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Stability of supported 
aerosol‑generated nanoparticles 
in liquid media
Sara M. Franzén1,2, Magdalena Tasić3, Christian B. M. Poulie3, Martin H. Magnusson1,2, 
Daniel Strand3* & Maria E. Messing1,2*

The stability of nanoparticles and their supports are critical, but poorly understood, parameters for 
applications of such systems in liquid environments. Here we develop an approach to systematically 
investigate the stability of aerosol‑generated nanoparticles after exposure to commonly used solvents 
using a combination of identical location‑SEM and density/size analysis. We demonstrate that the 
choice of solvent needs to be carefully matched with both the particle and support materials. We show 
that thermal annealing significantly increases the adhesion of the particles and expands the scope 
of applications in aqueous media and for biological applications. The results clarify combinations 
of inorganic nanoparticles on oxide and semiconductor supports with solvents and environmental 
conditions that give sufficient stability. Combined, the presented methods should be of value in 
investigating the stability of nanoparticle systems after exposure to solvent and can be used for future 
developments of high‑performing supported aerosol‑generated nanoparticles for solvent‑based 
applications.

Designed nanoparticles have found widespread applications in recent years—examples range from smart  textiles1, 
to optical  filters2, and  sensors3. Several such emerging nanoparticle-based technologies, including superhydro-
phobic  coatings4, additive manufacturing of embedded  electronics5, and catalyzing the formation of semicon-
ductor  structures6, rely on nanoparticles generated directly in the gas phase as an aerosol. Aerosol generation is 
a continuous process where precursors are vaporized into gaseous species that nucleate and coalesce into stable 
particles when transported away by a carrier gas. The vaporization can be achieved using  flames7,  lasers8, electric 
 sparks9, electric  arcs10, and high-temperature  furnaces11. Irrespective of vaporization technique, particle sizing 
and deposition onto virtually any type of support can then be performed with standard aerosol  instruments12,13. 
Details of the aerosol generation and deposition processes are thoroughly described  elsewhere14. Aerosol-gener-
ated particles have several advantages compared to particles generated by other methods. In particular, they are 
exceptionally well dispersed, contamination-free, do not require covalent surface modification, typically display 
very narrow size distributions and offer a high level of flexibility for multi-component  particles15–18. These proper-
ties are attractive in contexts also where well-dispersed surface-bound nanoparticles are exposed to liquid media, 
for instance in biological and environmental  applications19,20, surface-enhanced Raman  spectroscopy21, and 
catalysis  research22. Solvents are, however, particularly demanding environments: shear forces, solvent reactiv-
ity, and movement caused by evaporation can affect the particles. It has been well studied how surface-modified 
nanoparticles are affected in  solutions23,24. However, these results can not be directly compared to aerosol-
generated nanoparticles without any surface modifications. The stability of aerosol-generated nanoparticles and 
their supports is a critical, but unfortunately poorly understood, parameter to consider for the development for 
applications in liquid media. Recently, it has become possible to study nanoparticles in detail when immersed 
in a solvent by liquid-phase transmission electron microscopy to, e.g., visualize nanoparticle  movements25. This 
technique is not, however, applicable for surface-bound nanoparticles due to the lack of transmission through 
the support.

Here we present a systematic approach, using scanning electron microscopy (SEM), to evaluate the integrity 
of supported aerosol-generated gold and palladium nanoparticles after exposure to various solvents. Particle 
movement on the surface is evaluated using identical location-SEM (IL-SEM)26 and etching of the particles and 
support surface by measuring the alterations of particle size distributions, particle density, and surface rough-
ness (Fig. 1). Samples are compared before and after exposure to protic and aprotic solvents, as well as aqueous 
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solutions, at varying temperatures and pH ranges. The result is a map of stability domains that can guide and 
expedite the design of supported gold and palladium nanoparticle systems for solvent-based applications that 
require well-dispersed support-bound nanoparticles.

Results and discussion
Design and fabrication of supported nanoparticle samples. At the outset we devised an experimen-
tal suite consisting of gold nanoparticles deposited on three different crystalline supports: gallium phosphide, 
silicon, and alumina. We also investigated palladium nanoparticles deposited on silicon. Silicon and gallium 
phosphide are commonly employed semiconductor materials for optical and optoelectrical  applications27,28, and 
gallium phosphide nanostructures have also been used in a series of biological  studies29,30, as well as photoas-
sisted electrolysis of  water31,32. Both the gallium phosphide and silicon supports had a passivating amorphous 
oxide layer on the surface. The gold nanoparticles were produced as an aerosol in a high-temperature furnace 
as described by Magnusson et al.33. The palladium nanoparticles were produced by spark ablation following the 
method of Meuller et al.34.

