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1Institute of Medical Informatics, University of Münster, Münster, Germany, 2Department of

Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany,
3Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany

Background: Intensive care unit (ICU) readmissions are associated with

mortality and poor outcomes. To improve discharge decisions, machine

learning (ML) could help to identify patients at risk of ICU readmission.

However, as many models are black boxes, dangerous properties may remain

unnoticed. Widely used post hoc explanation methods also have inherent

limitations. Few studies are evaluating inherently interpretable ML models for

health care and involve clinicians in inspecting the trained model.

Methods: An inherently interpretable model for the prediction of 3 day ICU

readmissionwas developed.We used explainable boostingmachines that learn

modular risk functions and which have already been shown to be suitable

for the health care domain. We created a retrospective cohort of 15,589 ICU

stays and 169 variables collected between 2006 and 2019 from the University

Hospital Münster. A team of physicians inspected the model, checked the

plausibility of each risk function, and removed problematic ones. We collected

qualitative feedback during this process and analyzed the reasons for removing

risk functions. The performance of the final explainable boosting machine was

comparedwith a validated clinical score and three commonly usedMLmodels.

External validationwas performedon thewidely usedMedical InformationMart

for Intensive Care version IV database.

Results: The developed explainable boosting machine used 67 features and

showed an area under the precision-recall curve of 0.119 ± 0.020 and an area

under the receiver operating characteristic curve of 0.680± 0.025. It performed

on par with state-of-the-art gradient boosting machines (0.123± 0.016, 0.665

± 0.036) and outperformed the Simplified Acute Physiology Score II (0.084 ±

0.025, 0.607 ± 0.019), logistic regression (0.092 ± 0.026, 0.587 ± 0.016), and

recurrent neural networks (0.095 ± 0.008, 0.594 ± 0.027). External validation

confirmed that explainable boosting machines (0.221 ± 0.023, 0.760 ± 0.010)

performed similarly to gradient boosting machines (0.232 ± 0.029, 0.772 ±

0.018). Evaluation of the model inspection showed that explainable boosting

machines can be useful to detect and remove problematic risk functions.
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Conclusions: We developed an inherently interpretable ML model for 3 day

ICU readmission prediction that reached the state-of-the-art performance of

black box models. Our results suggest that for low- to medium-dimensional

datasets that are common in health care, it is feasible to develop ML models

that allow a high level of human control without sacrificing performance.

KEYWORDS

intensive care unit, readmission, artificial intelligence, machine learning, explainable

AI, interpretable machine learning, doctor-in-the-loop, human evaluation

Introduction

Discharge decisions in an intensive care unit (ICU) are

complex and require consideration of several aspects (1).

Discharging a patient too early can lead to the deterioration

of the patient’s health status that requires subsequent ICU

readmission. This is associated with mortality and poor

outcomes such as an increased length of ICU stay (2–4).

A study conducted in 105 ICUs in the United States in

2013 found a median ICU readmission rate of 5.9% (5).

Identified risk factors include admission origin, comorbidities,

physiological abnormalities, and age (4, 6, 7). However,

incorporating all available information appropriately for

interpretation of an individual patient case can be challenging

for clinicians (8).

Machine learning (ML) can automatically detect patterns

in large quantities of data and has already shown the

potential to transform health care (9). However, many ML

models are considered black boxes, since they can be too

complex for humans to understand (10). Studies have found

that ML models contained an unnoticed racial bias (11)

or relied on dangerous correlations (12), which can cause

distrust among stakeholders, preventing their adoption (13).

Interpretable ML could alleviate these issues by providing

human-understandable explanations, enabling users to ensure

properties such as fairness or robustness (14). Many studies

have used so-called post hoc explanation methods such as

local interpretable model-agnostic explanations (15) or Shapley

additive explanations (16), which provide an explanation

for a single prediction (17–19). However, post hoc methods

have several shortcomings with respect to robustness and

adversarial attacks (20–22) limiting their usefulness in health

care settings (23). Hence, in this work, we used inherently

interpretable or transparent models (10, 24) that allow humans

to inspect and understand the entire model before using it

for predictions.

A research gap exists owing to the lack of studies

about transparent ML models for health care that include

human evaluations. A recent review on explainable artificial

intelligence using electronic health records showed that

only nine out of 42 studies used inherently interpretable

models (25). Applications included mortality prediction, disease

classification, risk stratification, and biomedical knowledge

discovery. However, only three studies reported human expert

confirmation of their results, which is considered essential for

a meaningful evaluation of interpretable ML (14). For ICU

readmission prediction, we identified two papers (26, 27) that

explicitly developed interpretable models based on rule sets and

logistic regression (LR). However, no human validation of the

results was performed.

In this study, we aimed to develop an inherently

interpretable explainable boosting machine (EBM) model

for the prediction of 3 day ICU readmission. We involved

clinicians in the development process to inspect and verify the

entire model. The validation process was evaluated to determine

its effect and reveal possible issues. Second, the resulting EBM

model was compared with different baseline and state-of-the-art

black box ML models to assess the effect of transparency

on performance.

Materials and methods

Study setting and preregistration

This study was approved by the ethics review board of

the medical chamberWestfalen-Lippe (reference number: 2020-

526-f-S). We provided the TRIPOD (Transparent Reporting

of a Multivariable Prediction Model for Individual Prognosis

or Diagnosis) checklist (28) in Supplementary material 1. This

work was preregistered online (29); however, it had two

deviations: a readmission interval of 3 days instead of 7 days

was considered to exclude fewer patients with insufficient

follow-ups. Also, we only performed external validation for the

final performance results, which we considered most relevant.

