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Abstract: Background: The perpetuation of schistosomiasis japonica in the Philippines depends to a
major extent on the persistence of its intermediate host Oncomelania hupensis quadrasi, an amphibious
snail. While the malacological survey remains the method of choice in determining the contamination
of the environment as evidenced by snails infected with schistosome larval stages, an emerging
technology known as environmental DNA (eDNA) detection provides an alternative method. Previous
reports showed that O. hupensis quadrasi eDNA could be detected in water, but no reports have been
made on its detection in soil. Methods: This study, thus focused on the detection of O. hupensis quadrasi
eDNA from soil samples collected from two selected schistosomiasis-endemic barangays in Gonzaga,
Cagayan Valley using conventional and TaqMan-quantitative (qPCR) PCRs. Results: The results
show that qPCR could better detect O. hupensis quadrasi eDNA in soil than the conventional method.
In determining the possible distribution range of the snail, basic edaphic factors were measured
and correlated with the presence of eDNA. The eDNA detection probability increases as the pH,
phosphorous, zinc, copper, and potassium content increases, possibly indicating the conditions in the
environment that favor the presence of the snails. A map was generated to show the probable extent
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of the distribution of the snails away from the body of the freshwater. Conclusion: The information
generated from this study could be used to determine snail habitats that could be possible hotspots of
transmission and should, therefore, be targeted for snail control or be fenced off from human and
animal contact or from the contamination of feces by being a dumping site for domestic wastes.

Keywords: Oncomelania hupensis quadrasi; schistosomiasis japonica; environmental DNA;
edaphic factors; snail surveillance

1. Introduction

Schistosomiasis, a snail-borne parasitic infection, is one of the most important neglected tropical
diseases (NTDs) that continues to prevail and remains a significant public health problem in 76 tropical
and subtropical countries [1–4]. The persistence of schistosomes depends highly on the continued
presence of certain species of snails that serve as intermediate hosts [5–8]. There are seven major
species of schistosomes that infect man but one species in particular, Schistosoma japonicum, is the most
virulent and is considered a true zoonosis [7,9–14]. Mammals like cattle, water buffalo, goats, cats,
dogs, pigs, and rodents serve as reservoir hosts [14,15]. S. japonicum infects an unsuspecting host via
skin penetration if exposed in cercariae-contaminated freshwaters [5,6,14].

Oncomelania hupensis is a gastropod species serving as the intermediate host of S. japonicum in at
least five countries in east and southeast Asia including the Philippines [8,16]. Currently, there are nine
recognized subspecies of O. hupensis with taxonomic subspecies classification assigned according to
their region of endemicity [16]. Four subspecies occur in China, two in Taiwan, and a single subspecies
is observed each in Japan, the Philippines (O. hupensis quadrasi), and Indonesia [16–19]. However, recent
studies based on molecular data refute most of the subspecies designation based on the geographical
distribution [19].

Among the nine O. hupensis subspecies, O. hupensis quadrasi is the most amphibious [16]. It is
capable of thriving both in aquatic freshwater environments as well as in muddy to dry soil areas.
Under prolonged conditions of drought, O. hupensis quadrasi closes its operculum, burrows into the
soil, and aestivates until such time when moisture returns through rain or floods [20]. This snail can
thrive in both natural and man-made freshwater habitats and could be dispersed through flooding.
Snail colonies in established sites are waterlogged and well-shaded [21], and their distribution in an
area was reported to be influenced by breeding and survival through the variation of the soil pH and
calcium [22]. Thick vegetation that provides shade and anchorage creates a suitable microclimate for
the snail to thrive and reproduce [16,23,24].

Endemicity of schistosomiasis used to be observed only in provinces experiencing wet season all
throughout the year until the discovery of new endemic foci in 2002 in Gonzaga, Cagayan Valley located
up north (Figure 1A), an area known for summer temperatures reaching as high as 40 ◦C and extremely
dry conditions. This discovery shows a potential adaptation of the snail to such conditions [20,25].

