separation deficits,
and this could be due to hippocampal dysfunction involving
DG and CA3 (46, 135). Another reason could be due to the
failure of separating similar information during encoding by the
hippocampus, hence memories will not be accurately encoded
or retrieved. Studies investigating aMCI and TLE patients have
shown that aMCI patients have an excess activation of the
DG/CA3 area in fMRI compared to control groups and this
excess activation is correlated with poor performance on pattern
separation tasks. The same poor performance was seen in
TLE patients performing the Mnemonic Similarity Task (MST).
TLE patients demonstrated poor pattern separation performance
compared to controls, however, it is important to note seizure
and hippocampal sclerosis did not affect the performance of
patients in this task (46, 133). Following studies showing that
TLE patients have spatial mnemonic discrimination impairment
and that TLE mice have DG-dependent object location memory
deficits (50, 136), Madar et al. (52) tested pattern separation in
TLE patients and mice with TLE, and then used mouse brain
slices to record the spiking patterns of single granule cells (GC)
in the dentate gyrus. TLE patients performing object recognition-
based MST had a significant deficit in identifying similar but not

identical objects suggesting that TLEmight be impairing the DG-
dependent mnemonic discrimination. Similar deficits were seen
in mice with TLE as the mice had a decrease in object-location
mnemonic discrimination compared to control mice (52). Slice
electrophysiology in the same mice utlized inputs mimicking
the same recorded inputs during behavior, and indicated that
the output spike-trains of GCs had a higher average correlation
compared to input correlation, which signifies a deficit in
pattern separation in mice with TLE. Different input ranges
demonstrated decreased pattern separation and convergence in
DG at multiple timescale levels (52). This shows the importance
of population dynamics underlying spatial deficits and signals the
importance of assessing functional connectivity.

Imaging and histological experiments showed that structural
and functional connectivity were altered in TLE patients as
well (3, 137). Histological changes have been observed in the
amygdala, entorhinal and parahippocampal cortices in TLE
patients (3, 138–142). MRI images investigating hippocampal
sclerosis associated with TLE, found that in addition to
hippocampus, atrophy is present in the adjacent mesiotemporal,
temporopolar structures, and thalamus (3, 143–146), and
this atrophy increases over time (147–149). Experiments
investigating tissue microstructure and structural covariance
indicate that structural connectivity was impacted in TLE.
Diffusion tensor MRI showed a disorganization in fiber
arrangement in temporolimbic and adjacent regions (3, 150–
153). Structural covariance such as cortical thickness or gray
matter volume was altered between the mesiotemporal and
neocortical regions and within the corticocortical networks
(154–156). Resting state functional connectivity revealed a
deficit in network connectivity in TLE patients compared to
healthy controls. TLE patients had a decrease in ipsilateral
mesiotemporal networks connectivity and ipsilateral and
contralateral hippocampi connectivity (3, 153, 157–159). This
decrease in connectivity extends beyond the temporal lobes into
the posterior cingulate, inferior parietal, and medial prefrontal
cortices disrupting the default mode network (DMN) (160–164).
These changes and deficits suggest that structural connectivity is
impacted in TLE patients and that TLE is also associated with
functional connectivity deficits and reorganization.

