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In recent years, with the development of smart grid, the power systems and other energy systems are gradually forming integrated
energy systems. +e electric-thermal integrated energy system is a mature integrated energy system at present. +e electric-thermal
integrated energy system uses modern communication technology to realize the comprehensive regulation of electric energy and
thermal energy, which greatly improves the efficiency of energy use. However, this also greatly increases the risk ofmalicious tampering
with the energy dispatch system. In this paper, we study the regulation of electric-thermal integrated energy systems considering false
data injection attacks. First, we establish a compromised model of an electric-thermal integrated energy system considering false data
injection attacks. +en, we designed vulnerable variable observers for different tampering scenarios to observe the tampered variables.
Finally, considering the relationship between the observed data and the measured data, we design a tampering behavior detection
method based on relation network. +e simulation results verify the effectiveness of the detection method proposed in this paper.

1. Introduction

+e electric-thermal integrated energy system (ETIES) is an
important part of the integrated energy system. With the aid
of the advanced network information technology and in-
novative operation and management models, ETIES inte-
grates electrical and thermal energy in the region, realizes
operation optimization and coordinated control among
various heterogeneous energy sub-networks through energy
coupling equipment, and effectively improves energy con-
version efficiency and promotes sustainable energy while
meeting the diverse energy needs of users [1–3]. However,
ETIES based on distributed optimization architecture is a
highly integrated information-physical energy system. +e
information system of ETIES is bound to endure a huge
threat of cyber attacks while exchanging a large amount of
information data [4, 5].

+e spread of malicious attacks in the communication
network will destroy the environment of network

communication, make the economic operation of the system
impossible, even destroy the stability of the system [6, 7]. In
[8], the authors propose that the measurement equipment in
the cyber physical system suffer from multiple types of cyber-
attacks, and summarizes the current mainstream attack de-
fense schemes based on learning-based methods. In [9], the
authors propose that the energy-water nexus with multiple
sensors may be vulnerable to cyber-attacks. To deal with the
potential threats, an observer-based attack detection method
is proposed. As a typical information-physical system, the
monitoring and control of power system highly depends on
the accuracy of measured data [10]. When the measurement
data is compromised, the operation stability and security of
the power system will be greatly reduced, thus threatening
social security and social economy. To enhance the resilience
of the sensors in power systems, the attack defense scheme
based on the features of the measured data is proposed. +is
type of attack detection scheme enables cyber physical system
to maintain good detection performance under cyber-attacks.
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False data injection attack (FDI attack) is a new form of
attack that has appeared in recent years to undermine the
credibility of the operational data of integrated energy
systems [11, 12]. When the attacker has the ability to inject
data streams into the data transmission channel of the in-
tegrated energy system, attack vectors can be constructed
targeting the vulnerabilities of the traditional bad data de-
tectionmethods and identificationmethods of the integrated
energy system, and arbitrarily manipulate the data of the
attacked data channel of the integrated energy system. +e
flow changes the real data of the system into false data, which
affects the real-time operation status of the power system,
thus threatening the stable, safe and economic operation of
the power system. +erefore, it is necessary to improve the
attack defense capability of monitoring node sensors to resist
the damage to the system caused by cyber-attacks [13, 14].

At present, there are two main perspectives in the re-
search on considering the existence of FDI attacks in the
system. On the one hand, from the perspective of FDI at-
tackers, researchers design an optimal attack strategy that
can improve the probability of successful attack and attack
effect. Reference [15] studies the attack vector construction
method from the attacker’s point of view. Combining the l0
norm and l1 norm of the attack vector, an attack evaluation
index to measure the attack effect and attack cost is pro-
posed. References [16–18] considered the scenarios where
the measurement data in the actual system has different
security protection levels, and proposed a corresponding
minimum attack vector construction method. In order to
reduce the attack cost and improve the attack efficiency, the
literature [19, 20] designed an attack vector construction
method based on the minimum cut set with the goal of
making the energy system lose its ability to observe the
external environment. At the same time, other attack sce-
narios can also be considered when constructing false data
injection attack vectors. +e attacker in [21] used traditional
attack methods such as worms to break through the firewall
and obtained the control authority of the basic equipment,
and then launched a false data injection attack to tamper
with the state variables of the energy system, thereby causing
cascading failures of associated equipment. Reference [22]
proposed a form of attack based on false data injection
attacks to attack the topology of power systems—Man-in-
the-middle attacks (MITM attacks). In this form of attack,
the attacker eavesdrops on the data transmission terminals
of the power system, and spoofs the status of the power
system equipment by injecting false data. At this time, the
communication mode between data transmission terminals
changes from direct communication in normal state to relay
communication through third-party devices, and the reli-
ability of the association state between devices will be
destroyed. Reference [23] demonstrates the attack effect of a
multi-level MITM attack with the help of a simulation
platform.+e simulation results show that this type of attack
can mislead the control center to make a wrong assessment
of the current energy system topology by controlling the
switch state between the devices, and trigger misoperations
to cause power system physical layer accidents. Reference

[24] added a data frame attack to the man-in-the-middle
attack based on the normalized residual search method.
Different from traditional false data injection attacks, which
aim to maintain the concealment of false data, the main
purpose of this type of attack is to deliberately launch bad
data detection (BDD) to make real data be regarded as false
data, thereby disturbing state estimation of energy system.