Schistosomiasis control in the Philippines has a long history dating as far back as 1951 when
the Division of Schistosomiasis was created by the Ministry of Health [8,9,12]. Control of O. hupensis
quadrasi snails (Figure 1B) was mainly through environmental modification, such as filling up of
waterlogged areas and cementing dikes and canals or through chemical mollusciciding, which were all
difficult to sustain because of the high cost and the huge demand for manpower, not to mention the
very extensive areas of potential snail habitats to cover [20,26]. The shift from snail control to morbidity
control was made in the early 1980s with the discovery of a cheap and effective drug, praziquantel,
for all forms of schistosomiasis. Since then, mass drug administration using praziquantel has been the
cornerstone of schistosomiasis control and prevention by the Philippine Department of Health (DOH).
However, schistosomiasis in the Philippines is still endemic in 12 regions, 28 provinces, 14 cities,
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203 municipalities, and 1,593 barangays (villages) wherein 12.4 million Filipinos are at risk of infection,
and 3.4 million are directly exposed [8].

Schistosomiasis surveillance is performed to monitor progress of control programs, especially
when prevalence levels have gone down to elimination levels. One specific conventional surveillance
technique is the malacological survey where O. hupensis quadrasi snails are collected, crushed,
and examined for the presence of the characteristic furcocercous cercariae of schistosomes [8,27].
The presence of infected snails is an indication of environmental contamination by fecal matter
containing schistosome eggs in the freshwater [7]. Though this method is cost-effective, the demand
for expertise in correctly identifying the snails in their natural habitat and for the mobilization of huge
manpower during surveys, and the inaccessibility of some snail sites make the malacological survey a
huge task to undertake [8,26,27].

The use of environmental DNA (eDNA) has been demonstrated to be useful in tracking S. japonicum
in water through quantitative PCR (qPCR) [28,29]. It was also successfully applied to other schistosome
species, such as S. mansoni in field samples for better surveillance [30,31]. In this study, O. hupensis
quadrasi eDNA was detected from soil samples. The use of this type of DNA source material utilizing
soil samples could be a useful tool for snail surveillance due to the amphibious nature of the snail.
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Figure 1. (A) Map showing Gonzaga, Cagayan Valley in the Philippines [32]; (B) O. hupensis quadrasi, the 
snail intermediate host of S. japonicum in the Philippines, collected from Gonzaga, Cagayan Valley. The 
upper panel shows the aboral side and the lower panel shows the oral side where the snail’s operculum 
could be seen. 
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2.1. Description of Collection Sites and Malacological Survey 

Figure 1. (A) Map showing Gonzaga, Cagayan Valley in the Philippines [32]; (B) O. hupensis quadrasi,
the snail intermediate host of S. japonicum in the Philippines, collected from Gonzaga, Cagayan Valley.
The upper panel shows the aboral side and the lower panel shows the oral side where the snail’s
operculum could be seen.

In this study, detection of O. hupensis quadrasi was performed using the eDNA detection technique
from soil samples collected from Gonzaga, Cagayan Valley (Figure 1A). eDNA detection was compared
from snail sites harboring O. hupensis quadrasi and adjacent areas where no snails were observed
through the classical malacological survey. Complementary, edaphic factors with putative influence in
the distribution of O. hupensis quadrasi were investigated.
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2. Results

2.1. Description of Collection Sites and Malacological Survey

The collection sites were initially determined by the presence of signages indicating infested areas
(Figure 2A). A total of 27 sampling points were established: 9 from Purok 3 and 6 from Purok 5, Tapel,
and 12 from Purok 4, Magrafil (Figure 2B). The sampling points positive for live O. hupensis quadrasi
based on the malacological survey were indicated as Actual Snail Site (ASS) while two other sampling
points 1 meter away from ASS were designated as Potential Snail Site (PSS). The actual snail sites were
located in the map using Quantum Geographic Information System (qGIS v3.6.0) (Figure 2B). Please
refer to the section on Materials and Methods for details.

The sampling areas are shown in Figure 2C. Purok 3, Tapel was a flat grassy field with swampy
parts and was adjacent to a rice field. O. hupensis quadrasi populations were found to be randomly
distributed in small rocks and on the stems of grasses in the swampy areas. The waterlogged and
thick vegetation provided enough moisture and shade for the snails to establish a stable colony in
the area. The snails in Purok 5, Tapel were also distributed in patches along the margins of the
stream. These margins were often used as cooling and watering holes for carabaos. Farmers, along
with their carabaos and pet dogs, would cross the stream on their way to their rice fields and corn
plantations. Snails observed in Purok 4, Magrafil occurred in a clumped distribution and thrived along
margins of a shallow stream with shady areas planted with Gabi (Colocasia esculenta) and Palauan
(Cyrtosperma merkusii) while small ponds were likewise observed to support colonies of O. hupensis
quadrasi. The collection area was contaminated with litter and fecal matter from livestock. Moreover,
there were residents who bathed and washed clothes in the stream.
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Magrafil for soil collection; (C) Sampling collection sites in Purok 3, Tapel, Purok 5, Tapel, and Purok 4, Magrafil.
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2.2. eDNA Detection via Conventional PCR and qPCR

