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The inflammatory milieu is the natural

habitat for a pathogenic infection, char-

acterised by activity of pro-inflammatory

signalling pathways and inflammatory

cytokines. Viral entry rapidly activates a

range of innate-immune signalling events

such as the activation of Pattern Recogni-

tion Receptors (PRRs) [1–5]. A virus must

therefore counteract intrinsic cellular and

innate-immune responses to successfully

complete the replication cycle. Frequently

this is accomplished by encoding viral

effector molecules that block these cellular

responses by working as either structural

or functional mimics of host target pro-

teins [6–11]. Nuclear DNA viruses are

dependent on the host transcriptional

machinery to express the first viral genes;

for example the immediate-early (IE)

control elements of DNA viruses are by

definition absolutely dependent on host

transcription factors (TF) [12]. Therefore,

these viruses are particularly hostage to

their host transcriptional environment

[13,14]. Here we propose that mimicry

of regulatory DNA sequences by viral

regulatory regions may also provide an

additional strategy to counteract at IE

times of infection the innate-immune

response. In this context, viral IE control

elements might functionally mimic innate-

immune enhancers, taking advantage of

the activated immune signalling TFs for

promoting viral IE gene expression.

In other words: ‘‘If you can’t beat

‘em. Join ‘em.’’

In exploring this possibility, we present

a synopsis of the promoter-regulatory

elements from seven extensively studied

mammalian viruses with a DNA stage, and

seven promoters representing prototypical

cellular innate-immune genes. These are

the SV-40 early enhancer, the E1A

enhancer of HAdV5, the long terminal

repeat (LTR) of HIV-1, the E6/7 long

control region (LCR) of both HPV-16 and

HPV-18, the major IE (MIE) enhancer of

HCMV, and the enhancer-1 (Eh-1) regu-

latory region of HBV for viral sequences,

and the enhancer regions of human

IFNB1, IFNG, TNF, IRF1, IL8, IL12B,

and IL1B for host sequences. First, we

consider similarities between the primary

sequence structures of the enhancers.

Second, we present arguments for conver-

gent evolution and structural flexibility

inherent to enhancer sequences. Third, we

discuss functional features and regulatory

hallmarks that may be used to define viral

enhancer mimicry of cellular immune

enhancers.

Do Viral and Cellular Enhancers
Display Any Primary Sequence
Similarity?

To investigate if there is any similarity

of primary sequences and therefore struc-

tural mimicry between the selected viral

and cellular enhancers, we used the

BLAST tool to compare the sequences

against each other (Table 1) and applied

an exhaustive pairwise multi-way align-

ment (CloneManager suite 7.0) to search

for similarities in this group of sequences

(Figure 1A). While multi-way alignment of

the various selected viral and cellular

promoter-regulatory regions (Figure 1A,

top panel) reveals a lack of extended

primary sequence homology, the pairwise

BLAST comparison showed that small

islands of sequence identity or high

similarity are present (Table 1). We

randomly compared some of these short

sequence motifs with the JASPAR CORE

(Vertebrae) database [15] and found that

all checked motifs have similarities with

consensus binding motifs for TFs (e.g.,

AP1, SP1, YY1, or RelA with relative

scores of .0.8). This finding raises the

question of whether there might be

functional similarity. We therefore consid-

er in the next section how convergent

evolution of viral enhancers may have

resulted in functional mimicry of the

transcription control elements of innate-

immune genes, providing a co-opting

strategy for immune evasion.

Could Viral Regulatory Regions
Evolve as Functional Mimics of
Innate-Immune Enhancers
without Extensive Sequence
Similarity?

There are two principal genetic mech-

anisms that could lead to viral mimicry of

host enhancers, horizontal transfer of

cellular sequences to viral genomes or

genetic drift of viral sequences. The first

possibility, acquisition of cellular sequenc-

es through horizontal sequence transfer,

could arise through illegitimate recombi-

nation with host DNA, for example by

retro-transposition of non-coding RNA

transcripts, resulting in the virus hijacking

host transcription control sequences. If this

were the general case, we would, however,

expect significant structural similarity,
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which we did not find in our analysis.