The resulting particles were deposited onto the respective supports with the aid of an electric field, using an 
electrostatic precipitator (ESP)35. In an ESP, the supports are positioned on a metal plate kept at a high constant 
electrical potential, forcing the charged particles to deviate from the gas stream and deposit onto the support 
with 100%  efficiency36. The deposited nanoparticles were monodisperse in size (± 15% of the average diameter) 
and evenly distributed across the surface, as illustrated in Fig. 1 a; the morphology and crystallinity of typical 
particles are shown in the high resolution transmission electron microscopy (HRTEM) images in Fig. 2. 

To strengthen the nanoparticles’ adhesion to the support, some samples were also subjected to thermal anneal-
ing (600 °C for 5 min). Because of their small size, the nanoparticles will partially melt at this temperature and 
create a close to hemispherical shape with an increased interface towards the support. All supports were imaged 
with SEM after nanoparticle deposition or after thermal annealing.

Evaluation of stability following exposure to liquid media. To evaluate the stability of the nanopar-
ticle supports in various solvents, the supports were immersed into the respective solvent for 24 h. The surface of 

Figure 1.  Schematics and SEM images showing the supported nanoparticles (a) before treatment, as well 
as the possible outcomes when exposed to solvent under varying conditions; (b) good stability; (c) clustered 
nanoparticles due to nanoparticle movement; and (d) etched nanoparticles.
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the support was washed with MeOH and dried under reduced pressure (see the experimental section for details). 
Immersion in and removal from MeOH was shown not to cause alternations, see Table 1, Table 2 and Figure S2.

The movement of individual nanoparticles on the surface was then evaluated using IL-SEM26. In brief, the 
crystalline support was marked prior to particle deposition and scanning electron micrographs were acquired of 
the same position on the sample before and after treatment in solution, referred to as reference areas. Using this 
method, very small lateral changes (< 10 nm) of nanoparticles and addition or removal of individual nanoparticles 
could be identified. In addition to the reference areas, scanning electron micrographs were acquired outside of 

Figure 2.  HRTEM image of aerosol-generated nano-particles: (a) gold nanoparticle; (b) palladium 
nanoparticle.

Table 1.  Screening of the stability of AuNP/Si supports in different solvents, with and without the addition 
of base/acida,b. a General procedure: A nanoparticle support was immersed into 1 mL solvent or 1 mL solvent 
and 0.05 mM triethylamine  (Et3N) or 1 mL solvent and 0.05 mM benzoic acid (BzOH) for 24 h at room 
temperature or slightly below the boiling temperature of the respective solvent or to a maximum of 95 °C. 
b Qualitative assessment: —good stability, no movement or etching of nanoparticles; ○—minor movement 
of nanoparticles; —major movement of nanoparticles; —etched nanoparticles; grey—not tested. Each 
entry is based on reference images with a total area of 18 μm2 (~ 360 nanoparticles) per sample and at least two 
independent experiments. *Taken from  reference42.
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the reference areas in order to evaluate general changes to the supported nanoparticles, such as clustering and 
change in nanoparticle density.

Movement of nanoparticles was identified by the following markers: (i) nanoparticle linking/clustering (Fig. 1 
c), evaluated outside the reference areas, (ii) change in nanoparticle density, evaluated outside the reference areas 
(> 30% loss indicates major movement), and/or (iii) movement of particles, evaluated within the reference areas 
(movement of 5–19 nanoparticles indicates minor movement, ≥ 20 indicates major movement). Representative 
examples of images before and after solution treatment are shown in Fig. 3. Etched nanoparticles were identified 
by measuring the size distributions of the particles before and after treatment, see the Supplementary Informa-
tion, Figure S5. Etching of the support was identified by roughening of the atomically smooth crystalline surface. 
Using these criteria, the stability of gold nanoparticles on silicon supports (AuNP/Si) was first evaluated in a 
comprehensive screening that spanned both varying solvents and conditions. The results are summarized in 
Table 1 (for measurement data, see Table S1 in the Supplementary Information).

Gold nanoparticles supported by silicon were found to be stable in most solvents, albeit with some notable 
exceptions. After exposure to  H2O at room temperature, additional nanoparticles were found in the reference 
areas (Fig. 3 a, b) which is a clear sign of particles migrating on the surface. When exposed to  H2O at 95 °C, the 
silicon surface was also slightly roughened and the particle size had increased (Fig. 3 c, d). A possible explanation 
for this observation is overgrowth of the gold particles with  silicon37. To investigate the stability of the samples 
also in cell growth media, we evaluated the effect of immersion in phosphate-buffered saline solution (PBS 
buffer). Unfortunately, large amounts of salt residues remained on the surface even after washing and drying, 
which prevented imaging of the nanoparticles, and no conclusive evaluation on stability could be made (Sup-
plementary Figure S1a).