All the 81 eDNA samples were run in triplicates using both conventional PCR and qPCR.
(Supplementary Material Table S1). Conventional PCR detected O. hupensis quadrasi eDNA in only one
of the 27 sampling points (data not shown). On the other hand, qPCR detected O. hupensis quadrasi
eDNA in 22 out of 27 (81.48%) sampling points as indicated in the Ct values and amplification plots
(Supplementary Material Table S2).

Specifics of eDNA detection rate is summarized in Figure 3. In Purok 3, Tapel, all ASS (100%)
had detectable eDNA, whereas all 5 out of 6 PSS were positive for eDNA (83.33%). In Purok 5, Tapel,
no eDNA was detected in 2 ASS visited, whereas 2 out of 4 PSS (50%) had detectable eDNA. Moreover,
eDNA was detected in all sampling areas in Purok 4, Magrafil.
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Figure 3. eDNA detection rate of O. hupensis quadrasi from actual snail sites (ASS) and potential snail
sites (PSS) using qPCR in three Puroks from barangays Tapel and Magrafil, Gonzaga, Cagayan Valley.

3. Distribution Mapping of eDNA Positive Sites

Specific location points of ASS and PSS classified according to the results of qPCR detection of
O. hupensis quadrasi eDNA were determined using Global Positioning System (GPS) and plotted in the
map using qGIS (Figure 4A–C). Water bodies such as streams as observed during the field visit were
also incorporated in the map as indicated in the legend of each map generated.
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Figure 4. Actual sampling areas of ASS and PSS plotted in qGIS v.3.6.0. using recorded Global Positioning System (GPS) points either positive or negative to O. hupensis
quadrasi eDNA of sampled areas of (A) Purok 3, Tapel, (B) Purok 5, Tapel, and (C) Purok 4, Magrafil.
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4. Soil Edaphic Factors

Edaphic factors that were measured are summarized in Supplementary Material Table S3. These
factors were correlated to the eDNA detection probability (number of positive eDNA readings in
the qPCR of a sample) using Statistical Package for the Social Sciences (SPSS). There were positive
correlations observed between edaphic factors, such as pH, P, K, Cu, and Zn (Figure 5A–E) in which
higher detection rates were observed in samples with increasing levels of the aforementioned factors in
the soil. On the other hand, no correlations were observed for temperature, Ca, Mn, N, Fe, and organic
matter (data not shown).
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5. Discussion

5.1. Detection of eDNA of O. hupensis quadrasi from Soil Samples via Conventional PCR and qPCR

Results of eDNA detection using conventional PCR and qPCR are summarized in Supplementary
Material Table S1 and Figure S1. eDNA was detected using both conventional PCR and qPCR,
but detection rates in the latter were higher. The use of TaqMan-qPCR also addresses the problem of
the production of non-specific fluorescence signal from non-specific amplification [27]. This is due
to the high-sequence specificity of the primers and probes designed, and a signal is only generated
if the binding to the target sequence of the primers and probes to the target DNA is observed in the
reaction. The utilization of probes with the primers increases not only the sensitivity of the qPCR but
most importantly the specificity of the reaction.