An overview of all steps conducted for this study can be

found in Figure 1. All code for preprocessing the data, training

the models, and inspecting the final EBM model is publicly

available (30, 31).
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FIGURE 1

Flowchart of the study. (A) We created a local cohort for the development of machine learning (ML) models. Information on intensive care unit

(ICU) transfers was extracted from the hospital information system (HIS), and ICU data was extracted from the patient data management system

(PDMS). Extensive preprocessing was applied to clean the data. We generated labels for 3 day ICU readmission and descriptive statistics as

(Continued)
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FIGURE 1 (Continued)

features. (B) Four ML models were developed for comparison. For LR, we also performed feature selection. The RNN directly uses the time

series data. (C) The development of the EBM model involved four steps [see 1–4 in (C)]. We conducted parameter tuning for EBM (and our other

models) and performed greedy risk function selection based on the importance determined on the temporal splits. In step 3, we inspected the

model with a team of clinicians to identify and remove problematic risk functions. The remaining risk functions were used for the predictions.

(D) We evaluated all models for their area under the precision-recall curve (PR-AUC) and area under the receiver operating characteristic curve

(ROC-AUC) on the hold-out split. (E) External validation for the EBM and GBM models was performed on the Medical Information Mart for

Intensive Care (MIMIC) version IV. (D,E) Error bars were determined with the standard deviation on five temporal splits. EBM, explainable boosting

machine; SAPS II, Simplified Acute Physiology Score II; LR, logistic regression; GBM, gradient boosting machine; RNN, recurrent neural network.

FIGURE 2

Flowchart of the cohort selection for the University Hospital Münster (UKM) cohort. Transfers to ICU and IMC wards of the UKM between 2006

and 2019 served as initial data. We included four ICUs managed by the ANIT-UKM department. Transfers had to be merged using a manual

procedure to obtain consecutive ICU stays. Patients who died in the ICU and those who were discharged to an external ICU or IMC were

excluded. We required an observation period of at least 3 days to ensure readmission to an ICU in the UKM. Lastly, implausible cases were

removed.

Cohort

We included all ICU patients managed by the Department

of Anesthesiology, Intensive Care and Pain Medicine at

the University Hospital Münster (ANIT-UKM) who were

discharged to standard care and had a follow-up period of at

least 3 days (see Figure 2). Initially, all ICU and intermediate

care (IMC) transfers of adult patients between 2006 and 2019

were retrieved from the hospital information system (HIS;

ORBIS, Dedalus Healthcare Group; n = 199,764). First, 283

entries were removed because of ambiguous discharge dates,

overlapping hospital stays, or overlapping transfers that could

not be delineated. Next, transfers not managed by the ANIT-

UKM (n = 101,243) and IMC transfers (n = 39,165) were

excluded. In step 4, we merged consecutive transfers (n =

26,246) into a single ICU stay. Some entries (n= 147) contained

artifacts with short intervals between two transfers, and we

designed a stepwise procedure to decide whether a discharge

occurred. Next, we excluded ICU stays that ended with the

death of the patient (n = 2,327) or a discharge to an external
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ICU or IMC unit (n = 10,688). We used the same procedure

as in step 4 to identify artifacts (n = 67) and to distinguish

consecutive transfers and readmissions to an external ICU. We

then excluded all ICU stays without a 3 day follow-up period at

the UKM to ensure that all patients with worsening conditions

who were included were transferred to an observed ICU (n =

3,975). This also excluded patients who were transferred to an

external facility or home, which introduced a selection bias.

However, we reckoned that ensuring a complete observation

interval outweighed this effect. Lastly, we removed implausible

cases with no age entry (n = 63) or that had only very few

heart frequency recordings (n = 200); thus, 15,589 ICU stays

were included.

ICU patients who were readmitted to any ICU (n = 822)

or IMC unit (n = 31) or died within 3 days (n = 38) were

labeled as true (Supplementary material 2). Patient deaths were

also labeled to obtain a consistent outcome. Patients who were

discharged to standard care and underwent a planned procedure

with a subsequent re-admission to an ICU or IMC unit

incorrectly received a positive label. However, we considered this

effect to be small. To verify our cohort selection and labeling

procedure, we sampled 20 positive stays stratified across wards

and verified them using additional clinical information.

Table 1 summarizes the key characteristics of the resulting

UKM cohort. The ICU patients of the included stays had a mean

age of 63.33 ± 14.73 years, and more than two-thirds of them

were male (n= 10,670). ICU patients with 3 day readmission or

who died after discharge showed several differences: the patients

were 3 years older on average, the proportion of male patients

further increased from 68.3 to 70.8%, and the mean length of

the previous ICU stay was approximately 13.5 hours longer.

Supplementary material 2 contains an overview of the included

ICUs.

