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Background: Lung cancer is the leading cause of cancer-related death globally.
Hypoxia can suppress the activation of the tumor microenvironment (TME), which
contributes to distant metastasis. However, the role of hypoxia-mediated TME in
predicting the diagnosis and prognosis of lung adenocarcinoma (LUAD) patients
remains unclear.

Methods: Both RNA and clinical data from the LUAD cohort were downloaded from the
Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Both
univariate andmultivariate Cox regression analyses were used to further screen prognosis-
related hypoxia gene clusters. Time-dependent receiver operation characteristic (ROC)
curves were established to evaluate the predictive sensitivity and specificity of the hypoxia-
related risk signature. The characterization of gene set enrichment analysis (GSEA) and
TME immune cell infiltration were further explored to identify hypoxia-related immune
infiltration.

Results: Eight hypoxia-related genes (LDHA, DCN, PGK1, PFKP, FBP1, LOX, ENO3,
and CXCR4) were identified and established to construct a hypoxia-related risk
signature. The high-risk group showed a poor overall survival compared to that of
the low-risk group in the TCGA and GSE68465 cohorts (p < 0.0001). The AUCs for 1-,
3-, and 5-year overall survival were 0.736 vs. 0.741, 0.656 vs. 0.737, and 0.628 vs.
0.649, respectively. The high-risk group was associated with immunosuppression in
the TME.
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Conclusion: The hypoxia-related risk signature may represent an independent biomarker
that can differentiate the characteristics of TME immune cell infiltration and predict the
prognosis of LUAD.

Keywords: lung cancer, hypoxia, immunity, overall survival, risk signature

INTRODUCTION

Lung cancer is the most commonmalignant tumor and one of the
leading causes of cancer-related death worldwide (Sung et al.,
2021). Non-small cell lung cancer (NSCLC) accounts for
approximately 85% of lung cancer cases, which comprises
approximately 40–50% cases of lung adenocarcinoma (LUAD)
and 20–30% cases of lung squamous cell carcinoma (LUSC) (Liu
et al., 2021; Siegel et al., 2020). Despite advances in
chemoradiotherapy and targeted therapies, immune
checkpoint inhibitors (ICI), including programmed death-
ligand 1 (PD-L1), programmed cell death 1 (PD-1), and
cytotoxic T lymphocyte antigen-4 (CTLA-4) represent
promising advances in the treatment of lung cancer (Hiley
et al., 2016; Bhandari et al., 2021; Fountzilas et al., 2021);
however, the clinical response rate of ICIs is only 20%, which
can seriously hinder its wider application (Borghaei et al., 2015;
Brahmer et al., 2015; Reck et al., 2016; Rittmeyer et al., 2017).

Increasing evidence suggests that the accumulation of
immunosuppressive cell subsets within the tumor
microenvironment (TME) (e.g., tumor-associated macrophages
[TAM], myeloid-derived suppressor cells [MDSCs], and
regulatory T cells [Tregs]) can influence the prognosis and
clinical benefit of ICI therapy (Chen et al., 2021; Fogli et al.,
2021; Semba et al., 2021). Multiple immunosuppressive
mechanisms in the TME, including the tumor mutation burden
(TMB), PD-L1 expression and tumor-infiltrating lymphocytes
(TILs), have been identified as major factors that regulate
immune resistance (Ji et al., 2012). As a feature of unstable
vasculature and a high metabolic rate, hypoxia is a hallmark of
tumorigenesis in various cancers (Semenza, 2014). Hypoxia can
both induce an immunosuppressive TME, which decreases the
effect of immunotherapy (Fukumura et al., 2018), as well as
upregulate PD-L1 expression, which further promotes tumor
escape (Barsoum et al., 2014; Noman et al., 2014; Koh et al.,
2016; Ruf et al., 2016). The hypoxia-related gene signaturemay be a
key regulator in mediating tumor immune evasion. Thus, the
identification of a hypoxia-related risk signature may predict the
subpopulations of clinical ICI therapy and provide a novel means
of improving the clinical curative effect.

In this study, mRNA expression and the clinical information
of LUAD samples were downloaded from the TCGA and GEO
databases. Eight hypoxia-related genes were identified and
established to construct a hypoxia-related risk signature. The
risk signature could differentiate the high- and low-risk
subgroups, and a high-risk hypoxia signature has been
associated with the inactivation of TME immune cell
infiltration. Thus, targeting hypoxia-related genes may
represent novel therapeutic targets that can enhance the
proportion of LUAD patients who can be treated with ICIs.