Alternatively, but not mutually exclusive

from horizontal transfer, viral enhancer

mimics could arise through neutral evolu-

tion and genetic drift by sequence dupli-

cation or accumulation of point mutations.

Duplicated sequence features are hall-

marks for many viral and cellular enhanc-

ers [16–24]. For instance, deletion or loss

of enhancer sequences in SV40 and JC

polyomavirus promotes restoration of en-

hancer function through duplication of

flanking sequences [25–28]. A third possi-

bility is the accumulation of point mutations

in enhancer sequences and subsequent

fixation [29]. It has recently been described

for a wide range of species that evolution of

host-cell transcriptional control can occur

in relatively short time spans and is mainly

driven by the rapid and flexible emergence

or loss of binding motifs rather than by

evolution of the TF proteins themselves

[30–36]. The described mechanisms of

rapid enhancer evolution argue that viral

enhancers could acquire functionality that

mimics innate-immune enhancers without

any extensive sequence homology, and this

is consistent with the comparison of cellular

and viral enhancers shown in Figure 1A.

This possibility is underscored by the fact

that promoter sequences seem to be poorly

conserved even among members within a

virus-family yet share many of the same

regulatory elements [37]. For example the

MIE enhancers of cytomegaloviruses show

low levels of primary sequence similarity

between the different species strains

(Figure 1A, lower panel). Despite these

differences, functionality of the enhancers is

conserved between hosts for different CMV

species strains, e.g., the human CMV

enhancer can functionally complement

deletion of the murine CMV enhancer

[38] and human CMV enhancer sequences

recapitulate in vivo biological sites of

infection in species from mice to zebra fish

[39–41].

What Features Would Classify a
Viral Enhancer as an Innate-
Immune Enhancer Mimic?

Since our work and that of others

discussed so far indicates that viral enhanc-

ers are functional rather than structural

mimics of host innate-immune enhancers,

we suggest four principal hallmarks of

functional enhancer mimicry. These are:

1) shared TF interactions independent of

sequence structure, 2) similar kinetics of

gene induction between cellular innate-

immune and viral IE genes, 3) positive

responsiveness to immune-stimulatory li-

gands, and 4) susceptibility to inhibition of
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Table 2. List of identified interactions for the selected viral and host enhancers.