Variables and features

We included data that was routinely collected in the ICU

for our analysis. For this purpose, 6,496 item definitions with

651,258,647 time-stamped recordings were extracted from the

patient data management system (PDMS; Quantitative Sentinel,

GE Healthcare) of the ANIT-UKM (see the flow chart in

Supplementary material 2). We excluded all variables that were

not collected during the study period (n = 1,322), derived

variables computed using formulas in the PDMS (n = 1,029),

and clinical notes because of the highly heterogeneous data

quality (n = 777). We also excluded clinically irrelevant

variables (n = 1,979) such as device-specific or billing

information. The remaining 1,362 variables were processed

in consultation with a senior physician who had extensive

experience with the PDMS. For 802 non-medication variables,

we determined the coverage across the study period and

generated descriptive statistics to exclude irrelevant variables (n

TABLE 1 Overview of the UKM cohort.

Characteristic All ICU stays No 3 day

readmission or

death after

ICU discharge

3 day

readmissions

or death after

ICU discharge

Number of ICU

stays, n (%)

15,589 (100.0) 14,698 (94.3) 891 (5.7)

Number of patients,

n (%)

14,188 (100.0) 13,349 (94.1) 839 (5.9)

Age, mean± SD,

years

63.33± 14.73 63.16± 14.77 66.08± 13.85

Female sex, n (%) 4,919 (100.0) 4,659 (94.7) 260 (5.3)

Male sex, n (%) 10,670 (100.0) 10,039 (94.1) 631 (5.9)

Length of ICU stay,

mean± SD, days

3.70± 8.08 3.67± 8.11 4.23±7.53

ICU at discharge ICU 1 (n= 4,063) ICU 1 (n= 3,820) ICU 1 (n= 243)

ICU 2 (n= 6,402) ICU 2 (n= 6,035) ICU 2 (n= 367)

ICU 3 (n= 1,034) ICU 3 (n= 960) ICU 3 (n= 74)

ICU 4 (n= 4,090) ICU 4 (n= 3,883) ICU 4 (n= 207)

The key characteristics of all included ICU stays and the ICU stays divided by their

labels. This information is based on ICU stays, so a single patient can be considered more

than once.

= 522). Of the resulting 280 variables, 70 were included directly,

and 210 were further processed and merged into 50 variables.

For medications, we assigned World Health Organization

Anatomical Therapeutic Chemical (ATC) codes to all entries.

We defined 44 clinically relevant medication categories within

the ATC hierarchy and merged the respective variables. All

medication variables that were not assigned to any category

were excluded (n = 187). In addition, we manually determined

five medication categories as additional variables for therapeutic

and prophylactic antithrombotic agents and equivalence dosages

of cardiac stimulants, norepinephrine and dopamine, and

glucocorticoids, which we considered clinically relevant. Hence,

we included 120 non-medication and 49 medication variables

(Supplementary material 2). Further data cleaning methods are

described in Supplementary material 2.

We assigned variables to nine different classes according

to their data and generated respective features for each class

(see Supplementary material 2). This was particularly important

for time series data since EBM models cannot handle it. We

featurized time series data via median, interquartile range

(IQR), minimum, maximum, and linear trend for different time

windows. We defined three time horizons (high, medium, and

low) based on the median sampling interval of a variable that

used different time windows before ICU discharge (high: 4, 12,

and 24 hours; medium: 12, 24 hours, and 3 days; low: 1, 3,

and 7 days). Hence, we generated 15 features for each time

series variable. Patient flows, medications, and interventions

were always considered as low time horizon. For patient flows,
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we extrapolated the daily flow. For medications, we used a

binary indicator and the number of administered drugs. For

interventions, we also used a binary indicator and the interval

since it was last performed. For static data, we used the last

value from the most appropriate time interval (patient history,

hospital stay, and ICU stay). Four additional features were

created manually, which results in a total of 1,423 features. A

list of all variables, feature classes, and their respective features is

given in Supplementary material 2.

Explainable boosting machines and
baseline models

EBMs belong to the class of generalized additivemodels (32).

A generalized additive model (33) models a label ŷ by a bias term

β0 and a sum of features transformed by shape functions fi(xi).

The label ŷ can optionally be transformed by a link function g

(see equation 1). EBMs add additional shape functions for the

interactions of two variables fi,j
(

xi, xj
)

(34) and use the logit

link function for dichotomous classifications analogous to LR

(see equation 2, note that the logit function was moved to the

right side).

g
(

ŷ
)

= β0 +
∑

i

fi(xi) (1)

ŷ = logit−1



β0 +
∑

i

fi(xi)+
∑

i 6=j

fi,j
(

xi, xj
)



 (2)

In this study, the shape functions fi(xi) and fi,j
(

xi, xj
)

of

EBMs are also called one- (1D) and two-dimensional (2D)

risk functions, because each of them models the log-odds of

being readmitted to the ICU within 3 days. Different methods

can be used to estimate the risk functions (33). EBMs use

boosted decision trees that allow versatile function shapes that

have shown optimal performance across several tasks (35). By

visualizing the learned risk functions, EBMs can be inspected

and owing to their modularity, inappropriate functions can be

removed. Also, for a given input, contributions of each risk

function can be used as an explanation of a prediction. A study

that applied them in two health care tasks highlighted their

potential to identify and remove spurious correlations (12).

Moreover, an evaluation revealed that physicians can grasp the

concept of EBMs and feel confident working with them (36).

In this work, we compared to the validated Simplified Acute

Physiology Score (SAPS) II, LR with feature selection, gradient

boosting machines (GBMs), and recurrent neural networks

(RNNs) with long short-term memory units for comparison

(Supplementary material 2). We selected 130 features for the LR

model, and we conjectured that inspecting this model requires

a similar effort as inspecting our EBM model with at most 100

risk functions. Hence, the LR model serves as an interpretable

baseline of the same complexity. GBMs and RNNs are both

considered black box models owing to their complexity.