On the other hand, researchers propose defense strat-
egies against network attacks from the perspective of system
defense. References [25, 26] use Petri nets to describe the
information flow between data interaction terminals in a
power cyber-physical system and propose a cooperative
intrusion detection algorithm against false data injection
attacks. +e analysis model based on Petri net can clearly
describe the transient and steady-state reliability of power
system under multiple attack events. +e detection of false
data injection attacks based on machine learning algorithms
is also a research direction that domestic and foreign re-
searchers focus on. Reference [27] considered the behavior
characteristics of false data injection attacks against load
frequency control systems, and designed an intelligent attack
detection algorithm based on multi-layer perceptrons to
effectively identify false data injection attacks. Reference [28]
considered the behavior characteristics of false data injection
attack on power system transmission lines, using pro-
grammable logic controller as a detection method. +e
computing node of the algorithm is tested, and the classifier
of machine learning is used to realize the identification of
false data injection attacks. +is distributed attack detection
algorithm can effectively reduce decision-making delay and
improve attack detection efficiency. Reference [29] proposed
an unsupervised attack detection scheme based on the
isolation forest algorithm, and used the principal component
analysis method to extract the features of the power system
variables, thereby reducing the dimensionality problem in
the machine learning process. Reference [30] considered the
problem of a small number of abnormal samples in the
process of machine learning training, and proposed an
intelligent attack detection algorithm using the support
vector description domain to detect false data injection
attacks in the load frequency control system. Reference [31]
considered the false data injection attack form for load
forecasting, proposed a machine learning-based load fore-
casting anomaly detection method, and estimated the false
data injection attack type through naive Bayesian
classification.

Similar to the original social power supply, heating and
other systems, in the operation process of ETIES, one of the
most concerned issues is how to realize the economic
scheduling of the system, that is, how to comprehensively
allocate the capacity distribution between multiple energy
units on the premise of meeting the system security con-
straints, so as to minimize the economic cost of the system,
and then realize the dual guarantee of system operation in
terms of security and economy. +e economic scheduling
method of ETIES can be divided into centralized method
and distributed method. Although the centralized method
has high efficiency in information processing, it has some

2 Computational Intelligence and Neuroscience



problems, such as high communication cost and sensitivity
to single point of failure. +e distributed method can use the
sparse communication network structure to realize the
decentralized cooperation of various equipment compo-
nents of the system, which has less communication burden,
stronger robustness and privacy. +erefore, in recent years,
experts and scholars at home and abroad have proposed
many ETIES economic scheduling methods based on dis-
tributed optimization.

However, it is worth noting that although the above
method can effectively solve the distributed economic
scheduling problem of ETIES, its premise is that the system
operates in an ideal network communication environment,
that is, a large number of interactive measurement and
control data can be reliably transmitted on the communi-
cation line. However, ETIES based on distributed optimi-
zation architecture is an energy system with high integration
of information and physics. While the information system of
ETIES interacts with a large amount of information and
data, it is bound to suffer from a huge threat of network
attack. +e spread of malicious attacks in the communi-
cation network will destroy the bad environment of network
communication, make the economic operation of the system
impossible, and even destroy the stability of the system,
resulting in the paralysis of the energy supply system.

ETIES is a large system with electrical-thermal coupling
characteristics, and its structure and operation are much
more complex than traditional power systems. +erefore,
malicious attackers need to adopt more complex and tar-
geted strategies according to system conditions when
attacking ETIES. So far, most of the research on the impact
of network attacks on system performance is carried out on a
single power system, and there is no research on the impact
of network attacks on the operational security of ETIES. +e
distributed scheduling of ETIES depends on the security and
reliability of the communication network, and network
attacks will inevitably affect the scheduling process of ETIES,
thereby affecting the performance of the system.

Aiming at this research gap, the motivation of the paper
is to enhance the safety and security of the electric-thermal
integrated energy system by studying the ETIES model
under FDI attacks and designing an attack detection method
based on machine learning algorithm.

+e main contributions of the paper are three fold:

(1) We establish attack templates in the electric-thermal
integrated energy system and discuss the impact of
false data injection attacks on the integrated energy
system.

(2) In the electric-thermal integrated energy system
under FDI attack, we propose an observer-based
method for observing vulnerable variables of the
system, so that the compromised variables can be
effectively observed.

(3) Using the observation data obtained by the observer,
we propose a relation network-based attack detec-
tion algorithm to detect FDI attacks in integrated
energy systems.

+e scope of the paper is shown as follows: first, the
compromised model of the electric-thermal integrated en-
ergy system is discussed in this paper; +en, based on the
variables in the system, a machine-learning-based attack
detection method is studied to identify the FDI attacks on
ETIES.

+e remaining part of this paper is organized as follows:
in Section 2, the model of the compromised electric-thermal
integrated energy system under FDI attacks is established. In
Section 3, the observer of the vulnerable variables is
designed. In Section 4, the attack detection method based on
relation network is designed. In Section 5, simulations are
designed and the results are discussed. In Section 6, con-
clusions are stated.