Early stage TLE patients experience functional connectivity
deficits mainly in the ipsilateral hemisphere (162, 165) in
addition to disturbed interhemispheric connections (3, 158,
166). However, in patients with generalized epilepsy, there is
an increase in the interhemispheric connectivity in addition
to reduced functional connectivity (167–171). fMRI studies
investigating the network connections in epileptic brains showed
an increase in functional connectivity within the temporal
lobe, alongside a decrease between temporal and other regions.
Also, there is a decrease in the connection probability between
neighboring brain regions, known as the clustering coefficient,
within theDMN (161, 172). This decrease in clustering coefficient
as well as increased path length, i.e., distance between one
node and another, was revealed to be associated with cognitive
decline in patients with cryptogenic epilepsy and only seen
in patients with cognitive decline (172–174). The decreased
cluster coefficient within the DMN could underlie the language
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impairment in patients with generalized epilepsy without focal
brain damage. Gauffin et al. (175) conducted an experiment
where patients with generalized epilepsy without focal damage
performed a sentence-reading task while going through fMRI.
Patients with generalized epilepsy took longer time to read
both congruent (simple) and incongruent (complex) sentences
compared to healthy controls with no reading time difference
between congruent and incongruent sentences in the patients
group which suggests that patients perceived both types as
complex (175). BOLD fMRI indicated the activation of a left-
lateralized frontotemporal network, anterior cingulate cortex and
occipital cortex in both patients and controls upon reading both
types of sentences (175). However, patients with generalized
epilepsy had reduced DMN suppression compared to healthy
controls (175). Further lack of suppression was seen in the left
anterior temporal lobe and the posterior cingulate cortex, in
addition to irregular activation of the right hippocampus proper
and right parahippocampal gyrus (175). The reduced DMN
activity suppression can be due to reduced functional segregation
of the DMN in generalized epilepsy patients (170) where this
can alter the balance between activated and deactivated neural
networks hence disturbing the cognitive function (176, 177).
Further evidence of network alteration in TLE patients was seen
by Bernhardt et al. (178) upon analyzing hub nodes between
controls and TLE patients. Hubs are also known as nodes
that have multiple connections within a network with one
central position and the connections formed by the hub nodes
are essential for communication and network synchronization
(179). Hub nodes in TLE patients were mainly located in the
limbic and temporal association cortices instead of being evenly
distributed between different lobes and this was thought to be
due to connectivity disturbances between the temporolimbic and
extratemporal neocortical structures (178) providing evidence
that epileptic brains express decreased integration and enhanced
segregation (172). It is also important to note that memory
impairments are present in patients who don’t show a lesion
with MRI (180) which further supports the notion that cognitive
impairments depend on the affected network rather than a
structural lesion (9). These studies emphasize the necessity to
move beyond the classical lesion model into a network approach
which can provide several advantages by helping track or predict
cognitive decline in epilepsy patients, improving diagnosis, and
developing more accurate resection surgeries by targeting the
areas where the hub nodes are mostly concentrated.

It is critical to note that experimental designs that induce
an underlying disorder associated with epilepsy, but in which
there are no overt seizures, and no other subclinical epileptiform
activity was noted, show changes in information processing and
behavioral deficits. Loss of function of sodium channels Nav1.1
associated with human epilepsy in CA1 can cause disruptions
to place cells and spatial cognition without producing seizures
(181). Nav1.1 knockdown in themedial septum causes alterations
in temporal and rate coding in those neurons, and deficits in
working memory that are correlated with the degree of LFP
alteration in the hippocampus rather than seizure frequency
(39, 182). Similar effects are seen in animals with a malformation
of cortical development where no overt or subclinical seizures

were noted. These animals have reduced fidelity of place cells,
reduction in the magnitude of theta modulation, and disrupted
population coding in addition to spatial and working memory
deficits. The addition of induced seizures in this model did not
make the behavioral deficits worse, indicating that the main
contributor to the cognitive impairment was the underlying brain
substrate and not seizures (183).

Notably, subclinical epileptiform activity or inter-ictal spikes
(IIS) can disrupt cognitive function; however the number of
spikes is not a reliable indicator of the associated cognitive
impairment. Several studies have previously shown that patients
with benign epilepsy with centro-temporal spikes experience IQ
and school performance deficits (184, 185). These deficits were
correlated with the frequency of IIS but not seizure frequency
(184, 185). However, this may be related to timing of the IIS
relative to ongoing cognitive processing, as the presence of the
IIS may be an indicator that the brain is not in a state where
it can be performing cognitive computations. Kleen et al. (186)
investigated the effect of focal IIS on hippocampus in TLE. They
showed that rats with unilateral intrahippocampal pilocarpine
infusion developed hippocampal spikes that caused a response
latency deficit in hippocampal-dependent operant behavior
task, delayed-match-to-sample (186). However, the hippocampal
spikes only altered the cognitive performance when they occur
at the same time during memory retrieval; spikes occurring
during memory encoding or maintenance did not affect the
cognitive performance and overall IIS frequency during a trial
was not predictive of accuracy during that trial (186). Similar
results were seen in patients with refractory seizures performing
Sternberg task, a delayed information task that depends on
short-term memory processes, along with EEG recordings (187).
Contralateral or bilateral to seizure focus hippocampal interictal
epileptiform discharges (IED) duringmemory retrieval disrupted
memory retrieval, and bilateral IED duringmemorymaintenance
was able to disrupt that process, however no effect was seen on
memory encoding (187). These studies show that focal IIS and
hippocampal IED are associated with disruptions in memory
maintenance and retrieval only when they occur during the
same time window as the memory processes. Taken together,
this suggests that IIS/IED are indicators of disrupted network
processing underlying cognition.