METHODS

Data Acquisition and Processing
RNA expression and clinical data related to the LUAD cohort were
downloaded from The Cancer Genome Atlas (TCGA, http://
cancergenome.nih.gov/) and GENE EXPRESSION OMNIBUS
database (GEO, https://www.ncbi.nlm.nih.gov/geo/). The independent
cohort was used to verify the results of the TCGA dataset. Two authors
(ZLD and TXL) independently reviewed the RNA-seq transcriptome
and clinical data from both datasets to avoid any potential errors.

Construction of a Protein-Protein
Interaction Network
To identify hypoxia-related hub genes, a protein-protein
interaction (PPI) network was constructed using the STRING
database (http://string-db.org). Genes with a node degree >0.4
were considered to be hub genes in the PPI network. PPI network
visualization and analysis were further performed using
Cytoscape software (https://cytoscape.org/).

Establishment of a Hypoxia-Related Risk
Signature
To establish the hypoxia-related risk signature, a univariate Cox
regression analysis was used to screen for prognosis-related
hypoxia-associated genes. A multivariate Cox regression
analysis was further used to calculate the corresponding risk
coefficient according to the gene expression of the input gene set,

FIGURE 1 | The work flow of this study.
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and the risk score was created for each patient. The risk score was
calculated using the following formula:

risk score � ∑
n

i�1
(ExpipCoei)

where Expi represents the level of hypoxia gene expression, and Coei
represents the corresponding multivariate Cox regression coefficient.

Gene Set Enrichment Analysis
Patients were divided into low- and high-risk groups based on the
median risk score. A gene set enrichment analysis (GSEA) 3.0
(http://www.broad.mit.edu/gsea/) detected different signaling
genes. Each analysis performed 1,000 gene combinations. NES >1
and nominal p < 0.05 were considered to be statistically significant.

Development of Receiver Operating
Characteristic Curves
To assess the hypoxia related risk signature, a univariate Cox
regression was used to analyze prognostic hub genes with clinical
information. Significant prognostic hub genes were further

analyzed using a multivariate Cox regression analysis. A
receiver operating characteristic (ROC) analysis was performed
to determine the sensitivity and specificity of the risk model for
predicting the OS.

Evaluation of Immune Cell Type Factions
To characterize the immune cell types in the TME, CIBERSORT
(https://cibersort.stanford.edu/) was used to clarify the
deconvolution of the immune cell subtype expression matrix
based on linear support vector regression. In accordance with the
methods described by Zhang J. et al. (2020), the immune infiltration
characteristics of 22 immune cell subpopulations were evaluated
between high- and low-related risk groups in LUAD.

Statistical Analysis
Statistical analyses were performed using standard R packages
(version 3.6.2). A Student’s t-test was used to compare the
continuous and discrete variables. A Pearson’s chi-squared test
was used to compare the categorical clinicopathological variables.
The Kaplan-Meier method was used to assess the OS and
differences were assessed using a two-sided log-rank test. p <
0.05 indicated statistical significance.

FIGURE 2 | Identification of key hypoxia-related genes in LUAD. (A) The protein-protein interaction network of hypoxia-related genes. (B) A total of 50 of the most
relevant hypoxia-related key genes. (C, D) Univariate (C) and multivariate Cox (D) regression analysis of key hypoxia-related genes.
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RESULTS

Establishment of a Hypoxia-Related Risk
Signature
Details of the clinical data from the two cohorts used in this study are
listed in Supplementary Table S1. Figure 1 shows the flow chart of
the process used to screen hypoxia-related genes, and the hypoxia-
related gene set was downloaded from the TCGA-LUAD cohort. To
investigate the interactive roles of hypoxia-related genes, a PPI
network analysis was applied using the STRING online database
and Cytoscape software (Figure 2A). The 50 genes with the most
significant interactions were obtained (Figure 2B). A univariate Cox
regression analysis revealed that 19 key genes were significantly
associated with overall survival (OS) in patients with LUAD (p <
0.05; Figure 2C). A multivariate Cox regression analysis further
showed that eight hypoxia-related genes, including lactate
dehydrogenase A (LDHA), decorin (DCN), phosphoglycerate
kinase 1 (PGK1), phosphofructokinase (PFKP), fructose-
bisphosphatase 1 (FBP1), lysyl oxidase (LOX), enolase 3 (ENO3),
and C-X-C Motif Chemokine Receptor 4 (CXCR4), were obtained
(Figure 2D). The correlation analysis showed that there was a
significant correlation among the hypoxia-related genes in the