The A260/230 ratios of spectrophotometry of the soil samples confirm the presence of protein
contaminants and organic compounds. In the samples, the values were extremely lower than the ideal
range, which indicates that the eDNA extracts were not pure and contain significant contaminants
such as proteins, carbohydrates and inorganic compounds such as salts that can inhibit PCR. The qPCR
negative results observed in ASS in Tapel (Figures 3 and 4A,B) may be due to compounds acting
as inhibitors during PCR which results in zero amplification even if snails are observed in these
sites [33,34]. Another plausible reason could be the rapid degradation of DNA before it even settled
to the sediment. It is possible to detect snails in the field, but little to no eDNA could be detected in
soil sediments due to the rapid degradation processes to which unbound DNA are exposed to [35,36].
The amount of eDNA that has settled on the soil sediment is dependent on the rate of eDNA shedding
of the source organism. Failure to collect the soil with the target DNA even though live O. hupensis
quadrasi is present at the site is therefore possible. To address this problem, extensive sampling
points were designed to systematically collect soil from these areas so that the probability of detecting
eDNA would be higher. Nevertheless, the detectable eDNA of O. hupensis quadrasi confirmed the
efficacy of eDNA detection through qPCR even with high carbohydrate carryover and low initial DNA
concentration. As the probability of detecting eDNA and the ability to recover it varies with eDNA
concentration, the inconsistencies of the detection among qPCR replicates (Supplementary Material
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Table S1) are anticipated since the concentration of the initial target DNA is extremely low [36,37].
At least one positive result from the three repeated runs for a particular sample in the qPCR test was
considered positive to O. hupensis quadrasi eDNA.

The utilization of eDNA detection will enhance the efficiency of the snail surveillance,
most especially in areas where the snail density is low, and the distribution is too patchy. Using soil as
material, it is also possible to detect potential snail habitats that may harbor snails even during the dry
season. Since the malacological survey as a surveillance technique is done routinely in some endemic
areas in the Philippines, eDNA detection could be applied as a complementary technique to confirm
the presence of the snails or if the area has been inhabited by the snail since eDNA could persist for
a long duration of time. Although the current study did not include the detection of S. japonicum
using water, it is more relevant to track the parasite using water due to its high dependability on the
medium to complete its life cycle [7,8,27]. Nevertheless, detection of S. japonicum using soil samples
could also be explored since it may indicate the presence of infected snails. It can also determine
if the sampled area is a site of active transmission where continuous environmental contamination
is experienced through the presence of miracidia emerging from eggs introduced through the fecal
matter from infected hosts to freshwater bodies. The detection of S. japonicum in soil samples may
also provide useful geographic implications on the range of cercarial displacement in dry areas where
flooding is prominent. This could also be achieved by using S. japonicum primers and S. japonicum
specific probes to increase the sensitivity and specificity of the detection using qPCR. However, since
S. japonicum is not visible to the naked eye, it would be difficult to assign sampling points for detection.

Although eDNA detection can provide an alternative method to survey snails, this method
cannot assess the typical density of O. hupensis quadrasi and its real-time location, whether it comes
from a recently sloughed-off DNA or a dead snail [38–41]. The success of using the eDNA method
further depends on certain characteristics of the species of interest. For example, it is easier to detect
species such as fish and amphibians with slimy skin since they release great quantities of DNA in the
environment as compared to arthropods which only release small amounts [39]. In terms of O. hupensis
quadrasi, its high dependability and contact with soil and water increase the chance of eDNA shedding,
making either water or soil a good candidate material to use to detect them.

5.2. O. hupensis quadrasi eDNA Potential Distribution

In Purok 3, Tapel, all ASS and 5 PSS were positive for eDNA (Figure 4A), which indicates that
even if there was absence of snails in the PSS during sampling, it could mean that O. hupensis quadrasi
could have been in the site in the past or its eDNA could have been transported to nearby PSS. The
presence of eDNA in some PSS may imply that the snails were present in the site but were missed
during the malacological survey or that the eDNA could have originated from a nearby ASS as eDNA
exhibits high mobility.

No eDNA was detected in all ASS and two PSS were positive with eDNA in Purok 5, Tapel
(Figure 4B). The presence of O. hupensis quadrasi eDNA in PSS indicates a potential snail habitat.
Moreover, the presence of eDNA indicates the possible distance of eDNA dispersion from the nearest
source such as an actual snail site, which was used as a reference during sampling. O. hupensis quadrasi
spawn and sometimes shed S. japonicum cercariae along the stream, then return to the soil substrate
where they settle and possibly aestivate. In Purok 4, Magrafil, all ASS and PSS were positive for eDNA
(Figure 3; Figure 4C), which may be attributed to the high abundance of snails. It can be inferred from
the maps that the snail can travel 0.5 m to 6.5 m from the stream to the sampling points. In addition,
it is possible that O. hupensis quadrasi is dispersed by livestock animals, humans, or by continuously
flowing water.