In addition to deficits in rate, temporal and population coding,
plasticity deficits are also present in epilepsy, in accordance
with the view that these neural coding mechanisms support
plasticity. Kainic-acid induced status epilepticus (SE) model in
rats shows a significant decrease in hippocampal LTP in addition
to cell loss, and signs of hippocampal sclerosis (188). These rats
also have deficits in the hippocampal-dependent novel object
recognition spatial memory task that positively correlated with
LTP magnitudes (188). These findings were also seen in the
pilocarpine model where the mice showed a significant decrease
in the hippocampal synaptopodin acting-binding protein in CA1
region which alters the ability of the neurons to express synaptic
plasticity leading to a decrease in LTP induction in Schaffer
collateral-CA1 synapses (189). STP and workingmemory are also
altered in kainic acid-induced SE. Following kainic acid-induced
SE, there was a decrease in STP, reduced LTP capacity, impaired
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spatial learning, and increased inhibition in the dentate gyrus
(190). STPwas altered in amodel with recurrent hyperexcitability
leading to seizures during development (191), as well as a model
with aberrant GABA signaling during development leading to
frequent interictal discharges. Animals with frequent IDs in the
developing PFC showed a decrease in attention, and sociability
alongside these changes in STP (192). The growing evidence on
neural networks and epilepsy shows that these disrupted neural
networks are likely responsible for the cognitive impairments
seen with the disease and that the underlying etiology is the cause
of both the disease and coding impairments seen in epilepsy
animals and patients as well. The corollary is that recovering
neural networks toward normal has potential for recovering
cognitive impairments (Tables 3, 4).

THERAPEUTIC STRATEGIES

The main issue with finding the appropriate treatment is whether
neural network function can be recovered even in the context
of a diseased brain. Here we will discuss potential therapeutic
approaches that might influence the neural network function.

Gene Therapy
Rett Syndrome (RTT) is a progressive neurodevelopmental
disorder mainly affecting females in early childhood (196,
197). Development starts deteriorating at 6–18 months of age
leading to neurological and neurobehavioral alterations and
epilepsy (198). Loss of function mutations in the X-linked gene
encoding the methyl-CpG-binding protein 2 (MeCP2) involved
in transcriptional silencing and activation and RNA splicing
modulation is thought to contribute to the pathophysiology of
RTT (199, 200).

RTT is associated with significant behavioral abnormalities:
motor discoordination and social interaction deficits as well as
deficits in cognitive abilities like learning andmemory (201–203).
MeCP2 knockoutmice show reduced neuronal activity in cortical
and hippocampal areas (204) as well as deficits in LTP expression
in the hippocampus (197). Epilepsy has been reported in 60–80%
of RTT patients (205–207). Although children with RTT often
have seizures, it is widely accepted that the main driver of the
cognitive impairments is a function of the genetic cause. Deficits
in LTP, reduction in neuronal activity and seizures indicate that
behavioral and cognitive deficits extend to a network problem
that involves several mechanisms underlying neuronal activity
and plasticity.

Hippocampal place cells are impaired in RTT mice (203).
Normally, place fields become refined as the animal-environment
experience increases and are stabilized during memory
consolidation in sleep. This process involves synchronous
re-activation within high-frequency short time-scale windows,
known as sharp-wave ripples (208), which is associated with
synaptic plasticity transforming short-term memories into
long-term ones (209). This process is disrupted in RTT mice as
these mice show deficits in experience-dependent refinement of
spatial information in addition to increased place cell baseline
firing synchrony during sleep (203). Neural oscillations are also
impaired in RTT. Organoids developed from stem cells of RTT

patients, demonstrated individual neuron firing at a rapid and
persistent rate, diminished or reduced gamma oscillation in
addition to epileptiform-appearing spikes and high-frequency
oscillations (210, 211). Rett mice show desynchronized and
reduced theta oscillations during exploratory behavior (210, 212),
underscoring impaired temporal coding underlying cognitive
and behavioral deficits in RTT mice.