With respect to nanoparticle etching, the supported nanoparticles were found to be resilient to all protic and 
most aprotic organic solvents tested. The exception was the aprotic and coordinating solvent acetonitrile (MeCN), 
that has a well-known interaction with  gold38,39, that gave significant etching of the nanoparticles. In this solvent, 
the particles were partially etched (reduced in size) after 24 h, both at room temperature (Fig. 3 f) and at an 
elevated temperature (75 °C) (Supplementary Figure S2). The support was unaffected under the same conditions.

Since many applications are dependent on specific pH ranges, we also investigated the stability under acidic 
and basic conditions in both aqueous and organic mixtures. Inorganic bases like potassium carbonate and 
sodium hydroxide resulted in a severe etching of both the surface and the particles (Supplementary Figure S1d). 
In contrast, triethylamine  (Et3N), a soluble organic base, was well tolerated and the supports unaffected in the 
non-polar solvents dichloromethane, dioxane, and toluene also at elevated temperatures (35 °C, 95 °C, and 
95 °C, respectively, Table 1). An exception is that triethylamine in methanol or dimethylformamide resulted in 
significant movement of particles on the support surface. For triethylamine in methanol, more movement was 
observed at room temperature than at increased temperature. The differences were, however, small, and likely 

Table 2.  Screening of the stability of supported nanoparticles in a selection of solvents when changing the 
material of the nanoparticles or the support. In selected cases with the addition of base/acida,b. a General 
experimental: Nanoparticle supports immersed into 1 mL solvent or 1 mL solvent and 0.05 mM  Et3N or 1 mL 
solvent and 0.05 mM BzOH for 24 h at room temperature or slightly below the boiling temperature of the 
solvent (maximum 95 °C). b —good stability; ○—minor movement of nanoparticles; —major movement of 
nanoparticles; —etched nanoparticles; —etched surface; grey—not tested. Each entry is based on reference 
images with a total area of 18 μm2 (~ 360 nanoparticles) per support and at least two independent experiments.
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attributed to experimental variations (for experimental data on nanoparticle movements, see Supplementary 
Information Table S1). Another limitation is that in 1,2-dichloroethane/trimethylamine at elevated temperature 
(75 °C), the particles were etched. To probe the acidic part of the pH spectrum, we employed benzoic acid as a 
soluble organic acid and evaluated stability in methanol and dioxane. The supported nanoparticles were stable 
in dioxane and showed relatively good stability also in methanol, indicating a higher tolerance to acidic than to 
basic conditions.

There were no clear correlations between the polarity of the solvent and the nanoparticle stability. However, 
the silicon-supported gold nanoparticles showed good stability in all of the tested non-polar solvents 1,2-dichlo-
roethane, dichloromethane, dioxane, and toluene, and in most cases, also with the addition of a base or an acid.

With a validated method and a clarified picture of the stability of gold nanoparticles on silicon at hand, we 
continued to investigate more combinations of support materials and nanoparticles (Table 2). For this study, we 
employed a select set of solvents commonly used in chemistry applications and based the selection on the results 
obtained for the gold/silicon system. The supported nanoparticles used in this screening were gold on gallium 
phosphide and alumina and palladium on silicon. Also included in this screening were gold nanoparticles on 
silicon, which had undergone post-deposition annealing. The results are summarized in Table 2. An interesting 
outcome is that nanoparticles of gold and palladium showed quite different stability in some cases. Palladium 
particles migrated and clustered considerably on the surface when exposed to dioxane, a solvent in which gold 
nanoparticles on silicon showed good stability. The micrographs also showed that the palladium nanoparticles, 
which remained static on the surface, were severely deformed, i.e., larger and non-spherical, in this solvent (Fig. 4 
a, b). Surprisingly, the addition of triethylamine to dioxane increased the stability of palladium nanoparticles on 
silicon, whereas acidic, or even neutral, conditions were less well tolerated. Given this contrasting behavior, it is 
also worth noting that palladium nanoparticles showed a good adhesion to the silicon surface in  H2O, a solvent 
that caused significant movement of gold nanoparticles. With respect to the support material, supports composed 
of nanoparticles on silicon and alumina showed very similar stability. On the other hand, the gallium phosphide 
support was unstable in water, and especially at elevated temperature (95 °C), where severe corrosion was seen 
(Fig. 4 c, d). Since it has been previously reported that pure GaP is stable in  water31,32, it was suspected that the 
gold particles were necessary for the corrosion. Thus, plain GaP supports were tested in the same conditions, 
which resulted in some, although not as severe, corrosion of the surface (Fig. 4 e, f). The severe corrosion of 
the GaP surface with supported gold nanoparticles, compared to that of the bare surface, indicate that the gold 
nanoparticles are accelerating the decomposition of the surface. This result is perhaps not completely surprising, 
given that gold nanoparticles are extensively used to catalyze the growth of gallium phosphide  nanostructures40.