Development of the EBM model with a
limited number of risk functions

For our experiments, we used the area under the precision-

recall curve (PR-AUC) as the primary performance indicator

due to the label imbalance. We also reported the area under

the receiver operating characteristic curve (ROC-AUC) since

it is commonly reported in the medical literature. We selected

the two most recent years for validation and hold-out data

to simulate a real-world deployment (17). Five temporal

splits were used for risk function selection and estimation

of the standard deviation as pseudo-confidence intervals

(Supplementary material 2).

To limit the model size and allow inspection in a reasonable

amount of time, we performed automatic risk function selection

of at most 80 1D and 20 2D functions based on their

importance. To obtain good parameters, we first performed

tuning based on the PR-AUC on the train and validation

data of the full split (Supplementary material 2). We did

this in three steps: we performed parameter tuning on all

features, we estimated the 80 most important 1D risk functions

approximately, and performed another parameter tuning for

these 80 risk functions. Next, we used these parameters for

risk function selection in a greedy stepwise forward procedure

based on their mean importance on the five temporal splits

(Supplementary material 2). We used the temporal splits to get

more robust estimates and to prevent overfitting on the full

split. A random 85% training and 15% validation split were

used for each temporal split because a subset of variables was

only collected for some years, which led to a biased weight

estimate when using training and validation data based on

years. Importance was calculated as the mean absolute log-odds

score of a risk function. Finally, we chose the risk function

selection with the highest PR-AUC performance on the full

validation split. We repeated the same procedure for 2D risk

functions on the features of the included 1D risk functions. This

is coherent with the EBMs training algorithm, which first trains

1D functions and then adds 2D functions for the residuals.

Inspection of the EBM model by a
multidisciplinary team

The goal of the EBM model inspection was to identify the

risk functions that should not remain in the final prediction

model. The model was inspected by a team of three individuals:

a senior physician working at the included ICUs, a senior
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physician responsible for the data infrastructure at the ANIT-

UKM, and the developer of the EBM model with a machine

learning and health care background. They discussed and

determined potential problems of the risk functions a priori

to agree on a common set of exclusion criteria. For each

risk function, they discussed its main properties and agreed

on its content, then they determined if any of the identified

problems applied, and then they decided if the problems justified

the exclusion of a risk function. We recorded the identified

problems for all risk functions (Supplementary material 3) and

collected qualitative feedback during the EBMmodel inspection

(Supplementary material 2).

External validation on the medical
information mart for intensive care
version IV database

We used the Medical Information Mart for Intensive Care

(MIMIC) version IV database for external validation (37, 38).

It contains 76,540 ICU stays of 53,150 patients admitted to

the Beth Israel Deaconess Medical Center between 2008 and

2019. After applying a similar cohort selection and labeling

procedures, we included 19,108 ICU stays, of which 1,626

(8.5%) were labeled positively (Supplementary material 2). For

performance comparison, we resampled negative instances to

obtain the same positive rate as in the UKM cohort. We

extracted 41 variables responsible for the 67 features used in

the final EBM model from MIMIC-IV. Only a single variable

could not be created.We also performed external validation with

the GBM model, as it performed best in the model comparison.

However, we only used the variables of the EBM model because

extracting all variables from the MIMIC-IV database was not

feasible. Both models were trained again on theMIMIC-IV data.

Results

Development of the EBM model with a
limited number of risk functions

We first performed parameter tuning for an EBM with all

features (Supplementary material 2). The best EBM with 1,423

1D risk functions achieved a PR-AUC of 0.151 ± 0.028 and

a ROC-AUC of 0.652 ± 0.034 on the hold-out split. Next, we

performed risk function selection based on the five temporal

splits. Supplementary material 2 contains the performance for

different numbers of risk functions and bin sizes. The best EBM

model had a bin size of 200 and contained 80 1D risk functions.

It achieved a PR-AUC of 0.130 ± 0.021 and a ROC-AUC of

0.681 ± 0.026. We repeated the same procedure for the 2D

risk functions. We added five 2D functions with a bin size of

four. The resulting model showed a decreased performance,

with a PR-AUC of 0.113 ± 0.018 and ROC-AUC of 0.646 ±

0.01. The 85 most important risk functions of the resulting

EBM model and their respective variables, features, and relative

importance (variance) are listed in Table 2. The five 2D risk

functions yielded the highest importance, followed by the 1D

functions for endotracheal tube, age, antithrombotic agents in

a prophylactic dosage, partial thromboplastin time, and O2

saturation. The graphical representations of all risk functions are

given in Supplementary material 3.

Inspection of the EBM model by a
multidisciplinary team

The resulting EBM model was inspected by a

multidisciplinary team including two clinicians to identify

and remove problematic risk functions. A priori to the model

inspection, they identified four potential problems that they

assigned to risk functions during the inspection:

• It encodes health care disparities that should not be

reproduced (n= 0)

• It contains undesirable artifacts from the data generation

process (n= 8)

• It contradicts medical knowledge (n= 13)

• It is not interpretable so that its effect cannot be clearly

determined (n= 17).