TF Name Entrez Gene ID Protein Family TF Name Entrez Gene ID Protein Family

NFKB1 (p50) 4790 NFkB MYOF 26509 Ferlin

RelA (p65) 5970 NFkB HSF1 3297 HSF

RelC 5966 NFkB ELK1 2002 ETS

NFkB2 (p52) 4791 NFkB SRF 6722 SRF

C/EBP N/A (generic) C/EBP RAR 5914 Nuclear hormone receptor

CREB1 1385 bZIP RXR 6256 Nuclear hormone receptor

ATF1 466 AP ETS2 2114 ETS

ATF2 1386 AP GAP12 Unspecified Unspecified

AP1/Jun 3725 AP NRF (NKRF) 55922 N/A

FOS 2353 AP NF1 4763 Nuclear hormone receptor

SP1 6667 C2H2-zinc finger GRE/NR3C1 N/A (generic) Nuclear hormone receptor

SPI1 6688 ETS AP2 7020 AP

HMGI(Y) 3159 HMG AP3 Unspecified Unspecified

OCT 1 5451 OCT/POU USF1 7391 Helix-loop-helix leucine zipper

OCT 2 5452 OCT/POU TFE3 7030 MiT/TFE

IRF1 3659 IRF LEF1 51176 TCF/LEF

IRF2 3660 IRF ETS1 2113 ETS

IRF3 3661 IRF OTK18 7728 Krueppel C2H2-zinc finger

IRF7 3665 IRF E2F1 1869 EF

STAT1 6772 STAT BCL3 602 N/A

STAT2 6773 STAT SP3 6670 C2H2-zinc finger

STAT3 6774 STAT ERF 2077 ETS

STAT4 6775 STAT GFI1 2672 C2H2-zinc finger

NFATp/NFATc 4773/511224 NFAT CUX1 1523 N/A

NFIL6 1051 bZIP E1A 6870514 Adenoviridae E1A protein

YY1 7528 YY E4F1 1877 EF

TBX21 30009 T-BOX TAF1 6872 TAF1

EOMES 8320 T-BOX HBS1L 10767 N/A

PPAR N/A (generic) Nuclear hormone
receptor

HNF1 6927 Hepatic nuclear factor

PPARG/PROX1 5468/5629 Nuclear hormone
receptor

HNF3 2305 Hepatic nuclear factor

SMAD3 4088 SMAD HNF4 3172 Hepatic nuclear factor

RUNX3 864 N/A RFX1 5989 RFX

PRDM1/PRDI BF1 639 C2H2-zinc finger PX 944566 Orthohepadnavirus protein X

HIVEP2/PRDII BF1 3097 C2H2-zinc finger C-abl 25 Tyr protein kinase family

HIVEP1 3096 C2H2-zinc finger NR2F1/COUP-TF 7025 Nuclear hormone receptor

NREBP 6651 N/A PEF1 553115 Penta-EF-hand protein

doi:10.1371/journal.ppat.1003804.t002

Figure 1. Comparison of host innate-immune and viral regulatory regions. A) Multi-way alignment of analysed enhancer sequences shows
no sequence similarity. Narrow grey boxes mark AT-rich stretches and dark grey boxes mark GC-rich stretches. Overall, sequence similarity was too
low to produce a phylogenetic tree. To analyse sequence similarity within one family of viruses, we compared the major immediate-early enhancer
region of rat-CMV (RCMV) with those of human (HCMV), murine (MCMV), chimpanzee (CCMV) and rhesus (RHCMV) cytomegalovirus. Small stretches
of sequences similarity to the RCMV sequence are indicated by wide light grey boxes (similarity .80%). B) Venn diagram of 72 TFs identified in our
literature search to interact with the analysed regulatory sequences. Detailed SBGN diagrams of all elements and interactions can be found at [46–52]
except for TNF [57]. C) Simplified summary of transcription factor families shared between analysed innate-immune regulatory regions and viral
control elements. For simplification interactions with members belonging to a family of TFs are represented by only one symbol (e.g., p50, p65, and
RelA interactions are all represented by the ‘‘NFkB’’ symbol). The summary was produced in the ‘‘MSc by research in genomics and pathway biology’’
project by literature review. Digits in brackets indicate the number of shared interactions (left of dash) and total number of interactions for the
specific enhancer (right of dash). TFs that are more highly connected with viral and host elements were placed toward the centre.
doi:10.1371/journal.ppat.1003804.g001
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inflammatory signalling. In the following

section we briefly discuss these hallmarks.

Shared Transcription Factor
Interactions

The human genome encodes an estimat-

ed 1,700 to 1,900 TFs, with 1,391 repre-

senting high-confidence candidates [42].

These proteins represent an ample resource

for viruses to harness. To probe, in more

detail, the TF usage of the 14 viral and

innate-immune enhancers selected (Table 1),

we constructed unambiguous diagrams [43–

45] of known TF interactions—available as

an online resource on Figshare [46–52].

Using this approach we identified 72

interactions (Table 2) between the selected

host and viral regulatory regions and host

TFs. Of the 72 interactions identified, 43

were described for cellular enhancers and 50

for viral enhancers and 21 interactions (49%

and 42% respectively) are shared among

innate-immune enhancers and viral enhanc-

ers (Figure 1B). Annotation of this dataset

using the BioMART tool (v0.7, ENSEMBL

release v72) identified 31 TFs associated

with ‘‘regulation of immune processes’’

[GO:0002376] in our 72 identified interac-

tions. Notably, the extent to which the

distinct viral enhancers share factorswith the

innate-immune genes varies (Figure 1C).

This may be explained by the different

physiological roles of the innate-immune

genes and lifestyles of the selected viruses.