1.1. Indices and Variables. xP
p : Incremental cost of power

only device.
xC

p : incremental cost of combined heat and power device.

xC
h : thermal incremental cost of combined heat and

power device.
xH

h : thermal incremental cost of heat only device.

uP
p : electric power mismatch of power only device.

uC
p : electric power mismatch of combined heat and

power device.
uC

h : thermal power mismatch of combined heat and
power device.

uH
h : thermal power mismatch of heat only device.

m(k): attack vector.
yP

p: electric output power of power only device.

yC
p : electric output power of combined heat and power

device.
yC

h : thermal output power of combined heat and power
device.

yH
h : thermal output power of heat only device.

x: state vector of the system.
x: augmented state vector of the system.
􏽢x: observation of augmented state vector.
e: estimation error.
dm: data vector in the measured data set.
do: data vector in the observed data set.
F(dm): feature vectors of measured data.
F(do): feature vectors of observed data.
Pm

i : prototype of the measured data feature vector in
class i.

Po
i : prototype of the observed data feature vector in class i.

Nm
i : number of samples in class i of measured data

feature vectors.
No

i : number of samples in class i of observed data feature
vectors.

C: concatenation module in relation network.
R: relation module in relation network.
S: similarity score in relation network.
Lm: objective function in relation network.
lm: labels for measured data.
lo: labels for observed data.
MA: evaluation index of accuracy.
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MD: evaluation index of the probability of detecting
correctly.

MS: evaluation index of success ratio.
MI: evaluation index of probability of identifying nor-

mal cases.
MF: trade off between MD and MS.

1.2. Abbreviations. ETIES: electric-thermal integrated en-
ergy system.

FDI: false data injection.
MITM: man-in-the-middle.
BDD: bad data detection.
DDCA: distributed energy double-consensus algorithm.
POD: power only device.
CHP: COMBINED heat and power.
RELU: rectified linear unit.

2. FDI Attacks against Compromised Electric-
Thermal Integrated Energy System
and Countermeasures

In this section, we propose the FDI attacks against electric-
thermal integrated energy system and study the counter-
measures by designing the attack detection scheme. First, we
introduce the basics of the energy management control
strategy of electric-thermal integrated energy system, and
propose the compromised model as the first step to mitigate
FDI attacks. Second, based on the compromised model, we
design observers to detect the variables compromised by FDI
attacks. Finally, based on the observed data obtained by the
proposed observers and the measured data obtained by
measurement in ETIES, we propose an attack detection
method to identify the safety status of ETIES.

2.1. Basics of Compromised Electric-+ermal Integrated En-
ergy System. +e typical distributed energy management
method of electric-thermal integrated energy system is to use
distributed energy double-consensus algorithm (DDCA).
DDCA employs two different consensus protocols. One of
the consensus protocols is used to calculate the incremental
cost corresponding to the optimal solution of the ETIES
economic dispatch problem. Another consensus protocol
aims to estimate the amount of electrical/thermal local
power mismatch for coordinating device output. +e two
protocols of DDCA use different but strongly coupled
consistency variables to calculate the electric/thermal in-
cremental cost, electric/thermal output power and electric/
thermal local power mismatch corresponding to the optimal
solution of ETIES economic dispatching problem, so as to
finally realize the distributed economic dispatching of
ETIES. ETIES scheduling depends on the information ex-
change and local calculation between each unit and its
neighbors. Each energy unit contains a distributed controller
for operation.

+e attacker can attack the incremental cost estimator
and the output power decision of the energy unit in DDCA,

thereby affecting the output power of the unit in the energy
unit. Inspired by reference [32], the compromised incre-
mental cost estimator and output power decision-maker
studied in this paper can be written as

x(k + 1) � Ax(k) + Bu(k), normal,

x(k + 1) � Ax(k) + Bu(k) + Mm(k), compromised,
􏼨

(1)

where

x � xP
p xC

p xC
h xH

h􏽨 􏽩
T
,

u � uP
p uC

p uC
h uH

h􏽨 􏽩
T
,

(2)

where A is the consistency algorithm update matrix in
DDCA, which is determined by the adjacency relationship
between the current energy unit and the surrounding energy
unit; B is the algorithm convergence rate adjustment matrix
in DDCA; M is the corresponding attack weight matrix.

+e compromised output power decision-maker studied
in this paper can be written as

y(k) � Cx(k), normal,

y(k) � Cx(k) + Nm(k), compromised,
􏼨 (3)

where

y � yP
p yC

p yC
h yH

h􏽨 􏽩
T
, (4)

where C is the cost coefficient matrix; N is the corresponding
attack weight matrix.

It can be learned that FDI attacks can change the power
output of the energy unit by tampering with the state
variables of different modules in the ETIES, which has an
impact on the power balance of the integrated energy sys-
tem. In the next section, observers for different attack in-
trusion locations are designed to observe the FDI attacks.