Figure 3.  Representative IL-SEM images of AuNP/Si supports (a) before and (b) after treatment in room 
temperature  H2O, (c) before and (d) after treatment in 95 °C  H2O and (e) before and (f) after treatment in room 
temperature acetonitrile. The arrows mark examples of changes in the images before and after exposure to the 
solvent. The presence of additional nanoparticles in (b) and the absence of a few nanoparticles in (d) indicate 
minor movement of the nanoparticles. The decreased size of the particles in (f) compared to in (e) indicates that 
the nanoparticle has been etched.
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Finally, we also investigated the stability of supports with thermally annealed gold nanoparticles. As expected, 
thermal annealing significantly improved the stability of the particles and these remained static even in solvents 
where non-annealed particles were not stable. As expected, thermal annealing did not increase the resilience of 
gold nanoparticles to acetonitrile.

Conclusions
The obtained data support several conclusions. It is clear that commonly used solvents and additives can impact 
aerosol-generated particles and the support surfaces they are deposited on. Given the prevalence of both gold 
and palladium nanoparticles in heterogeneous catalysis, the results herein re-emphasize that stability and metal 
leaching are critical considerations in catalyst design and performance. Moreover, nanostructured gallium phos-
phide has been used in a number of in vitro cell-based studies, and it is clear that stability is a factor that must 
be carefully considered in such experiments. The corrosion of gallium phosphide surfaces, when exposed to 
water at elevated temperatures, underscore the importance of confirming the integrity of the nanostructures. 
Not least, in light of the potential impact of leached toxic elements on, for instance, cell assay results. Finally, 
our results show that the combination of particle and support material needs to be carefully chosen to withstand 
specific liquid environments.

In summary, we have further developed and applied a microscopy-based method to investigate the stability 
of supported nanoparticles in various solvents and conditions. Influence on the supports are characterized, both 
in terms of adhesion of the nanoparticles to the surface (movement upon solvent exposure) and etching of the 
nanoparticles and/or the support.

The stability of the nanoparticle supports was found to be strongly dependent on the solvent in which it 
is immersed. For each of the nanoparticle system studied, we were, however, able to identify both protic and 
aprotic solvent conditions where both the particle and support were stable. The addition of an organic acid 
was well tolerated and did not decrease stability in any tested solvents in which the nanoparticle supports were 
stable. On the other hand, basic additives led to weaker adhesion in some solvents, and in the case of heated 
dichloroethane, even to etching. Thermal annealing of the gold/silicon supports does have a positive effect on 
the adhesion of the nanoparticles increasing their resilience to  H2O, even up to 95 °C. This study clearly shows 
that aerosol-generated nanoparticles are suitable for solvent-based applications contingent on a careful choice 
of support. The development of such systems applications are currently under way in our laboratories and will 
be reported in due course.

Figure 4.  PdNP/Si chip (a) before and (b) after treatment in 95 °C dioxane. Clustering of nanoparticles into 
small, compact agglomerates. AuNP/GaP chip (c) before and (d) after treatment at 95 °C in  H2O. Significant 
etching of the surface, resulting in the complete removal of the nanoparticles from the support. GaP chip 
without nanoparticles (e) before and (f) after treatment at 95 °C in  H2O.
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Experimental/method
Production of supported nanoparticle samples. For this study metal nanoparticles deposited onto 
planar, crystalline supports were used, which further on will be referred to as nanoparticle chips. The three dif-
ferent supports studied were Si (100), GaP (111)B, and Si (100) with a 10 nm layer of  Al2O3, grown on the silicon 
by atomic layer deposition (ALD) using the tool Savannah S100 which cycles pulses of  H2O and trimethylalu-
minum.