MeCP2 gene therapy has been shown to improve the survival
and improve some behavioral deficits seen in RTT (196). Treated
mice showed normalized gene expression in addition to better
mobility and more exploratory behavior in the open field (213,
214), which could involve normalized place cell activity. This
improvement was accompanied by a normalization of neuronal
nuclear volume in MeCP2 transduced cells in the dentate gyrus
(215). MeCP2 is a master transcriptional regulator of activity-
dependent gene expression; recovering it may restore the brain’s
ability to respond plastically, thereby allowing the network to be
in a state where it is ready to receive new information.

Rett syndrome is a very specific disorder whose
pathophysiology seems to be directly related to MeCP2.
Other causes of epilepsy are less straightforward and may require
other gene therapy strategies. One such strategy is targeting the
hyperexcitable granule cells in the dentate gyrus in TLE (216).
Reducing granule cell hyperactivity via inhibitory chemogenetic
receptors, DREADDs (CamKIIα-hM4Di), was able to normalize
performance in the spatial object recognition task, reduce
seizures and restore the dentate gyrus information coding
process (216). Over-expression of the voltage-gated potassium
channel Kv1.1 via lentiviral vector or AAV significantly reduced
the seizure frequency in rats with focal neocortical epilepsy
(FNE) or TLE, respectively (217). Evidence from behavioral
and cognitive studies in epilepsy emphasize the need for a
new gene therapy strategies. Cognitive and behavioral deficits
vary among epilepsy patients, even patients with the same
type of epilepsy as this could be due to different genomic
factors (3, 218). Different genetic variants are associated with
various comorbidities. For example, executive dysfunction
was associated with catechol-O-methyltransferase (COMT),
methylenetetrahydrofolate reductase (MTHFR) and BDNF in
TLE and pediatric epilepsy (219, 220), memory impairment
was associated with apolipoprotein E (APOE) and BDNF in
TLE (221, 222), impaired working memory was associated with
COMT and MTHFR in pediatric epilepsy (220), decreased
information processing was associated with RE1- silencing
transcription factor (REST) (219), and anxiety and depression
were associated with BDNF and COMT (223). Further
investigation of epigenomic, transcriptomic, and proteomic
changes in epilepsy along with understanding the functional
recovery mechanisms seen with gene therapy in RTT, TLE, and
FNE at the level of rate, population and temporal coding will
allow us to explore the possibility of treating diseased brains.

Environmental Enrichment
The efficacy of simple environmental enrichment (EE) strategies
on improving cognition was first noted by Donald Hebb in
1947. He found that the rats he took home with him performed
better on behavioral tasks than rats housed in the lab (224). This
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TABLE 3 | Overview of cited preclinical research.

Study Subjects Experiment Main findings

Austin et al., Oostrom et al.,

and Berg et al. (110, 111, 114)

Children with new-onset

seizures

Behavior ratings, behavior

questionnaires and school

records

Cognitive impairment exists at pretreatment baseline, special educational

assistance required for newly diagnosed children, cognitive impairment

present before the first seizure

Brun et al. (127) Rats MEC lesion Place coding alteration, place cell deterioration, dispersed place fields,

and less place field responses

Schlesiger et al. (193) Rats MEC lesion Loss of theta phase precession in CA1

Hales et al. (194) Rats Bilateral MEC lesions Place field and phase precession deficits, impaired spatial precision and

spatial stability

Hernan et al. (131) Rats Malformation of cortical

development

Hippocampal-PFC network shows less temporal modulation and less

connectivity, underlying deficits in SWM

Karnam et al. (126) Rats ELS Reduction in coherence, information content, center firing rate, and field

size of place cells, instability of place fields, and spatial learning

impairment

Hernan et al. (191, 192) Rats ELS/ early life IID Increased STP in the PFC, decreased attention