It is difficult to accurately track the source and movement of DNA molecules since eDNA data
relies on inference [42]. For instance, dispersion and dilution of eDNA may be affected by stream
currents and wave actions [39,43]. In the case of O. hupensis quadrasi, the presence of eDNA may
confirm the extent of snail distribution after flooding. eDNA detection is easier in species living in
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small isolated areas since sampling could be limited to their particular habitats. Meanwhile, eDNA
detection could be difficult in species with greater means of dispersal living in big rivers or terrestrial
habitats since sampling would have to be extensive. There is a high probability of positive eDNA
detection if the target species is in the area recently since DNA degrades over time [39]. Thus, it is
essential to have an appropriate sampling design based on whether the collected sample is near or far
from the target species.

5.3. Edaphic Factors and eDNA Detection

Results of measured edaphic factors in sampling areas are summarized in Supplementary Material
Table S3. There were positive correlations in the eDNA detection probability with the edaphic factors
pH, P, K, Zn, and Cu (Figure 5). On the other hand, no correlations were found with temperature, N,
Fe, Ca, Mn, organic matter, and organic carbon (data not shown). Knowledge of these parameters,
which may regulate the local distribution of O. hupensis quadrasi or the persistence of the snail’s DNA,
is necessary to determine the parameters’ effects on the distribution of the snail.

There was a moderate positive correlation (% = 0.611) in the pH with eDNA detection (Figure 5A).
Although pH values increased as the number of eDNA positive readings in qPCR increased, increasing
pH may not necessarily mean that O. hupensis quadrasi could tolerate a very basic environment since
the snail generally thrives at a range of 4.6 to 9 [22]. The positive correlation in our results, however,
may imply that O. hupensis quadrasi could tolerate slightly acidic environments (5.20 to 6.14) or the
snail’s DNA is stable in these pH conditions. If the pH becomes very basic, the O. hupensis quadrasi
productivity becomes low [22], whereas a very acidic environment promotes DNA degradation and
shell erosion, which may lead to death [44].

eDNA detection had a moderate positive correlation (% = 0.414) with phosphorus (P) (Figure 5B).
The P range of 5.9 to 106 ppm may indicate that O. hupensis quadrasi can thrive within this range and
detection of the snail’s DNA is possible. Pesigan and colleagues [21] found that P concentration has no
effect on the distribution of the snails in Palo, Leyte. However, the results of this study point otherwise.
This is supported by a study by Johnson and colleagues [45], which found that P has an effect on the
snail distribution since P can serve as a nutrient. Increased amounts of P may be due to the sewage
released by nearby households in Gonzaga, which allowed the perpetuation of O. hupensis quadrasi
and the eventual increase of detected eDNA [46].

The probability of detecting eDNA was also noted to increase with increasing potassium (K)
levels, showing a moderate positive correlation (% = 0.608) (Figure 5C). The increasing K levels may
be due to the high moisture available in the soil during sampling, which was performed during the
wet season. Moisture permits K leaching from crop residues (Oriza sativa and C. esculenta) to soil [47].
Thus, moisture might still be available to O. hupensis quadrasi despite being 0.5 to 6.5 m away from the
stream (Figure 5B,C). The positive correlation between K and detected eDNA might, therefore, infer a
possible tolerance of O. hupensis quadrasi to ecotoxic potassium-based compounds, such as potassium
nitrate (KNO3) and potassium chloride (KCl) [47].

Copper (Cu) also showed a moderate positive correlation (% = 0.449) with number of detected
eDNA (Figure 5D). The correlation may reveal a possible tolerance of the snail to increasing Cu (up
to 16.08 ppm) since this element is toxic to snails with increasing amounts [48]. In other gastropod
species such as Melanoides tuberculata and Theodoxus niloticus, the mean lethal concentrations to Cu
are 0.14 ppm and 8.6 ppm, respectively [48,49]. A study by Moreno and McCord [50] showed
that high Cu has adverse effects on DNA processing by directly interacting with the DNA, thereby
altering its chemical structure [51]. Moreover, Cu-based compounds such as copper sulfate (CuSO4),
copper pentachlorophenate, and copper-controlled release glass (CRG) are used as molluscicides to
intermediate hosts of Schistosoma spp. [52,53]. CuSO4 specifically is known to be toxic to snails in
minute doses for as low as 2 ppm, which can cause death after 48 hours of exposure [52].