3. Design of Observers for Detecting
Compromised Variables in ETIES

3.1. Observer Design of Incremental Cost Estimator under FDI
Attacks. In this part, we focus on the observer for com-
promised incremental cost estimator. +e compromised
system 􏽐ice can be expressed as

x(k + 1) � Ax(k) + Bu(k) + Mm(k),

y(k) � Cx(k).
􏼨 (5)

Taking the attack vector m(k − 1) at k − 1 time as an
additional state, we can obtain the augmented state vector
x(k) � [x(k)m(k − 1)]T. +e following augmented system
can be established

Ex(k + 1) � Ax(k) + Bu(k),

y(k) � Cx(k),

⎧⎨

⎩ (6)

where
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E �
In −M

0 0
􏼢 􏼣,

A �
A 0

0 0
􏼢 􏼣,

B �
B

0
􏼢 􏼣,

C �
C

0
􏼢 􏼣

T

.

(7)

+e following observer of the augmented system is
designed

z(k + 1) � RA􏽢x(k) + RBu(k) + L(y(k) − C􏽢x(k)),

􏽢x(k) � z(k) + Ty(k),

⎧⎨

⎩ (8)

where z represents the state vector of the dynamic system
(4); R, L and T are the gain matrices with appropriate
dimensions.

Theorem 1. When the compromised system has a state
observer in the form equation (5), it needs to meet the fol-
lowing requirements: (1) RE + TC � In+q; (2) +ere are
symmetric positive definite matrices P and W satisfying

−P (RA)
T
P − C

T
W

T

∗ −P

⎡⎢⎣ ⎤⎥⎦< 0. (9)

Proof. Proof. Consider nonsingular matrices
U ∈ R(n+q)×(n+q) and V ∈ R(n+q)×(n+q) such that

UEV �
IN 0

0 0
􏼢 􏼣. (10)

Based on Sylvester inequality, we can derive

rank

In 0

0 0

C 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� rank
U 0

0 Im

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦
E

C

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦V
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

� rank
E

C

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

� n + q.

(11)

+erefore, we can derive

rank
IN 0

C 0
􏼢 􏼣

� rank
E

C
⎡⎣ ⎤⎦

� n + q,

rank(UEV + CV) � rank
IN 0

C 0
􏼢 􏼣 � n + q.

(12)

When the matrix to be designed R is

R � V(UEV + CV)
− 1

U. (13)

+en the matrix R is a nonsingular matrix. Let the matrix
T be

T � V(UEV + CV)
− 1

. (14)

+ere exists RE + TC � In+q. +e relationship between
matrix [R, T] and matrix [EC]T is satisfied

E

C
⎡⎣ ⎤⎦ R T􏼂 􏼃

E

C
⎡⎣ ⎤⎦ �

E

C
⎡⎣ ⎤⎦. (15)

+en according to Moore Penrose theorem, it can be
seen that [R, T] is a kind of generalized inverse matrix of
[EC]T, and has

R T􏼂 􏼃 �
E

C
⎡⎣ ⎤⎦

†

+ Θ In+q+m −
E

C
⎡⎣ ⎤⎦

E

C
⎡⎣ ⎤⎦

†

⎛⎝ ⎞⎠. (16)

Among them, Θ ∈ R(n+q)×(n+q+m) is a freely selected
matrix, and the main purpose of parameter selection is to
make R a nonsingular matrix.

For the system estimation error, we can derive

e(k) � x(k) − _x(k). (17)

+us
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e(k + 1) � (RE + TC)x(k + 1) − z(k + 1) − Ty(k + 1)

� REx(k + 1) − z(k + 1)

� (RA − LC)e(k).

(18)

Select the following Lyapunov function

V(k) � e
T
(k)Pe(k), P> 0. (19)

We can derive

ΔV(k) � V(k + 1) − V(k)

� e
T
(k) (RA − LC)

T
P(RA − LC) − P􏽨 􏽩e(k).

(20)

If there exists matrix P and matrix L satisfying

−P (RA − LC)
T
P

P(RA − LC) −P

⎡⎣ ⎤⎦< 0. (21)

+en according to Schur complement theorem and
Lyapunov stability theory, it can be obtained that ΔV(k)< 0
and e(k) is convergent. Let W � PL, then inequality
equation (21) is equivalent to inequality equation (9).

+e proof is completed. It can be learned that the de-
fender can observe the system variables through the observer
proposed in this paper when the incremental cost estimator
is compromised. □

3.2. Observer Design of Output Power Decision-Maker under
FDI Attacks. In this part, we focus on the observer for
compromised output power decision-maker. +e compro-
mised system 􏽐opd can be expressed as

x(k + 1) � Ax(k) + Bu(k),

y(k) � Cx(k) + Nm(k).
􏼨 (22)

Taking the attack vector m(k) as an additional state, we
can obtain the augmented state vector x(k) � [x(k)m(k)]T.
+e following augmented system can be established

Ex(k + 1) � Ax(k) + Bu(k),

y(k) � Cx(k),

⎧⎨

⎩ (23)

where

E �
In 0

0 0
⎡⎢⎣ ⎤⎥⎦,

A �
A 0

0 0
⎡⎢⎣ ⎤⎥⎦,

B �
B

0
⎡⎢⎣ ⎤⎥⎦,

C �
C

N

⎡⎢⎣ ⎤⎥⎦

T

.

(24)

Similarly, for this augmented system, we can also con-
struct an observer in the form of formula (8). Conditions for
the existence of observer are stated in +eorem 1. Due to
space limitation, the proof of the existence of the observer is
not repeated in this subsection. It can be learned that the
observer design method based on augmented system can be
effectively applied to the situations where incremental cost
estimator or output power decision-maker is compromised.