Lynch et al. (190) Rats Kainic acid-induced SE Decreased STP, reduced LTP capacity, impaired spatial learning, and

increased inhibition in the dentate gyrus

Suárez et al. (188) Rats Kainic acid-induced SE Significant decrease in hippocampal LTP, cell loss, signs of hippocampal

sclerosis, and spatial memory task deficits

Ewell et al. (123) Rats Kainic acid-induced SE Decreased number of active place cells, decreased spatial tuning curve

stability

Liu et al. (122) Rats Pilocarpine SE/TLE Decreased number of active place cells, decreased spatial tuning curve

stability

Chauviere et al. (125) Rats Pilocarpine SE/TLE Spatial memory alteration took place during seizure-free period and

decreased theta oscillations power

Tyler et al. (129) Rats Pilocarpine SE/TLE CA1 hippocampal pyramidal cells functional connectivity, coordinated

firing, neuronal reactivation and synchrony predicts the behavioral

outcome

Lenz et al. (189) Mice Pilocarpine SE/TLE Significant decrease in the hippocampal synaptopodin acting-binding

protein in CA1 region, decreased LTP induction in Schaffer collateral-CA1

synapses

Shuman et al. (124) Mice Pilocarpine SE Desynchronized interneuron firing between CA1 and dentate gyrus, theta

rhythm temporal coordination loss in the dentate gyrus, place cell

deterioration and place coding alteration

Clawson et al. (121) Rats Pilocarpine SE Storage and exchange of information, theta and slow oscillations

disruption

Lenck-Santini and Holmes

(195)

Rats Hippocampal sclerosis/TLE Phase precession and temporal organization disruption

spurredHebb’s hypothesis that frequent pairing of neuronal firing
leads to more efficient excitation in the future; that exposure
to a more enriched environment during development critical
periods might be influencing the behavior in adulthood. Hebb’s
observations were the first to connect environmental influences
to plasticity. Today, EE paradigms involve exposure to different
housing conditions that enable sensory, motor, and cognitive
stimulation (225, 226).

EE has been studied in different neurological diseases like
Parkinson’s and Alzheimer’s diseases. EE has been shown to slow
cognitive decline in Alzheimer’s disease (227). To investigate
the effects of EE on epilepsy, it was shown that EE can reduce
cognitive deficits, increase neural plasticity, improve motor
coordination, and reduce the frequency of seizures (228). We will
focus on the effects of EE on information processingmechanisms.

There is a strong link between EE, plasticity, and the
mechanisms underlying plasticity. Housing young rats in an

enriched environment for 30 days was shown to increase
synaptophysin and post-synaptic density (PSD) in the cortex,
hippocampus, thalamus, and hypothalamus (226). This suggests
that the enriched environment was able to stimulate the
formation of new functional synapses in these brain regions.
Hippocampal gamma power increases during theta states in rats
housed in enriched environments (229). This occurs alongside
an increase in interhemispheric coherence of gamma oscillations
after EE (229). Mice housed in EE conditions also had an increase
in CA1 gamma oscillations (230).

EE also affects rate and population coding. Prolonged
exposure to an enriched environment was able to increase
the selectivity of CA1 place cells to a particular area in the
arena in a way where fewer place cells are activated after brief
exposure to a novel environment, along with an increase in
global remapping efficiency and this was further supported by the
increased expression of the activation protein Arc in CA1 and
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TABLE 4 | Main takeaways for the pre-clinical sections and associated clinical relevance.