TCGA-LUAD and GSE68465 cohort, including a positive
correlation for DCN and CXCR4, and a negative correlation for
DCN and LDHA (Supplementary Figure S1). The hypoxia-related
risk signature was developed based on the key eight hypoxia-related
genes. The risk score formula was listed as follows: hypoxia related
risk signature � (0.45 × LDHA) + (−0.18×DCN) + (−0.25 × PGK1)
+ (0.14 × PFKP) + (−0.12 × FBP1) + (0.27 × LOX) + (−0.17 ×
ENO3) + (−0.18 × CXCR4).

Prognostic Significance of the Hypoxia Risk
Signature
To identify the clinical application of the hypoxia-related risk
signature, a cluster analysis showed that the TCGA-LUAD cohort
could be divided into high- (n � 297) and low-risk (n � 297)
groups and differential expression was observed in the hypoxia-
related genes between the two groups (Figure 3A). The
distribution of risk scores and survival status of the TCGA-
LUAD patients are shown in Figures 3B,C. The further
percentage of survival showed that compared with the 26%
death in the low-risk group, the high-risk group had a 46%
death (Figure 3D). A prognostic analysis identified that the high

FIGURE 3 | Prognostic value of the hypoxia-related risk signature in the TCGA database. (A) Heatmap of high- and low-risk LUAD patients stratified by eight key
hypoxia-related genes in the TCGA cohort. (B) Distribution and median survival time of the high- and low-risk LUAD patients in the TCGA cohort. (C) Distribution of the
survival status of high- and low-risk LUAD patients. The X-axis represents the number of patients, and the Y-axis represents the survival time. (D) Survival and mortality
rates in the high- and low-risk LUAD patients. (E) OS analysis of high- or low-risk LUAD patients.
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risk group had a poor survival compared to the low risk group in
the TCGA-LUAD cohort (p < 0.001; Figure 3D). The hypoxia-
related risk signature was further validated in the GSE68465
cohort. A total of 442 patients were stratified into high- (n � 221)
and low-risk (n � 221) subgroups using the median risk score
values (Figure 4A). The LUAD patients in the high-risk group
exhibited a higher probability of earlier death (Figures 4B,C) and
had significantly worse OS compared to those in the low-risk
group (p < 0.001; Figure 4D). Taken together, these results
indicate that the hypoxia-related risk signature may function
as a biomarker to predict the prognosis of patients with LUAD.

Evaluation Value of the Hypoxia Risk
Signature
To determine whether the hypoxia-related risk signature could be
used as an independent prognostic factor, univariate, and
multivariate Cox regression analyses were performed to evaluate
the signature-based risk score using the TCGA and GSE68465
cohorts. The results of the univariate Cox regression analysis
indicated that tumor (T) stage, lymph node (N) stage, and
hypoxia-related risk score were positively correlated with the OS
in the TCGA and GSE68465 cohorts (p < 0.001; Figures 5A,B). The

multivariate survival analysis showed that the T stage, N stage, and
hypoxia-related risk score were significantly associated with the OS,
which suggested that the hypoxia-related risk score could be defined
as an independent prognostic factor in patients with LUAD (p <
0.001; Figures 5C,D).

To further evaluate the predictive accuracy of the hypoxia-
related risk signature, the ROC curves of the hypoxia-related risk
signature were performed. The results showed that AUC at 1, 3,
and 5 years in the TCGA-LUAD and GSE68465 cohorts were
0.736 vs 0.741, 0.656 vs 0.737, and 0.628 vs 0.649, respectively
(Figures 5E,F). These results suggest that the hypoxia-related risk
signature had an excellent predictive prognostic ability and
provided a useful biomarker with clinical application.