Zinc (Zn) also showed a moderate positive correlation (% = 0.520) (Figure 5E). Since
compounds of Zn such as ZnO nanoparticles serve as molluscicides to Oncomelania snails and
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Biomphalaria alexandrina [54,55], the positive correlation of zinc with eDNA detection may indicate
a possible tolerance of O. hupensis quadrasi to rising zinc levels (up to 13.48 ppm; Supplementary
Material Table S3). The mean lethal concentrations of 3.9 ppm and 12.2 ppm occur in M. tuberculata
and T. niloticus. There is a high probability that zinc-based consumer products (e.g., batteries) leach
out from Zn-contaminated sites to the endemic sites [56].

Temperature, Ca, Mn, N, Fe, organic matter, and organic carbon showed no significant correlation
with the eDNA detected in soil. Although O. hupensis quadrasi is known to be sensitive to
changes in temperature, the increasing temperatures did not affect eDNA detection since sampling
was only performed during the wet season and only minute differences were observed in soil
temperatures [21,22,57]. Calcium is critical to the survival of O. hupensis quadrasi as it is needed for
the development of their calcareous shell [58]. Hence, increasing calcium content should result in
increasing the probability of detecting the snail’s eDNA. However, results in this study show the
absence of a correlation between eDNA detection and calcium. It is hypothesized that the three-month
gap between soil collection and soil analysis altered the initial calcium content of the samples. Similarly,
a study by Pesigan et al. [21] suggests that calcium have no effect on snail distribution in Palo, Leyte.
Nevertheless, based on this study, it is possible that the snail could survive or its eDNA could persist
in varying concentrations of calcium (0.25–10 cmol/kg), organic carbon (0.9–3%), and organic matter
(1.5–5.3%).

Furthermore, the absence of O. hupensis quadrasi in places appearing to be suitable for them led
McMullen to conclude that changes in the environment may be responsible for the altered tolerance
range of O. hupensis quadrasi [21,23]. Results from this study, however, do not indicate the overall
general trend for the soil factors affecting O. hupensis quadrasi, as other environmental factors may
affect the presence of O. hupensis quadrasi eDNA. Furthermore, the trend in the correlation of the
eDNA detection probability and edaphic factors measured may change seasonally since sampling was
only done for one season for this study. More extensive temporal trends in the variables measured
may provide higher resolution of eDNA detection probability and edaphic factors that may affect the
distribution of O. hupensis quadrasi in an endemic area.

6. Conclusions and Recommendations

This is a pioneering study showing the success of detecting eDNA of O. hupensis quadrasi in soil
despite the low initial DNA concentrations of the target organism and the presence of inhibitors. eDNA
was detected in 22 out of 27 sites (81.48%) of barangay Tapel and Magrafil via qPCR while only one
out of 27 sampling sites (3.70%) tested positive using conventional PCR, validating the sensitivity of
qPCR over conventional PCR. Distribution mapping confirmed that O. hupensis quadrasi could extend
their habitat range or their eDNA could be dispersed from 0.5 m to 6.5 m away from the stream.
This could also indicate the ability of the snails to thrive in relatively drier areas which may be far
from water sources. Pearson’s positive correlation showed that the detection of eDNA (number of
positive readings in qPCR) increases as the pH, phosphorous, potassium, copper and zinc content
increase. The correlation may infer a possible tolerance range of O. hupensis quadrasi or persistence of
its eDNA in these conditions. Thus, the initial snail distribution provides basic information about the
snail intermediate host, which could be further analyzed to mitigate the threats of schistosomiasis in
endemic areas.

The limitations and benefits of eDNA detection should be evaluated when selecting a method in
targeting vectors, intermediate hosts, and parasites. Seasonal changes of eDNA concentrations and
biomass or the abundance through eDNA quantification in the soil could be further studied. Detection
of eDNA of both the intermediate snail host and the parasite is also suggested to determine the extent
of transmission of schistosomiasis in an endemic area. The effect of temperature on eDNA distribution
could also be evaluated throughout the year, involving the sampling during wet and dry seasons to
determine the possible tolerance range and adaptation of O. hupensis quadrasi. O. hupensis nosophora
found in Japan, which used to be endemic for schistosomiasis until it was eliminated in the 1990s,
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experienced a drastic reduction in the wild populations due to intensive snail control measures as part
of the intensive campaign to eliminate and permanently interrupt transmission of the disease [17].
The same is observed in some subspecies of O. hupensis in China, where intensive mollusciciding and
physical environmental modification are still practiced [18].