The model inspection took 4 hours, that is, approximately 3

minutes per function. Not all risk functions with a problem were

excluded, so we assigned the risk functions into three classes:

included without problems (n= 52), included with problems (n

= 15), and excluded with problems (n = 18). Most functions

were excluded owing to the lack of interpretability (n = 10),

followed by undesirable artifacts (n = 6) and contradictions

of medical knowledge (n = 6). More than one problem could

be assigned to each risk function. Five functions for partial

thromboplastin time (PTT) were excluded because of artifacts.

Using the feature histograms, the team recognized a change

in the PTT measurement procedure since 2019, invalidating

the risk functions learned on the training data. Also, all 2D

risk functions were labeled as not interpretable and were

excluded from the model. Figure 3 shows two included 1D

risk functions and three 1D and one 2D functions that were

excluded because of different problems. After model inspection,

the EBM contained 67 1D risk functions. It achieved a PR-AUC

of 0.119 ± 0.020 and a ROC-AUC of 0.680 ± 0.025 on the

hold-out data. Hence, inspection decreased the PR-AUC and

increased the ROC-AUC compared with a model trained on all

1D risk functions.

We collected qualitative feedback from the team during

model inspection (Supplementary material 2). A major problem
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TABLE 2 Overview of the variables and features of the risk functions included in the final EBMmodel ordered by importance.

No. Variable(s) Feature(s) Relative

importance %

Excluded

during model

inspection

1 Age [years], Base Excess (BE) [mmol/L] Static per patient, IQR 3 days 4.20 X

2 Drugs for constipation, Leucocytes [thousand/µL] Unique 1 day, median 1 day 3.52 X

3 Blood volume out [mL], Procalcitonin [ng/mL] Extrapolate 7 days, maximum 7 days 2.57 X

4 Hematocrit [%], Blood volume out [mL] Maximum 3 days, extrapolate 3 days 2.19 X

5 Leucocytes [thousand/µL], Blood volume out [mL] Median 1 day, extrapolate 3 days 1.87 X

6 Endotracheal tube (tubus) exists Days since last application 1.71

7 Age [years] Static per patient 1.70

8 Antithrombotic agents prophylactic dosage Days since last application 1.65

9 Partial thromboplastin time (PTT) [s] Maximum 1 day 1.63 X

10 O2 saturation [%] Minimum 12 hours 1.58

11 Blood volume out [mL] Extrapolate 7 days 1.52

12 Gamma-GT [U/L] Median 7 days 1.46

13 Chloride [mmol/L] Trend per day 3 days 1.40

14 Heart rate [bpm] Minimum 4 hours 1.39

15 Partial thromboplastin time (PTT) [s] Maximum 3 days 1.37 X

16 Chloride [mmol/L] Minimum 1 day 1.37

17 Hemoglobin [mmol/L] Maximum 3 days 1.30

18 Length of stay before ICU [days] Manually added 1.28

19 Hematocrit [%] Maximum 3 days 1.26

20 Calcium [mmol/L] Trend per day 3 days 1.26 X

21 Estimated glomerular filtration rate (eGFR) ml/min/1.73 m2 Trend per day 7 days 1.24

22 Richmond agitation sedation (RAS) scale Maximum 3 days 1.24

23 Urine volume out [mL] Extrapolate 1 day 1.24

24 Thrombocytes [thousand/µL] Trend per day 7 days 1.24

25 Blood volume out [mL] Extrapolate 3 days 1.23

26 paO2/FiO2 [mmHg/FiO2] Median 1 day 1.21

27 pH Trend per day 3 days 1.21

28 Phosphate [mg/dL] Minimum 7 days 1.20

29 pH Median 1 day 1.20

30 Body core temperature [◦C] Minimum 1 day 1.18 X

31 Creatine kinase (CK) [U/L] Minimum 7 days 1.15

32 Richmond agitation sedation (RAS) scale Trend per day 12 hours 1.13 X

33 Potassium [mmol/L] Median 1 day 1.13

34 Glasgow coma scale (GCS) score Minimum 3 days 1.11

35 Body core temperature [◦C] Median 1 day 1.10

36 Base excess (BE) [mmol/L] IQR 3 days 1.10 X

37 Blood urea nitrogen [mg/dL] Minimum 3 days 1.10

38 paO2/FiO2 [mmHg/FiO2] Trend per day 3 days 1.09

39 Drugs for constipation Unique 1 day 1.09

40 Urine volume out [mL] Extrapolate 7 days 1.09

41 Partial thromboplastin time (PTT) [s] Minimum 7 days 1.07 X

42 Diastolic blood pressure [mmHg] Median 1 day 1.06

43 Partial pressure of oxygen (pO2) [mmHg] Minimum 12 hours 1.06

44 Creatine kinase-MB (CK-MB) [U/L] Maximum 3 days 1.05

45 Richmond agitation sedation (RAS) scale Maximum 1 day 1.05

46 Partial thromboplastin time (PTT) [s] Minimum 3 days 1.05 X

47 Systolic blood pressure [mmHg] IQR 12 hours 1.05

48 paO2/FiO2 [mmHg/FiO2] Median 3 days 1.04

49 Creatine kinase (CK) [U/L] Median 7 days 1.04 X

(Continued)
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TABLE 2 Continued