3.3. Observer Design in Situations of Multiple Modules being
Compromised considering Uncertainties. In this part, mul-
tipoint FDI attacks are considered: the attacker can launch
FDI attacks on incremental cost estimator and output power
decision-maker simultaneously. +e compromised system
􏽐s can be expressed as

x(k + 1) � Ax(k) + Bu(k) + Mm(k) + Eaωa(k),

y(k) � Cx(k) + Nm(k) + Esωs(k),
􏼨 (25)

where ωa(k) and ωs(k) are unknown input vectors caused
by uncertainties of system; Ea and Es are known constant
coefficient matrices with appropriate dimensions. Taking the
attack vector as an additional state, we can obtain the
augmented state vector x(k) � x(k) m(k)􏼂 􏼃

T. +e fol-
lowing augmented system can be established

x(k + 1) � Ax(k) + Bu(k) + Eaωa(k) + Gm
d
(k),

y(k) � Cx(k) + Esωs(k),

m
d
(k) � m(k + 1) − m(k),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(26)

where

A �
A M

0 Iq

⎡⎣ ⎤⎦,

B �
B

0
􏼢 􏼣,

C �
C

N
􏼢 􏼣

T

,

Ea �
Ea

0
􏼢 􏼣

T

,

G �
0

Iq

⎡⎣ ⎤⎦

T

.

(27)

+e following augmented system can be established

z(k + 1) � Rz(k) + Su(k) + L1 + L2( 􏼁y(k),

􏽢x(k) � z(k) + Ty(k),
􏼨 (28)

where z represents the state vector of the dynamic system
equation (26); R, S, L1, L2 and T are the gain matrices with
appropriate dimensions.+e estimation error can be defined
as e(k) � x(k) − 􏽢x(k).

+e derivative of the estimation error can be calculated
as
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e(k + 1) � (I − TC)x(k + 1) − z(k + 1) − TEsωs(k)

� (I − TC)A − L1C􏽨 􏽩e(k)

+ (I − TC)A − L1C − R􏽨 􏽩z(k)

+[(I − TC)B − S]uk

+ (I − TC)A − L1C( 􏼁T − L2􏽨 􏽩y(k)

+(I − TC)Eaωa(k) +(I − TC)Gm
d
(k)

− L1Esωs(k) − TEsωs(k + 1).

(29)

If the following relationships can be held:

(I − TC)Ea � 0,

(I − TC)A − L1C � R,

(I − TC)B � S,

RT � L2.

(30)

+e derivative of the estimation error can be expressed as

e(k + 1) � Re(k) +(I − TC)Gm
d
(k)

− L1Esωs(k) − TEsωs(k + 1).
(31)

+e proof of the necessary conditions for the existence of
the observer for the augmented system (26) can be found in
[33] and omitted in here.

Theorem 2. For the augmented system 23, there exists a
robust observer in the form of equation (24) such that
‖e(k)‖l2

≤
�
2

√
r‖c(k)‖l2

where c(k) � md(k) ωs(k)􏽨 􏽩
T
, if

there exists a positive definite matrix P andmatrix Q, such that

−P + In ∗ ∗ ∗

0lc×n −r
2
Ilc

∗ ∗

0lc×n 0lc×lc
−r

2
Ilc
∗

PA1 − QC PV1 − QV2 PV2 −P

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (32)

where A1 � (I − TC)A, Q � PL1, V1 � [(I − TC)G0n×ln
],

V2 � [0p×qEs], and V2 � −TV2.

Proof. Proof. Take the following Lyapunov function can-
didate for system (30)

V(k) � e
T
(k)Pe(k), (33)

one has

ΔV(k) � V(k + 1) − V(k)

�

e(k)

c(k)

c(k + 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T
R

V1 − L1V2

V2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦P

R

V1 − L1V2

V2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

+
−P 0

0 0
􏼢 􏼣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e(k)

c(k)

c(k + 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(34)

If c(k) � 0, from equations (32) and (34) one has
ΔV(k)< 0. +e error dynamic is asymptotically stable.

Let

Γ � 􏽘
∞

k�0
ΔV(k) + e

T
(k)e(k) − r

2
c

T
(k)c(k)􏼐

− r
2
c

T
(k + 1)c(k + 1)􏼑.

(35)

We can derive

Γ � 􏽘
∞

k�0

e(k)

c(k)

c(k + 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T
R

V1 − L1V2

V2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
P

− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P

R

V1 − L1V2

V2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

−P + I 0

0 −r
2
I

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e(k)

c(k)

c(k + 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(36)

Based on equations (32) and (36), we can derive

􏽘
∞

k�0
e

T
(k)e(k) − r

2
c

T
(k)c(k) − r

2
c

T
(k + 1)c(k + 1)􏼐 􏼑

+ V(∞) − V(0)< 0.

(37)

In view of the fact that V(∞)≥ 0 and V(0) � 0, we can
derive

􏽘
∞

k�0
e

T
(k)e(k) − 2r

2
c

T
(k)c(k) < 0, (38)

which is equivalent to ‖e(k)‖l2
≤

�
2

√
r‖c(k)‖l2

. +e proof is
completed.