Coding Physiology Epilepsy

Preclinical Clinical Preclinical Clinical

Rate • Place cells fire when an animal visits a

specific place field

• Time cells fire at specific times in a task

called time fields and they can be time

locked to an external stimulus

• Grid cells provide activity-based maps of

speed and direction in a certain

environment and fire in different locations

in an environment

• Place and grid cells map are part of the

greater hippocampal cognitive map

• Inputs from the entorhinal cortex are

important for hippocampal rate coding in

the formation of the spatial memory and

cognitive map

• Selective disruption of the theta rhythm

power correlated with spatial component

of the non-verbal correlates of

episodic-like memory task

• Time cells fire at specific

times in a task called time

fields and they can be time

locked to an external

stimulus

• Inputs from the entorhinal

cortex are important for

hippocampal rate coding in

the formation of the spatial

memory and cognitive map

• Place cell misfiring

• Loss of accurate spatial

navigation

• Lesioning the hippocampus

results in loss of spatial

memory

• Lesioning the lateral

entorhinal cortex impairs

the hippocampal rate

remapping upon changing

the configuration of the

environment

• Time and grid cells deficits

• Time cells firing deficits

• Disruption of entorhinal cortex inputs

• Spatial memory deficits

Temporal • The rate of populations of neuronal firing

is also modulated in time

• Temporal modulation is manifested as

burst firing with bursts occurring at theta

frequency in the hippocampus

• Theta modulation is important for phase

precession, phase preference and

hippocampal replay

• Phase precession is important for

information processing.

• Theta-phase precession could be an

indication of item-context associations

• Selective disruption of theta coordination

across CA1 and the DG correlated with

temporal component of the non-verbal

correlates of episodic-like memory task

• The rate of populations of

neuronal firing is also

modulated in time

• Neurons in the

hippocampus and

entorhinal cortex fire for

space and time

• Time cells exhibited

theta-phase precession

during memory encoding

• Time cells activity correlates

with the use of temporal

location during retrieval

phase of free recall task

• Loss of phase precession

• Temporal modulation

deficits

• Item-context

association deficits

• Loss of time modulation of neuronal

firings

• Theta-phase precession deficits

• Temporal location alteration in free

recall task

Population • Neurons are functionally connected into

a network

• Population coding increases robustness

of network function

• Place cell populations will respond when

the animal goes into the field

• Dentate gyrus (DG) and its projection to

CA3 underlie the pattern separation

process

• Working memory in the prefrontal cortex

depends on population coding

• Pattern separation involves

posterior occipitotemporal

cortex (OTC) and the

hippocampus

• Dentate gyrus (DG) and its

projection to CA3 underlie

the pattern separation

process

• Working memory in the

prefrontal cortex depends

on population coding

• BOLD signal on fMRI

decreases during the delay

phase of image-sequence

matching task in humans

• BOLD signal re-emerge

during the image

presentation phase of

image-sequence matching

task

• Working memory

information is maintained in

the collective synaptic

weights of populations of

neurons in the PFC.

• Loss of functional

connections

• Decreased robustness of

network function

• Loss of place cells firing

accuracy

• DG aberrant CA3 influences

• Working memory deficits

• Early stage TLE patients experience

functional connectivity deficits in

the ipsilateral hemisphere and

interhemispheric connections

• Patients with generalized

epilepsy have an increase in the

interhemispheric connectivity but

reduced functional connectivity

• Decreased cluster coefficient

within the DMN underlies the

language impairment in patients

with generalized epilepsy without

focal brain damage

• Reduced DMN activity suppression

can alter the balance between

activated and deactivated neural

networks and disturb cognitive

function

• Hub nodes in TLE patients were

mainly located in the limbic and

temporal association cortices instead

of being evenly distributed between

different lobes

• Memory impairments are present in

patients who don’t show a lesion

with MRI
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dentate gyrus (231). This might suggest that the exposure to an
enriched environment might be changing how place cells process
information by recruiting more or new populations of neurons
leading to a more efficient population coding mechanism.

Due to the various effects of EE on these important
mechanisms, interest has been growing in investigating the
effects of EE on epilepsy. Exposing rats with absence epilepsy
to an enriched environment resulted in fewer seizures in
adulthood, reduced seizure frequency, and reduced anxiety levels
in adulthood (232). The beneficial effects of EE were also seen
in TLE rats in the lithium/pilocarpine model. EE was able to
alleviate depression and hyperactivity in addition to restoring
theta LFP power in the CA1 region (233). The positive effects
of EE were further seen in rats with malformation of cortical
development (MCD). Rats with MCD had a disruption in their
fine spike timing and place-modulated rate coding in CA1 region,
which was improved upon with EE exposure (234).

These studies show that EE have a positive impact on rate
and population coding. This is important as these processes are
disrupted in epilepsy where these are essential for information
processing and plasticity. This opens the door for future
investigations on how EE can possibly modulate the brain
network in ways that make it less susceptible to insults and
improves outcome in patients with epilepsy.