No. Variable(s) Feature(s) Relative

importance %

Excluded

during model

inspection

50 Lactate [mmol/L] Maximum 3 days 1.04

51 Creatine kinase-MB (CK-MB) [U/L] Median 3 days 1.04

52 Lactate [mmol/L] Minimum hours 1.00

53 Phosphate [mg/dL] Maximum 1 day 1.00

54 Partial thromboplastin time (PTT) [s] Maximum 7 days 0.98 X

55 Partial pressure of carbon dioxide (PCO2) [mmHg] Median 1 day 0.98

56 Base excess (BE) [mmol/L] Trend per day 3 days 0.97

57 Glucose [mg/dL] Median 3 days 0.97

58 Base excess (BE) [mmol/L] Minimum hours 0.96

59 Methemoglobinemia (MetHb) [%] Minimum hours 0.96

60 Is on automatic ventilation Days since last application 0.95

61 Body core temperature [◦C] Minimum 4 hours 0.95 X

62 Partial pressure of carbon dioxide (PCO2) [mmHg] IQR 1 day 0.95

63 Sodium [mmol/L] Median 3 days 0.93

64 Leucocytes [thousand/µL] Median 1 day 0.92

65 Sodium [mmol/L] Trend per day 3 days 0.92

66 Procalcitonin [ng/mL] Maximum 7 days 0.91

67 Base excess (BE) [mmol/L] Median hours 0.91

68 Mean blood pressure [mmHg] Median 4 hours 0.87

69 Leucocytes [thousand/µL] Trend per day 3 days 0.84 X

70 pH Median 3 days 0.84

71 Bilirubin total [mg/dL] Maximum 7 days 0.84

72 Partial pressure of oxygen (pO2) [mmHg] IQR hours 0.84

73 Base excess (BE) [mmol/L] IQR 1 day 0.83

74 Body core temperature [◦C] Trend per day 1 day 0.83

75 C-reactive protein [mg/dL] Maximum 3 days 0.83

76 Heart rate [bpm] Minimum 1 day 0.82

77 Hematocrit [%] Median hours 0.80

78 Partial pressure of carbon dioxide (PCO2) [mmHg] Minimum 3 days 0.76

79 Mean blood pressure [mmHg] Median hours 0.72

80 Calcium [mmol/L] Maximum 1 day 0.69

81 Estimated respiratory rate Median 1 day 0.68

82 pH IQR 1 day 0.67

83 Leucocytes [thousand/µL] IQR 3 days 0.63

84 Heart rate [bpm] IQR 4 hours 0.60

85 Reduced hemoglobin (RHb) Median hours 0.60 X

These risk functions were selected from a total of 1,423 based on their importance on the five-temporal splits. Risk functions 1–5 are two-dimensional, and the remaining functions are

one-dimensional. The relative importance was determined on the final training split. The last column indicates whether a risk function was excluded during the model inspection by a

team of physicians. Visualizations of all risk functions and the detailed reasons for exclusion are given in the supplement.

was drawing the line for risk function exclusion. Most functions

partially fulfilled at least one problem. The team agreed to

exclude a risk function when a problem was clearly present

and would have a considerable impact on patients; that is,

value ranges with many patients affected. Still, many functions

could be assigned to either category (comments 1–3). The team

stated that it was difficult to consider the cohort reduced to

a single independent risk function (comments 4–7). This is

against clinical practice, where several patient measurements

are integrated. Also, only examining patient features at the

time of discharge was hard, since usually the whole patient

history is factored in (comment 8). In addition, the team

members tended to construct explanations for risk functions

without clear evidence (comment 9). Moreover, values outside

the usual value ranges and IQR and trend features were more

difficult to understand (comments 10 and 11). In particular,

the 2D functions posed a problem because the combinations

of features were uncommon in clinical practice. Even though
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it was possible to grasp the content of the risk function, it was

difficult to infer its clinical implications that led to exclusion

(comment 12). There was a tendency to rely more on the model

to derive useful relationships when a risk function was less

interpretable (comment 13). In addition to that, we collected

general properties that hindered or supported interpretability,

which confirmed previous findings (36).

Performance of EBM compared to
baseline models

After the risk function selection and model inspection, the

EBM model contained 67 1D risk functions. It achieved a PR-

AUC of 0.119 ± 0.020 and a ROC-AUC of 0.680 ± 0.025

(Figure 4). For recall values of 0.4, 0.5, 0.6, and 0.8 the precision

values were 0.130 ± 0.032, 0.111 ± 0.019, 0.105 ± 0.013, and

0.082 ± 0.005. Utilizing SAPS II in the last 24 hours showed an

inferior performance of 0.084 ± 0.025 (PR-AUC) and 0.607 ±

0.019 (ROC-AUC). Also, LR with 130 selected features and the

RNN achieved a lower performance, with a PR-AUC of 0.092 ±

0.026 and 0.095 ± 0.008 and a ROC-AUC of 0.587 ± 0.016 and

0.594 ± 0.027. Both were placed between the EBM and SAPS II

for PR-AUC and below SAPS II for ROC-AUC. The latter could

be due to the optimization of PR-AUC during parameter tuning

and variable selection. The GBM trained on all 1,423 features

achieved a PR-AUC of 0.123 ± 0.016 and a ROC-AUC of 0.665

± 0.036. Hence, it performed similarly to the developed EBM

model with 67 1D risk functions.