Based on the proposed observer, we can derive the
observed data of the variables and themeasured data of those
in DDCA. For the defender, it is necessary to identify the
similarities between the measured data and the observed
data under normal situations and distinguish the differences
under the compromised situations. □

4. Detection Scheme against FDI
Attack considering Dual Source Data

In this section, we study the attack detection scheme against
FDI attacks based on the observed data of the variables and

Computational Intelligence and Neuroscience 7



the measured data of those in DDCA. A relation-based
detection network is proposed to extract the similarity of the
dual source data. We design the machine-learning-based
detection scheme based on the following considerations:

(i) +e method of calculating dual source data vector
similarity based on traditional Euclidean distance
requires too much prior knowledge level of de-
fenders. In this paper, we use an embedding module
and a relation module to extract the similarity of the
dual source data automatically.

(ii) Traditional machine learning methods need the
distance of data vector in feature space to identify,
which means that large scale of training data set is
needed. In this paper, we skip the learning of feature
distance and directly learn the relationship between
dual source data, so as to effectively reduce the
demand for the size of data set.

As is shown in Figure 1, the detection network contains
measured data set, observed data set, Embedding module,
and relation module. +e data in the observed data set can
reflect the current real operating state of the DDCA system,
and the data in the measured data set may be tampered with.
As to the attack detection network, we identify the attack by
comparing the observed data with measured data. +e
measured data set consists of the compromised data set and
the normal data set. When the data for comparison comes
from the compromised data set, the relationship between
dual source data is strong similarity. When the data for
comparison comes from the normal data set, the relationship
between two dual data is weak similarity.

As to the datasets, the data vectors in each dataset
consists of the time series data of target variables in DDCA,
including the data of incremental cost and those of output
power. +e data vector in the measured data set is written as
dm. +e data vector in the observed data set is written as do.
+e embedding module, which consists of full connect layers
and rectified linear units (ReLUs), is used to extract the
features of samples with a nonlinear function E. Compared
with the traditional manual feature extraction method, the
feature extraction by full connect layers can reduce the prior
knowledge requirements of attack detection network for
attack features. Rectified linear units are used to improve the
generalization ability of the embedding module. +e feature
vectors of measured data and observed data generated by the
embedding module can be expressed as F(dm) and F(do).
To alleviate the over fitting problem of the embedding
module, class prototype of each feature vector class is
adopted. +e prototype Pm

i of the measured data feature
vectors and the prototype Po

i of the observed data feature
vectors can be expressed as

P
m
i �

1
N

m
i

􏽘

Nm
i

j�1
F dm( 􏼁,

P
o
i �

1
N

o
i

􏽘

No
i

j�1
F do( 􏼁.

(39)

We can derive the class feature vector C(Pm
i ,Po

i ) by
concatenating the prototypes in depth dimension. +e re-
lation module is used to extract the similarity between the
concatenations with a nonlinear relation function R. +e
similarity S can be written as

S � R C P
m
i ,P

o
i( 􏼁( 􏼁. (40)

To train the attack detection model, mean square error
(MSE) is used as the objective function Lm.

Lm �
􏽘 􏽘(S − 1)

2
, lm � lo,

􏽘 􏽘(S − 0)
2
, lm ≠ lo.

⎧⎪⎨

⎪⎩
(41)

If the measured data is compromised, then lm ≠ lo and S

is closed to 0. If the measured data is normal, then lm � lo
and S is closed to 1.

Pseudocode for the proposed detection scheme is pro-
vided in Figure 2. First, input samples of variables of interest
in DDCA as measured data set. Label the compromised data
and the normal data. +en, use the proposed observer to
observe the variables and form the observed data set. +en,
obtain the feature vectors and prototype vectors in order
with the help of the proposed module. Based on the relation
feature vector concatenated by prototype vectors, calculate
the similarity score using relation module. Based on the
proposed objective function, optimize the model parameters
with the stochastic gradient descent optimizer. After training
the model, sample the incoming data, calculate the similarity
and output the type of the test data.

5. Case Study

In this section, simulations are carried out to illustrate the
effectiveness of the proposed observer and attack detection
network of the variables in DDCA. +e Barry Island elec-
tricity and heating networks is used as the tested system.+e
structure and parameters of the system can be found in [34].

5.1. Performance of the Observer for the Compromised System.
In the DDCA system, the coefficient matrices are
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A �

0.9988 0.0007 0.0006 −0.0037

0.0014 0.98 −0.0012 −0.0206

0.001 0.0037 1.0467 9.5584

0 0 0.0101 1.0234

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B �

0.0052 0.0012

0.0315 −0.0755

−0.0582 0.0454

−0.0003 0.0002

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C �

0.45 0.32 0.12 0.11

0.38 0.42 0.13 0.07

0.27 0.31 0.33 0.09

0.07 0.13 0.43 0.37

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(42)

+e attack vector is m(k) � m1(k) m2(k)􏼂 􏼃
T, where

m1(k) �

0, k< 60,

0.05(k − 60), 60≤ k< 100,

2, k≥ 100,

⎧⎪⎪⎨

⎪⎪⎩

m2(k) �
0, k< 60,

1, k≥ 60.
􏼨

(43)

First, we illustrate the performance of observer against
false data injection attacks on incremental cost estimator.
+e attack target variable is xP

p. Based on the method
proposed in Section 1, the observed data of the variable xP

p

can be obtained. +e simulation result of the dual source
data is shown in Figure 3. +e observation error is shown in
Figure 4. It can be learned that when the attack volume is a
static value, the observed data can effectively track the
measured data. When the attack volume changes, there is a
certain observation error between the observed data and the
measured data, because the changed attack volume is
equivalent to the changing disturbance volume. +e dif-
ference between the observed data and the measured data
will be an important basis for the attack detection network to
identify whether the system is compromised.