7. Materials and Methods

7.1. Soil Sampling, Malacological Survey, and Mapping of Snail Sites

Soil sampling was conducted in January 2019 in schistosomiasis-endemic areas in Purok (zone) 3
and Purok 5 of Barangay (village) Tapel and Purok 4 of Barangay Magrafil in Gonzaga, Cagayan from
actual snail sites (ASS) and potential snail sites (PSS). ASS are places with snails confirmed through the
intensive malacological survey in which at least one hour was spent searching for snails. The PSS sites
were established as two quadrats at one-meter distance to the left and right of ASS with the confirmed
absence of snails by the malacological survey (Figure 6A).
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Overall, there were nine sampling areas (Figures 2B and 6A): three in Purok 3, Tapel; two in Purok
5, Tapel; and four in Purok 4, Magrafil, with nine ASS sampling points and 18 PSS sampling points
for a total of 27 (Figure 6A,B). In each sampling point, three replicates of soil samples were collected
accounting to a total of 81 soil samples (Figure 6B). The GPS coordinates of all sampling points of ASS
and PSS, whether positive or negative to O. hupensis quadrasi eDNA, were also recorded and mapped
(Figure 4).

To perform the malacological survey, five people were involved. Sites with actual snails were
screened by intensively searching for live O. hupensis quadrasi. Appropriate protective clothing such as
knee-level boots and gloves were used. Snails were collected with the use of forceps and were stored
in properly labeled plastic cups. Photographs and GPS coordinates using a portable GPS device (Etrex
H, Garmin) were taken and recorded for each of the established snail sites and were mapped using
qGIS 3.6.0 (Figure 2B).

Soil samples were taken at a depth of approximately 10 cm. For each ASS and PSS sites, triplicate
soil samples of about 60 g were collected and placed separately in properly labeled polyethylene
bags (size 8” × 10”) for eDNA extraction. Another 500 g sample of soil was set aside from each
sampling area (Tuguegarao, Cagayan Valley, and Capas, Tarlac) for soil quality analysis. During the
soil collection, the trowel used for each site was rinsed with a 10% bleach solution after every sampling
to prevent cross-contamination. Shoulder-length gloves were used in soil collection to avoid exposure
to the parasite.

7.2. Storage of Soil Samples and Measurement of Edaphic Factors

The soil samples were transported to the Oven Room, KA Building of the University of the
Philippines Baguio for further processing. Samples were oven-dried at ~40 ◦C for about two weeks.
Dried soil samples were submitted to the Department of Agriculture Region II and III Soils Laboratory
for analyses of soil pH, phosphorus (P), potassium (K), zinc (Zn), copper (Cu), manganese (Mn),
and iron (Fe), organic matter (OM), organic carbon (OC), and calcium (Ca). Soil temperature was
measured in situ at the time of collection using a portable thermometer.

7.3. eDNA Extraction from Soil and Nanodrop Spectrophotometry

Eighty-one samples weighing 60 grams each were collected and allotted for eDNA extraction.
Each sample was placed in a separate 500 mL sterile beaker, whereupon distilled water was added to
create a suspension solution. Fifteen mL from the suspension was immediately subsampled into a
50 mL sterile conical centrifuge tube containing 33 mL of absolute ethanol and 15 mL of 3 M sodium
acetate for preservation. The resulting suspension solutions were then stored in a cooler (approximately
0 ◦C) and were transported to the DNA Barcoding Laboratory at the Institute of Biology Laboratory
in UP Diliman for eDNA extraction. The samples were thawed, homogenized, and centrifuged at
8500 rpm for 30 min. The supernatant was discarded and the sediments were homogenized and
collected from the centrifuge tube. Sediment of 0.25 g was added to the Lysing Matrix E tube and
subsequently subjected to the eDNA extraction protocol of the FastDNA® SPIN Kit for Soil (MP
Biomedicals Europe). Extracted eDNA samples were then subjected to spectrophotometry using
Nanodrop 2000 (Thermo Scientific) to check for any contamination and DNA purity. The extracted
DNA samples were then stored at −20 ◦C until use.