External validation on the medical
information mart for intensive care
version IV database

The final EBM model for the UKM cohort used 67

features generated by 42 variables. We extracted 41 of those

variables from MIMIC-IV. Variables were collected differently

for theMIMIC cohort (Supplementary material 2). The EBM for

external validation contained 66 1D risk functions. For the GBM

model, we generated all the features of the 41 variables, resulting

in 515 features. The EBM and GBM performed similarly on

MIMIC-IV, with a PR-AUC of 0.221 ± 0.023 and 0.232 ± 0.029

and a ROC-AUC of 0.760± 0.010 and 0.772± 0.018 (Figure 4).

This performance was much higher than that for the UKM

cohort, which we mainly attributed to the better data quality

of MIMIC-IV.

Discussion

This study showed that for the prediction of 3 day ICU

readmission, a transparent EBM model containing only 67 risk

functions performed on par with state-of-the-art GBMs trained

on 1,423 features and outperformed RNNs trained on time series

data. Both the GBMs and RNNs can be considered black box

models owing to their complexity. Hence, we found additional

evidence that in a health care setting with structured data,

a simple and inherently interpretable model can be sufficient

for competitive prediction performance (10). The final model

achieved a PR-AUC of 0.119 ± 0.020 and a ROC-AUC of

0.680 ± 0.025. External validation on the MIMIC-IV database

showed improved EBM results of a PR-AUC of 0.221 ± 0.023

and a ROC-AUC of 0.760 ± 0.010 and confirmed that they

performed similarly to the GBMs. Our results are consistent with

those of previous studies, showing that EBMs outperformed LR

and were on par with random forests and boosting methods

(12, 34). However, in contrast to the existing work, adding 2D

risk functions lead to lower performance on the hold-out data.

Several risk functions of the final EBM model are consistent

with the main risk factors reported in the literature (4, 6, 7),

such as age, length of hospital stay before ICU admission,

disease severity (e.g., based on the GCS score), physiological

state (e.g., heart rate), and need for organ support (e.g., presence

of an endotracheal tube). In our study, many concepts had

much finer granularity; for example, several variables captured

the physiological state of the patient. We also note that some

known risk factors were available features but did not end up

in the final model. Among those are sex, admission origin,

and use of vasopressors. However, some information might be

mediated through other variables. For example, blood loss is

usually a clear indicator of a past surgery and might contain

additional information, making it more relevant than a simple

indicator for surgery. The overall predictive performance for 3

day ICU readmissions was relatively low. This is probably due

to the limitations regarding data quality, which are supported

by the higher performance on MIMIC-IV. MIMIC-IV was

created in several iterations and integrated the feedback of many

researchers, which led to higher data quality. Moreover, the

prediction of ICU readmission prediction is a difficult task, and

only a few readmissions are preventable (39). Still, we think

that an EBM model for the prediction of 3 day ICU trained on

a local cohort can offer useful insights for decision-making in

the ICU.

Several studies on ICU readmission prediction have been

conducted (26, 40–52), and we identified two systematic reviews

(53, 54). Most of them also used MIMIC (38), not the most

recent version IV, for model development or validation. The

readmission intervals ranged from 48 hours (46, 47, 52) to

72 hours (26, 50, 51), 7 days (48), 30 days (40, 44, 49),

and anytime until hospital discharge (41–43). A single study

considers multiple intervals of 24 hours, 72 hours, 7 days,

30 days, and anytime (45). We chose an ICU readmission

interval of 3 days because clinicians at the ANIT-UKMexpressed

that it would include relevant medical conditions that they

could act upon before discharging a patient and, hence, would
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FIGURE 3

Two most important risk functions and four excluded risk functions of the EBM model. (A,B) Two most important risk functions that are included

in the EBM model. (A) Contains the number of days since the last existence of an endotracheal tube. Patients that have an endotracheal tube

immediately before discharge have a highly increased risk. Lower risk is assigned to values between 0.4 and 4.1 days. Also, patients with no

endotracheal tube (unknown) receive an increased risk. (B) The risk function for age shows an increased risk for higher age values. There is a

peak at 60 years with no obvious explanation. (C) A maximum PTT value over the last 3 days before discharge between 82.5 and 115.5 s gets a

lower risk for 3 day ICU readmission. It was identified that this is an artifact of the previous procedure to determine the PTT for cardiac surgery

patients. This will not generalize for future data. (D) For a median hematocrit between 24.875 and 28.525%, the model determined an elevated

risk. For slightly lower and higher values, the risk is negative. This is against common medical knowledge, where a decreasing hematocrit value

should be associated with increased risk. (E) The interquartile range (IQR) of the partial pressure of carbon dioxide (pCO2) over the last day

before discharge receives an increased risk for values between 0 and 0.863 and 2.513 and 3.313 mmHg. However, the interpretation of this

behavior and determining its clinical implications was impossible. (F) The 2D risk function for age and the IQR of the base excess (BE) over 3

days. Patients over 71.5 years have a high risk for a high IQR of the BE. Patients between 59.5 and 71.5 have only a slightly increased risk for low

IQR values, and younger patients have a decreased risk across all BE values. The team excluded it due to a lack of interpretability.
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FIGURE 4

Performance evaluation on the University Hospital Münster (UKM) cohort (A,B) and external validation on the Medical Information Mart for

Intensive Care version IV (MIMIC-IV) database (C,D). (A) The area under the precision-recall curve (PR-AUC) was considered the most relevant

performance indicator owing to the imbalanced label distribution. We optimized the PR-AUC during the parameter tuning and selection

procedures for all models. The di�erences between models are relatively small. The explainable boosting machines (EBMs) and gradient

boosting machines (GBMs) show the highest PR-AUC. (B) The area under the receiver operating characteristic curve (ROC-AUC) was

determined as an additional performance measure. Again, the EBM and GBM models performed best. (C,D) The same performance indicators

were determined on the MIMIC-IV database. Both models again showed similar results. The confidence intervals for all curves were determined

with the standard deviation on the five temporal splits.

be most useful in practice. Also, we considered it a good

trade-off between having sufficient follow-up and preventing

exclusion of patients due to loss of follow-up (see step 7

in Figure 2). Previous studies have tested many models, and

two (26, 27) mentioned the goal of developing interpretable

models, but no validation by humans was performed. All studies

reported ROC-AUC, which ranged from 0.64 (52) to 0.91 (42).