Brain Stimulation
Brain stimulation is another therapeutic option for improving
cognitive deficits associated with a variety of neurological
diseases. Brain stimulation can either activate or inhibit the brain
activity in a specific region which gives the ability to modulate
cognitive functions. Various types of brain stimulation exist, deep
brain stimulation (DBS) is an invasive technique that involves
direct implantation of electrodes in the brain while transcranial
magnetic stimulation (TMS) is a non-invasive technique that
uses magnetic fields applied to the head (235). Brain stimulation
techniques have been mainly studied in Alzheimer’s disease (AD)
and Parkinson Disease (PD).

DBS was tested in AD for the first time in 1984, and while
this study did not show any memory or cognitive improvements,
it was able to partially stop the left frontal lobe deterioration
(236). In 2010, DBS went into phase I trial to investigate its
effect on AD patients, and it was shown that after DBS of
the fornix/hypothalamus, the patients had improved memory,
reduced cognitive decline, enhanced mental state and social
performance in addition to increased hippocampal volume (237–
239). Further experiments exploring DBS andAD took place after
this trial, and the experiments showed the positive effects of DBS
on stabilizing cognitive performance (240), influencing cognitive
function and disease progression depending on the disease stage
and brain region being stimulated (241). For example, nucleus
basalis of Meynert (NBM) DBS had a positive effect on sensory
gating of auditory information into memory (242). Repetitive
TMS (rTMS) was also applied for AD patients. rTMS delivers
trains of pulses at the same intensity over a period of time.
It mainly uses high frequency (≥5Hz) for cortical excitability,
low-frequency (≤1Hz) for cortical inhibition or theta-burst
stimulation (TBS) (243). Several trials have shown that rTMS

enhanced cognitive function in AD patients when applied to
the bilateral dorsolateral prefrontal cortices (DLPFCs) (244–
247). Animal studies also investigated the effect of DBS on AD.
Acute fornix DBS was able to improve learning and long-term
memory in the triple transgenic ADmouse (3× Tg) model (248).
Also, bilateral intermittent NBM DBS enhanced and maintained
spatial memory tasks in AD rats (249). Similar results were seen
with single rostral intralaminar thalamic (ILN) DBS, in addition
to preservation of dendritic spine density in the mPFC and
hippocampus and enhanced expression of PSD-95 (250).

In PD, bilateral subthalamic nucleus (STN) and internal
globus pallidus (GPi) DBS was able to significantly reduce
dyskinesia and improve motor symptoms with long-term benefit
(251–253). Additional studies have shown overall improvement
in quality of life and continued efficacy in patients that lasted
more than 10 years (254, 255). Although most studies agree on
the positive effects of DBS on motor function and quality of life,
there is contradictory evidence on the positive effects of DBS on
cognition and attention in PD patients. Some studies have found
that PD patients continued to experience PD-associated declines
in executive function, visuospatial reasoning and memory, and
verbal memory after DBS (256–258). However, other studies
have shown that DBS groups performed better than control
groups in memory functions and visuospatial tasks (259, 260).
The contradictory results seen with DBS on cognition in PD
patients could be due to the stimulated brain regions and using
on paradigm for all patients. STN and GPi are the most studied
regions in PD due to their importance in dyskinesia and motor
coordination, however these regions are not directly involved in
memory per se.

DBS is used for epilepsy patients to control and manage
refractory seizures; however, DBS may also be beneficial for the
cognitive deficits seen in the patients. Ezzyat et al. developed
a subject-based approach to investigate the effect of DBS on
memory facilitation if performed in a timely manner. Taking
into account the disrupted memory network in epilepsy patients,
interfering at the right time can reverse the dysfunctional activity
of memory encoding. The team was able to differentiate low
from high encoding states which indicate neural activity and
either stimulating a single medial temporal lobe (MTL) structure
like hippocampus or structure involved in memory encoding
like prefrontal cortex in the learning session (261). Studies
stimulating a single MTL region had contradictory conclusions,
indicating both memory facilitation (262, 263) and memory
disruption (264, 265). Interestingly, the stimulation was able to
increase the encoding-state and memory recall when performed
during low-encoding states (261) and this suggests that the
accurate stimulation of a single MTL structure or a region
involved in memory encoding can reverse the deficits if done
at a specific time of memory process. Pilocarpine rats showed
a decrease in hippocampal theta power and percentage of
time oscillating in theta (266), however, continuous stimulation
through Barnes maze task or pre-task stimulation of the medial
septum at 7.7Hz was able to prevent theta oscillations reductions,
improve spatial navigation and search strategy during the task.
This cognitive improvement was accompanied by significant
increase in seizure threshold in these rats. This shows that
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theta stimulation of the septum has potential to rescue cognitive
impairments and increase seizure threshold, further supporting a
mechanistic link upstream of both of these symptoms of epilepsy
(266, 267). The same stimulation paradigm was used with rats
after a traumatic brain injury (TBI) and it was shown that these
rats had improved spatial learning and object exploration in
addition to increased hippocampal theta oscillations (268). Taken
together, these data show that neuronal stimulation approaches
may be effective in restoring normal network function and
improving cognition broadly.