7.4. Detection via Conventional PCR and qPCR

Each of the 81 extracted eDNA was tested in triplicates using conventional PCR and qPCR to
determine the presence of O. hupensis quadrasi eDNA. The specific primers and probe to O. hupensis
quadrasi were designed manually by the alignment of cytochrome c oxidase subunit 1 gene sequences
of O. h. quadrasi, other Oncomelania subspecies, and related taxa from other gastropod species from the
families Planorbidae, Ampullariidae, Neritidae, Achatinidae, and Thiaridae. The designed primers
and probe sequences were then searched against the nucleotide sequence database using BLAST to
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examine other potential targets. A 187 base pair fragment of cox1 was targeted using the forward
primer OhqCOX1_22-41aF (GCATGTGAGCGGGGCTAGTA) and reverse primer OhqCOX1_189-209aR
(AAGCGGAACCAATCAGTTGCC). Positive controls containing pure cox1 gene of O. hupensis quadrasi
were used to validate the qPCR setting and primer pair design whereas a negative control without
the template was utilized to check for any contamination. For conventional PCR, a 12.50 µL reaction
volume per sample was prepared by mixing 7.2 µL of RNase/DNase-free polymerase chain reaction
(PCR) grade water (Ambion, Thermo Scientific), 2.5 µL 10X PCR Buffer, 0.64 µL 2.5 mM dNTP mix,
0.25 µL 25 mM MgCl2, 0.38 µL µmol each of forward and reverse primers, 0.06 µL 5 U/µL Taq
Polymerase (Takara-Clontech), and 1.0 µL of DNA extract with at least 35 ng/µL concentration. PCR
was performed in T100™ Thermal Cycler. PCR conditions were the following: 95 ◦C for initial
denaturation for 30 s, 95 ◦C for denaturation for 5 s, and 60 ◦C for annealing for 30 s for 50 cycles.
PCR products were visualized in a 2% agarose gel (Vivantis Technologies Sdn Bhd) dissolved in 0.5X
TBE and stained with 1% ethidium bromide (EtBr) run for 30 mins in 100 v in a horizontal AGE
apparatus. O. hupensis quadrasi eDNA was also targeted through TaqMan-quantitative real-time PCR
using TaqMan System technology in an Applied Biosystems 2720 Thermal Cycler Dice® Real-Time
System II (TP 900). The forward and reverse primers used in the conventional PCR were also used.
A 10 µL master mix was prepared by mixing 5.5 µL TaqMan Environmental Master Mix (EMM),
1.01 µL of each forward and reverse primers, 0.28 µL TaqMan custom probe (OhqCOX1_67-86P
5’-FAM-GTGCAGAGTTAGGTCAGTCCT-MGB-NFQ-3’), and 2.95 µL of extracted O. h. quadrasi eDNA.
Samples were then transferred onto well plates and subjected under the following thermal cycling
parameters: 95 ◦C for AmpliTaq Gold®, UP enzyme (DNA polymerase) activation under 10 min, 95 ◦C
for denaturation for 15 s, and 60 ◦C for annealing under 1 min, repeated for 40 cycles (Supplementary
Material Figure S1).

7.5. Statistical Analysis

Soil factors and eDNA recovery in all actual and potential snail sites and sampling points were
correlated using Pearson’s Correlation available in the SPSS (Statistical Package for the Social Sciences)
software v. 16. Pearson’s correlation was utilized to determine the possible linear association between
the two variables [soil factor and eDNA detection probability (number of eDNA positive readings in
qPCR for a sample)].

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-0817/8/4/160/s1,
Table S1. Malacological survey and conventional Polymerase Chain Reaction (PCR) and TaqMan-quantitative
Polymerase Chain Reaction (qPCR) readings of the number of detected environmental DNA (eDNA). (Legend: T-
Tapel, S1-Sampling Point Number, PSS1- Potential Snail Site Number, R1-Replicate Number, ASS2- Actual Snail
Site Number, M- Magrafil). Table S2. qPCR of O. hupensis quadrasi eDNA in barangay Tapel and barangay Magrafil
with corresponding Ct (cycle threshold values) and Ct threshold. Table S3. Edaphic factors of all soil samples in
Barangay Tapel and Magrafil. Figure S1. TaqMan qPCR amplification plots of O. hupensis quadrasi, showing cycle
threshold (Ct) levels as indicated by the blue horizontal line; the positive control is indicated by the pink line. The
positive result is indicated by amplifications exceeding the threshold line. Each color represents a single sample.
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