Unfortunately, comparing the performance with the existing

work is impossible for two reasons. First, we considered PR-

AUC due to the label imbalance of ICU readmissions and
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optimized it in our experiments. However, none of the existing

studies have reported this performance measure. One study

contained a precision-recall curve (47), but no area under the

curve. Second, we created a custom UKM cohort, and we

used MIMIC-IV for external validation. None of the identified

studies used these data. If the ROC-AUC is considered as a

performance measure, our results are in the lower spectrum of

the reported models. However, we did not optimize for it in

our experiments.

A main goal of this study was to involve clinicians in

the model development process to inspect the learned EBM

and remove problematic risk functions. This approach showed

mixed results. On the one hand, our collaboration confirmed

that clinicians can easily grasp the concept of EBMs (36),

making them a useful transparent model candidate for health

care applications (55). Like LR, which is well-known in the

medical domain, feature contributions are summed to a total

log-odds score. This modularity also allowed to focus on a single

risk function at a time. Confidence intervals and histograms

over patient densities further helped to assess the relevance

of function segments. For instance, it was possible to ignore

fluctuations of risk functions in regions with few patients. In

addition, our model development process enabled discussions

with clinicians and encouraged a critical review of the model.

Several aspects were raised for the first time, such as the problem

with PTT measurements. Hence, with EBMs, stakeholders can

be involved in the development process to establish trust, which

could ultimately lead to higher adoption rates (13). Moreover,

we identified and removed 18 risk functions due to the lack

of interpretability, undesirable data artifacts, and contradiction

of medical knowledge. This demonstrates the capability of

EBMs to enable the identification and removal of undesirable

components. This would have been impossible with a black

box ML model (10, 12). Lastly, model inspection led to a

performance increase on the hold-out data, which suggests

better generalization.

However, we also observed several shortcomings during the

model inspection. Of the 85 risk functions, 33 were labeled as

problematic, of which 17 were not interpretable. Reducing a

patient cohort to one or two features and considering a fixed

time interval before discharge are counter to typical clinical

practice, where many variables are usually integrated over a long

time horizon. Thus, it was often difficult to create an intuition

about the effect of certain risk functions. Also, for meaningful

interpretation of EBMs, it is necessary to understand the model

inputs (24, 55). In particular, interpretability was hindered by

variables and descriptive statistics that are less common in

clinical practice. One workaround would be to let clinicians

choose interpretable features a priori. In addition, the shapes

of risk functions sometimes showed a fluctuating behavior (36).

We already increased the bin size to prevent these artifacts,

but some still occurred in the final model. Another major issue

was drawing the line between the inclusion and exclusion of

risk functions. Most functions showed problematic behaviors.

Thus, we decided to exclude only functions with a problem that

affected a considerable part of the cohort. However, this decision

rule is vague, and we expect low interrater reliability. We think it

could be helpful to have a clear application scenario to determine

more specific rules for exclusion. Moreover, we observed that it

was more difficult to justify the exclusion of less interpretable

functions and that the team relied on the EBM algorithm to find

relevant associations in the data (56, 57).

This work has limitations. Even though the prediction of

ICU readmission is a relevant medical problem, it can be

difficult to turn predictions into actions when institutional

factors such as insufficient ICU beds must be considered.

No multicenter cohort was used for the development and

validation of our prediction model, so the external validity of

our results is low. Also, the data quality of the local cohort

was limited, and our experiments only focused on a single

interpretable model. External validation on the MIMIC-IV

database was only performed for two models, and no in-

depth analysis was performed for the improved performance.

Moreover, interpretability should be evaluated in the context

of its end task (14). Ideally, this could be increased trust

leading to higher adoption of the system or even improved

patient outcomes. We limited our analysis to prediction

performance, the identification of problematic risk functions,

and qualitative feedback. Moreover, no rigorous set of rules has

been established for model inspection, so the process would

likely exhibit low interrater reliability. The confidence intervals

of the performance were only estimated on five temporal splits,

and our EBM did not outperform the existing ML models by

a large margin. Lastly, automatic risk function selection for

EBMs might have removed important confounders, making it

impossible to detect them during the model inspection.

Conclusion

We demonstrated a procedure to develop a transparent

EBM model for the prediction of 3 day ICU readmission that

involved clinicians to inspect and verify the learned model. The

EBM performed on par with or outperformed state-of-the-art

black box ML models such as GBMs and RNNs. This suggests

that a simple inherently interpretable model might suffice for

clinical use in cases with low- to medium-dimensional data,

while allowing a high level of human control. Evaluation of the

model inspection revealed that an EBM model can facilitate

a critical review with clinicians and enables identification of

problematic components.
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