Immune Cell Infiltration in the Tumor
Microenvironment (TME)
A GSEA analysis was performed to investigate the potential
signaling pathways activated by hypoxia-related genes, The
results showed that the hypoxia-related genes were associated
with interferon gamma, B cell, and natural killer (NK0 cell
infiltration in the TCGA and GSE68465 cohorts
(Supplementary Figure S2). These results indicate that the

FIGURE 4 | Prognostic value of the hypoxia-related risk signature in the GSE68465 dataset. (A) Heatmap of high- and low-risk LUAD patients stratified by eight
hypoxia related key genes in GSE68465 dataset (B) Distribution and median survival time of high- and low-risk LUAD patients in the GSE68465 dataset. (C) Distribution
of high- and low-risk LUAD patients. (D) Survival and mortality in the high- and low-risk LUAD patients. (E) OS analysis of high- or low-risk LUAD patients.
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hypoxia-related genes mediated the malignant features of LUAD
by regulating immune cell infiltration in the TME.

Thus, we next analyzed the immune cell infiltration of the 22
immune cell subgroups using the CIBERSORT algorithm. The
results showed that the distribution ratio of the infiltrating
immune cells between the high- and low-risk groups in the
TCGA and GSE68465 cohorts were significantly different
(Supplementary Figures S3A,B). A component analysis of the
immune cells from the TME showed that activated CD4+ T
memory cells, resting NK cells, M0 and M1 macrophages,
resting mast cells, and resting dendritic cells were significantly
different between the high- and low-risk groups (p < 0.05;

Supplementary Figures S3C–H). A cluster analysis revealed
that there was a distinct difference in the immune molecules
between the high- and low-risk groups (p < 0.05; Figure 6A). The
relative expression analysis indicated that the expression of
V-domain Ig Suppressor of T cell Activation (VISTA),
cytotoxic T-lymphocyte associated protein 4 (CTLA4), T cell
immunoreceptor with Ig and ITIM domains (TIGIT), inducible
T cell costimulator (ICOS), C-X-C motif chemokine receptor 3
(CXCR3), and C-C motif chemokine receptor 5 (CCR5) were
significantly downregulated in the high-risk groups (p < 0.05;
Figures 6B–G). In contrast, PD-L1 and B7-H3 expression were
significantly upregulated in the high-risk groups (p < 0.05;

FIGURE 5 | The independent prognostic analysis of the hypoxiarelated risk signature. (A, B) Univariate Cox analysis of clinical characteristics and hypoxiarelated
risk signature in the TCGA (A) and GSE68465 dataset (B). (C, D)Multivariate Cox analysis in the TCGA (C) and GSE68465 dataset (D). (E, F) AUC of the hypoxia risk
signature in the TCGA (E) and GSE68465 datasets (F).
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FIGURE 6 | Immune cell infiltration in the tumor microenvironment (TME) in LUAD. (A) Heatmap of immune-related gene sets between the high- and low-risk LUAD
patients. (B–G) Expression of VISTA (B), CTLA4 (C), TIGT (D), ICOS (E), CXCR3 (F), CCR5 (G) PD-L1 (H), and B7-H3 (I) in high- and low-risk LUAD patients.
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Figures 6H,I). A correlation analysis revealed that VISTA,
CTLA4, TIGIT, ICOS, CXCR3, and CCR5 were negatively
associated with the hypoxia-related risk score, whereas PD-L1
and B7-H3 were positively associated with the hypoxia-related
risk score (p < 0.05; Figures 6B–I). These results revealed that the
hypoxia-related risk signature may be involved in tumorigenesis
by regulating immune cell infiltration into the TME and can be
used to predict patient prognosis.

DISCUSSION

Lung cancer is the leading cause of cancer-related death
worldwide (Bray et al., 2018; Siegel et al., 2020).
Chemoradiotherapy and targeted therapies are the dominant
therapeutic strategies used to treat patients with NSCLC;
however, the prognosis is poor, with a median OS of only
9–11 months (Scagliotti et al., 2008; Sun et al., 2016). Hypoxia
is an important phenomenon associated with solid tumors that
contributes to metastasis, deregulation of the tumor
microenvironment (TME), and resistance to therapy (Goyette
et al., 2021). In this study, we comprehensively analyzed the
expression of hypoxia-related genes in the TCGA and GEO
databases, and established a hypoxia-related risk signature,
which can differentiate LUAD patients into high- and low-risk
groups.