+en, the performance of observer against false data
injection attacks on output power decision-maker is studied.
+e attack target variable is yC

p . Based on the method
proposed in Section 2, the observed data of the state variable
xC

p in DDCA can be obtained. +e simulation results are
shown in Figures 5 and 6.

It can be learned that the FDI attacks on electric output
power yC

p in the output power decision-maker makes the
measured incremental cost data xP

p different from the ob-
served ones. Compared with the FDI attacks on incremental
cost estimator, the impact of FDI attacks on output power
decision-maker can be reflected by the variables in incre-
mental cost estimator.

To illustrate the performance of the proposed observer in
situations of multiple modules being compromised, we
analysis the simulation results considering the situation that
xC

h and yC
h are compromised simultaneously. Based on the

method proposed in Section 3, the observed data of the
variable xC

h can be obtained. +e simulation results are
shown in Figures 7 and8. It can be learned that there are
obvious differences between the measured data and the
observed data. +e difference of dual source data is affected
by the attack volume, as well as the system noise, disturbance
and delay. +erefore, it is necessary to identify whether the
system is compromised based on the attack detection
scheme.

5.2. Performance of theObserver for the Relation-BasedAttack
Detection Scheme. In this subsection, we evaluate the per-
formance of the proposed attack detection scheme. In the
embedding module, there are three full connect layers and
rectified linear units.+e batch size of the relation network is
chosen as 20. In the measured data set, there are 500 normal

Measured data set

Observed data set

FC1 FC2 FCkFC3 ReLUReLU ReLU ReLU

Compromised data

Normal data

Observed data

Relation module

Feature vector
Embedding module

Relation
score

Figure 1: +e relation network for FDI attack detection.

1: Input the measured data vector dm containing xP
p, xC

p, xC
h, xH

h, xP
p, xC

p,
xC

h and xH
h to form measured dataset.

2: Input the observed data vector do containing xP
p, xC

p, xC
h, and xH

h
obtained by the proposed observer to from observed dataset.
3: Obtain feature vectors F (do) and F (dm) using embedding module.
4: Obtain prototype vectors Po

i and Pm
i of each class using prototype

equation.
5: Concatenate Po

i and Pm
i as relation feature vector C (Pm

i ,Po
i).

6: Calculate similarity score S using relation module.

7: Calculate Lm

8: Optimize (Stochastic Gradient Descent)

9: End While

10: Input test data vector.

11. Calculate relation score.

12. Output the type of the test data.

~ ~
~ ~

ˆ ˆ ˆ ˆ

Figure 2: Pseudocode for the proposed detection scheme.
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Figure 3: Dual source data of variable xP
p under FDI attacks on incremental cost estimator.
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Figure 4: Observation error of variable xP
p under FDI attacks on incremental cost estimator.

2

3

4

5

6

7

8

9

In
cr

em
en

ta
l c

os
t o

f C
H

P 
(p

.u
.)

Observed Data
Measured Data

0 20 40 60 80 100 120 140 160 180 200
Time (s)

Figure 5: Dual source data of variable xC
p under FDI attacks on output power decision-maker.
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sample data and 500 compromised data from the historical
database. In the observed data set, 1000 observed data are
generated based on the proposed method studied in Section
B. +e simulations are carried out on a personal computer
with Intel processor core i7, cache 3.4GHz, NVIDIA GTX
2060, and random-access memory (RAM) 32GB.

To evaluate the performance of the relation-based attack
detection scheme, the following metrics are used:

(1) Accuracy:

MA �
TP + TN

TP + TN + FP + FN
, (44)

where TP represents the number of true positive
detection results; TN represents the number of true
negative detection results; FP represents the number

of false positive detection results; FN represents the
number of false negative detection results.

(2) +e probability of detecting correctly:

MD �
TP

TP + FN
. (45)

(3) Success ratio:

MS �
TP

TP + FP
. (46)

(4) Probability of identifying normal cases:

MI �
TN

TN + FP
. (47)

(5) Trade off between Mdc and Ms:
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Figure 6: Observation error of variable xC
p under FDI attacks on output power decision-maker.
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Figure 7: Dual source data of variable xC
h under FDI attacks on multiple modules.
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MF(T) �
1 + T

2
􏼐 􏼑 · Mdc · Ms

T
2

· Mdc + Ms

, (48)

whereT is the trade-off coefficient. Details about the
performance metrics can be found in [31].

To illustrate the effectiveness of the proposed detection
scheme, six methods are adopted for comparison: (1) +e
proposed relation-based attack detection scheme (ME1); (2)
Attack detection scheme using relation network without
prototype module (ME2); (3) Attack detection scheme using
multi-layer perception (ME3); (4) Attack detection scheme
using signal forecasting method (ME4); (5) Attack detection
scheme using support vector machine (ME5); (6) Attack

detection scheme using clustering artificial bee colony al-
gorithm (ME6).