Among the viruses, HCMV and HIV-1 en-

hancers show the largest TF overlap in total

numbers of interactions with the innate-

immune genes. In summary, we identified a

substantial overlap in TF interactions be-

tween host and viral regulatory regions.

Comparable Expression Kinetics
It is noteworthy that host immediate-

early response genes and viral immediate-

early genes are, by definition, identified by

the same criterion, namely that their

expression is independent of newly syn-

thesised proteins [12,53,54]. Upon infec-

tion of permissive cells, viral promoters are

activated within the first hour of infection.

This follows a typical expression profile

with a peak between 2–6 h followed by

reduced expression levels. This expression

pattern has parallels with the temporal

expression of host innate-immune genes,

e.g., IFNB1, IL6, or TNF that are rapidly

induced after PRR activation [55–58].

Most notably, it has recently been dem-

onstrated in a genome-wide transcriptome

study with murine CMV that the mRNA

synthesis rate of viral IE transcripts is

rapidly induced and subsequently strongly

downregulated, following the expression

kinetic profile for many innate immune

genes in this dataset [59].

Response to Immune-Stimulatory
Ligands

A corollary of viral enhancer mimicry of

innate-immune regulatory functions is that

the viral promoters/enhancers should be

activated by the same signalling events as

innate-immune genes. This implies that

events during the infection process that

trigger ‘‘antiviral’’ signalling cascades actually

facilitate the initial viral transcription. In this

context, it has been shown that activation of

TLRs by LPS and CpG [60,61] increases

activity in isolated HCMV-enhancer and

HIV-LTR–driven reporter constructs [62–

64]. This also seems to apply in the context of

viral infection since cytokine signalling stim-

ulates HBV gene expression [65] and HIV

needs TLR-8 signalling in specific cell types

for replication [66]. It is also notable that all

of the viral control regions examined here

have been shown to interact with AP-1

(Figure 1C). While AP-1 is not exclusively

associated with innate-immune signalling,

it can be activated by TLR signalling

via MAPK-activation or by cAMP-related

signalling during infection [67,68] and sub-

sequently also binds to innate-immune en-

hancers. Taken together, these examples

indicate that so called ‘‘antiviral’’ processes

have the potential to facilitate viral IE gene

expression and replication. In the future, their

importance and potentially proviral role

should be examined in viral infection models.

Responsiveness to Negative
Feedback Control

Immune signalling pathways are tightly

regulated by negative feedback with the

inhibitors of signalling activity acting in a

matter of minutes to hours [69,70]. Thus,

innate-immune negative feedback loops

should also inhibit viral gene expression

and may play a role in viral latency. This

hallmark of viral enhancer mimicry might

prove the most challenging for scientific

investigation. Interference with negative

feedback regulators before infection may

lead to an exacerbated immune response,

either inducing an elevated antiviral state in

the cell before the experimental infection or

driving it into apoptosis. Still, proving that

this hallmark is applicable to viral infections

might provide new drug targets to inhibit

viral infections. While, to our knowledge,

no direct effects of negative regulators of

inflammatory signalling on viral gene

expression have been reported so far, it

has been shown that anti-inflammatory

drugs and chemical inhibitors of pro-

inflammatory signalling, expected to in-

crease viral replication, actually can inhibit

viral gene expression and replication of

HCMV, HBV, and HIV-1 [67,68,71–74].

Concluding Remarks

TFs activating innate-immune genes are

regulated by PRR signalling that cannot be

efficiently inhibited by viruses as their

activation occurs during the viral entry pro-

cess. Mimicking an innate-immune enhanc-

er therefore has the advantage that TFs,

already activated by the viral entry process,

can be directly utilised in a time restricted

manner to ensure viral gene expression at IE

times. We hope this opinion opens debate

and provides new insights for either reex-

amination or future-based investigations

toward understanding viral gene activation

and latency. Indeed we believe that the

principle of viruses co-opting host-innate

regulatory signals has broad implications

toward understanding the biological role of

viral enhancers, in acute and latent viral

infections, and prospective host-directed

antiviral therapeutic and vaccine strategies.
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