The palladium nanoparticles were produced by an aerosol method called spark discharge generation, which 
is described by Messing et al.41. In this method a metallic vapor is formed by spark discharges between two 
electrodes which are composed of the material of the intended nanoparticles. The metallic vapor nucleates to 
form primary particles which coalesce to form larger nanoparticles. The particles are then sintered in a tube 
furnace to form spherical and crystalline particles, followed by size selection with a differential mobility analyzer 
(DMA)33 and deposition by electrostatic  precipitation36. For production and deposition of gold nanoparticles, a 
similar method was used, called evaporation/condensation  generation11, where the metallic vapor is produced 
by heating a bulk piece of gold in a high-temperature furnace at about 1500 °C. Upon cooling, the gold vapor 
forms particles that are sintered and size selected in a similar set-up as for the spark discharge generator. The 
aerosol nanoparticles are size selected (DMA set to 10 nm) and deposited onto the support in an electrostatic 
precipitator (ESP), which focuses the nanoparticles onto the support by electrostatic forces.

In order to anneal the nanoparticle supports, they were heated in a rapid thermal processing (RTP) system, 
RTP-1200-100 from UniTemp GmbH, at 600 °C under nitrogen for 5 min.

Exposure of samples to solvent. For organic solvents, air and water free  ZerO2 from Sigma-Aldrich was 
used. For water, Milli-Q water was used. Where indicated, 0.05 mM  Et3N  (ZerO2) or benzoic acid was added.

Procedure. Supports were placed in a glass vial with nanoparticles facing upwards. To the vial was added 
1.0 mL of the respective solvent or solution and the vial was sealed with a screw cap for 24 h. Where indicated, 
the vial was heated to the appropriate temperature (in the range of room temperature to 95 ºC) for 24 h. The vial 
was then cooled down to ambient temperature and the solvent was removed via a glass pipette. Nanoparticle 
supports exposed to high boiling point solvents were washed with 2 × 1 mL MeOH. Any remaining solvent was 
removed from the chips under reduced pressure (approx. 100 mbar), until dryness.

TEM analysis. Nanoparticles generated by the aerosol methods of evaporation/condensation, both by the 
aid of a high-temperature furnace and by spark discharges, were deposited onto lacey carbon Cu TEM grids. 
A high-resolution transmission electron microscope (HRTEM, JEOL 3000F) operated at 300 kV and equipped 
with a field emission gun and an X-ray energy dispersive spectrometer was used for investigations of nanoparti-
cle morphology and confirmation of nanoparticle composition. HRTEM images of aerosol-generated gold and 
palladium nanoparticles are shown in Fig. 2.

Identical location‑SEM analysis. This study was performed by imaging nanoparticle deposited onto 
a planar support before and after treatment using a Hitachi SU8010 Cold Field Emission Scanning Electron 
Microscope (SEM). The micrographs were acquired in reference areas identified by marks from a diamond pen; 
the markings were here used as unique reference points, but the markings themselves were not included in the 
images. The images were used for identical location analysis after treatment of the chips in order to track small 
changes to individual nanoparticles, and the total area that was imaged for each sample was 18 µm2, containing 
about 360 nanoparticles.

Density/size analysis. Since exposure to the electron beam may sinter the nanoparticles, it was necessary 
to also analyze areas that had not previously been imaged in the SEM, i.e. to analyze images acquired outside of 
the reference areas. The SEM images were acquired of a total area of 22.5 µm2, containing about 450 nanoparti-
cles, and analyzed using the software ImageJ and the built-in macro “Analyze particles”.

Classification. From the IL-SEM analysis it was considered to have been major movement of nanoparticles 
if the number of changes in the reference areas (removal or movement of nanoparticles) was at least 20 nano-
particles and it was considered to have been minor movement of the nanoparticles if the number of changes in 
the reference area was 5–19 nanoparticles, i.e., about 1–5% of the nanoparticles. Another indicator of minor 
movements was the presence of additional particles in the reference areas. A large number of additional particles 
in the reference area was not, however, an indication of major movement of the nanoparticles since it could be a 
result of the presence of a large cluster of particles and were not representative for the nanoparticle movement 
in general. From the density/size analysis it was considered major movement if the overall number density of 
nanoparticles outside the reference areas had decreased by more than 30%. It was considered to be at least minor 
movement if there were linked/clustered nanoparticles.

If major movement was indicated by any of the described measures the combination was classified as major 
movement, even if another descriptor indicated only minor movement or even good stability. Similarly, if minor 
movement was indicated by any of the described measures the combination was classified as minor movement. 
Etched nanoparticles were identified by a significant change to their apparent size. Etched surface was identified 
by significant contrast shifts in the SEM images over the surface of the support.
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Data availability
The datasets generated during the current study are available from the corresponding authors on reasonable 
request.
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