Interneuron Implantation
Interneuron implantation is another possible treatment that can
potentially recover the network function given the importance of
interneurons in balancing the inhibition-excitation, controlling
gamma and theta oscillations, and sharp wave ripples in the
hippocampus. Interneuron precursor implantation into the
prefrontal cortex of Pten mutant mice, an autism mouse model,
was able to reverse the social behavior deficits seen in these
mice; however, the implantation did not normalize baseline and
social interaction-evoked EEG signals, but did modify inhibitory
signaling in the PFC, underscoring a complex relationship
between etiology and circuit restoration underlying behavioral
improvement in disease (269). Interneuron implantation has
been shown to be beneficial in epilepsy as well. Implantation
in TLE, absence epilepsy, and generalized epilepsy models
in rodents was able to increase seizure threshold, reduce
seizure frequency and duration, reduce network excitability, and
improve behavioral deficits (270–273). Implanting interneurons
derived from human induced pluripotent stem cell (hiPSC)
into the hippocampus of TLE rat model was able to reduce
spontaneous seizures frequency after status epilepticus (274–
276) which shows translational significance from rodents to
humans. In addition to reducing seizures frequency, there
was a decrease in the aberrant mossy fiber sprouting, and
improved cognition and mood. The implanted rats showed
an improvement in hippocampal dependent tasks like object
recognition and improvement in pattern separation and novel
object recognition (276), which suggests that the implantation
might be recovering the communication between different
regions or reactivating the DG/CA3 connections required for
pattern separation. Integration of interneurons into the CA3
network may be how the new interneurons are affecting the
network. region of the hippocampus of epileptic mice was able
to improve the working memory in Y-maze test and spatial
memory in water maze, however both tasks depend on the
PFC (270, 274, 277). This raises the question of how locally

implanted interneurons can enhance tasks that are dependent
on different brain regions as well. Given the crucial role for
interneurons in the timing of the action potential firing, these
local connections are likely refining the signal from hippocampus
to the PFC. Interestingly, MGE implantation was able to increase
memory precision in mice with traumatic brain injury (TBI)
as well. Implanted mice performed better in object location
task and contextual fear memory where both tasks depend on
hippocampus and hippocampal interneurons, respectively (278).
Based on these data, GABAergic interneurons transplants may be
a promising therapeutic approach for different diseases, however,
further investigations are needed to determine the right time and
location of implantation for the different investigated diseases.

CONCLUSION

In this review, we addressed the role of neuronal dynamics
in supporting proper cognition, learning and memory, and
discussed how these dynamics are altered in epilepsy. The
data suggest that cognitive impairments seen in patients with
epilepsy and preclinical models of epilepsy are likely due
to plasticity changes, alterations to neuronal coding regimes,
desynchronization, and functional connectivity disruptions from
the effect of underlying etiology, rather than seizures themselves.
Although we accept that the seizures could also have some
negative impact on network behaviors, we strongly argue that the
seizure effect is very small when compared to the etiology effect.
We therefore suggest that these deficits should be approached
from a systems neuroscience perspective, while being informed
by mechanisms needed for normal cognitive function and
development in a dynamic experience-dependent and plastic
network. Importantly, this calls us to move beyond seizures
into network science that is guiding possible treatments and
defining new pathophysiology. This might help advance the
epilepsy research forward and open the door potentially to
answer unsolved questions in the field.
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