The hypoxia-related risk signature consists of eight hypoxia-
related genes, including LDHA, DCN, PGK1, PFKP, FBP1, LOX,
ENO3, and CXCR4. LDHA is an enzyme that catalyzes the
mutual conversion of pyruvate and lactic acid, as well as
promotes invasion, metastasis, nest loss, and apoptosis
resistance in various cancers (Cheng et al., 2021; Crowley
et al., 2021; Gupta et al., 2021). Multiple studies have
suggested that DCN can suppress lung cancer progression by
blocking receptor tyrosine kinases (Horvath et al., 2014).
Moreover, decreased DCN expression correlates with
lymphatic metastasis in patients with lung cancer (Biaoxue
et al., 2011). While PGK1 up-regulation was found to trigger
autophagy in tumorigenesis (Qian et al., 2017a; Qian et al., 2017),
it was also associated with resistance to chemoradiotherapy (Cai
et al., 2019; Sun et al., 2015). PFKP is a rate-limiting enzyme
involved in glycolysis that has been found to be upregulated in
various types of cancer (Park et al., 2013; Wang et al., 2016; Kim
et al., 2017). NK cell dysfunction induced by FBP1 inhibited
glycolysis during lung cancer progression (Cong et al., 2018).
LOX upregulation in cancer has been shown to be involved in
cancer progression and metastasis (Murdocca et al., 2021). A
knockdown of ENO3 expression exhibited a selective anticancer
effect in STK11 mutant lung cancer cells (Park et al., 2019). In
addition, a CXCR4 blockade can improve anti-PD-L1 therapy in
triple negative breast cancer(Zhou et al., 2021). These results
indicate that targeting hypoxia-related risk genes may represent a
promising method of treating patients with lung cancer.

In this study, a multivariate Cox regression analysis of the
hypoxia-related risk signature, which could indicated that it could
act as an independent predictor of OS in LUAD. The predictive

prognostic value of hypoxia-related risk signatures is greatly
validated in TCGA and GEO database. However, the
signatures need to be validated in prospective studies. GSEA
revealed that hypoxia-related genes (LDHA, DCN, PGK1, PFKP,
FBP1, LOX, ENO3, and CXCR4) involved in various immune cell
infiltration in the TME. The CIBERSORT analysis also identified
distinct differences in the distribution of immune cells between
the high- and low-risk groups. The correlation analysis also
verified that the expression of immune check-point molecules,
including PD-L1, were associated with the hypoxia-related risk
score. Recent studies have identified that FOXO4 regulated the
glycolysis process of gastric cancer by disrupting the HIF-1α-
FOXO4-LDHA axis (Wang et al., 2021). Hypoxia-induced
circular RNA has_circRNA_403,658 promotes bladder cancer
cell growth through activation of LDHA (Wei et al., 2019).
Activation of PGK1 under hypoxic conditions promoted
glycolysis and increased stem cell-like properties and the
epithelial-mesenchymal transition in oral squamous cell
carcinoma cells (Zhang Y. et al., 2020). Hyperbaric oxygen
therapy repressed the warburg effect and epithelial-
mesenchymal transition in hypoxic NSCLC cells via the HIF-
1α/PFKP axis (Zhang et al., 2021). The study by Li et al. reported
that a GBE1 blockade promoted the secretion of CCL5 and
CXCL10 to recruit CD8+ T lymphocytes into the TME and
upregulate PD-L1 expression in LUAD cells via the IFN-I/
STING signaling pathway (Li et al., 2019). EML4-ALK
enhanced PD-L1 expression in LUAD via HIF1α and STAT3
(Koh et al., 2016). Thus, hypoxia-related risk genes may represent
a novel target for immunotherapy in LUAD by modulating cell
infiltration into the TME.

However, there were also several limitations associated with
this study. First, since all the data in this study were derived from
public databases and retrospective analyses, the hypoxia-related
risk signature must be further validated by multiple centers.
Second, TME cell infiltration had a distinct distribution
between the high- and low-risk groups; thus, the potential
function and mechanisms mediated by the hypoxia-related
risk genes must be further explored.

CONCLUSION

In summary, we performed a comprehensive genomic analysis of
hypoxia-related risk genes and established a hypoxia-related risk
signature that could stratify the risk and predict OS in patients
with LUAD by modulating TME cell infiltration. Thus, targeting
hypoxia-related risk genes may represent a promising method of
improving the immunotherapeutic efficiency of patients with
lung cancer.
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