+e simulation results are shown in Figure 9. Compared
with other attack detection scheme, the attack detection
scheme (ME1) proposed in this paper has better perfor-
mance in each algorithm evaluation index, that is, the
proposed detection scheme can effectively detect false data
injection attacks on variables in DDCA. +e better per-
formance of the proposed attack detection scheme mainly
comes from the fact that the relation-based attack detection
network focuses on exploiting the differences between
normal data and compromised data, while the other attack
detection schemes focus on exploiting the features. If the
common features of normal data and compromised data are
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Figure 9: Performance of different attack detection method.
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Figure 8: Observation error of variable xC
h under FDI attacks on multiple modules.
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learned by the other attack detection schemes, it will have a
negative impact on the performance of the attack detection
schemes.

5.3. Stability and Reliability of the Relation-Based Attack
Detection Scheme. In order to further investigate the
stability of the detection performance of the proposed
attack detection scheme, the performance of the attack
detection scheme with different proportion of training
sets is studied: at an interval of 5%, samples with a

proportion from 40% to 80% are selected as the training
sets. +e simulation results are shown in Figure 10. It can
be seen that although the performance of the proposed
attack detection scheme will decline with the sample size,
and the performance of some training sample sizes is
inferior to other schemes, its overall attack detection
performance is basically in the first echelon, which verifies
that the attack detection scheme still has excellent de-
tection effect under the sample size discussed in this
section.
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Figure 10: Performance of detection schemes considering different training set proportion. (a) MA. (b) MD. (c). MS. (d) MI.
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Considering the insufficient samples of compromised
data in practice, we further discuss the reliability and sta-
bility under different positive and negative sample ratios. In
this section, the ratio of positive samples to negative samples
is 1 :1, 1 : 2, 1 : 5 and 1 :10 respectively. +e specific per-
formance verification effect is shown in Figure 11. It can be
learned that when the number of positive samples is smaller
than the number of negative samples, the performance of the
proposed attack detection scheme will decline to a certain
extent, but the overall performance still has certain ad-
vantages over other detection schemes. +e decline of de-
tection performance is mainly due to the fact that the attack

detection network can not fully learn the difference between
positive and negative samples.

Considering that the detection scheme proposed in this
paper depends on the real-time data of the sensors, we
further study the impact of measurement noise and mea-
surement delay on the attack detection performance in the
process of collecting sensor data. We design two metrics,
security noise and security delay, to evaluate the detection
performance of the proposed attack detection method. Safe
noise (delay) refers to themaximumnoise (delay) that can be
tolerated when the detection accuracy (MA) reaches a
specified threshold.
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Figure 11: Performance of detection schemes considering different ratio of positive samples to negative samples. (a) MA. (b) MS. (c) MS.
(d) MI.
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Safe noise and safe delay considering different threshold
of MA are in Table 1. It can be learned that the safe noise
(delay) decreases with the increase of the threshold. It can be
seen that when there are high requirements for the accuracy
of the detection scheme, the data required by the detection
scheme is also more ideal. Noise and delay have a significant
impact on the detection effect. Correspondingly, if the re-
quirements for detection performance are appropriately
reduced, the proposed detection scheme has a certain tol-
erance to noise and delay. As a remedy, the defender should
also consider using a variety of detection schemes to cross
check the attack behavior, so as to improve the overall
accuracy.

6. Conclusions and Discussions

6.1. Conclusions. In this article, false data injection attacks
on distributed controller of electric-thermal integrated en-
ergy system and countermeasures are studied. Observers of
variables in DDCA are designed to track the compromised
data. +e proposed observer can achieve the observation
considering different attack targets in DDCA. Based on the
observed data and the measured data, we proposed a rela-
tion-based attack detection scheme to identify the false data
injection attacks.

+e simulation results show that the attack detection
scheme has better performance than the current mainstream
scheme under multiple evaluation indexes. +e better de-
tection performance of the proposed scheme is attributed to
its direct judgment of the difference between normal data
pairs and compromised data pairs, which reduces the
learning of other unnecessary or incorrect features. For the
stability of the proposed scheme, compared with other
schemes, the proposed scheme canmaintain better detection
performance with less proportion of training sets.

+erefore, we believe that the proposed attack detection
scheme can achieve good performance against FDI attacks
on ETIES.

6.2. Discussions. It can be seen that the limitation of the
proposed method used in this paper is that it requires real-
time data of the system, which makes the defender have a
certain dependence on the real-time sensor communication
network. As to practical implementation, the challenge is
how to deal with the large-scale destruction of more sensors
by attackers. In such a scenario, the trusted data available in
this paper will be reduced, and the ability to identify attacks
will be reduced.

A possible mitigation approach is to stop using the real-
time data obtained by the sensors of the system. As an al-
ternative, the defender can use the system model and

historical data to generate prediction data for real-time data,
and use the predicted data combined with the algorithm
proposed in this paper to identify cyber attacks. It can be
seen that this research idea further reduces the dependence
on real-time sensors, thereby reducing the uncertainty under
large-scale attacks.
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