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Although there is some evidence that larger species could be 
more prone to population declines, the potential role of size 
traits in determining changes in community composition has 
been underexplored in global-scale analyses. Here, we com-
bine a large cross-taxon assemblage time series database 
(BioTIME) with multiple trait databases to show that there 
is no clear correlation within communities between size traits 
and changes in abundance over time, suggesting that there is 
no consistent tendency for larger species to be doing propor-
tionally better or worse than smaller species at local scales.

Recent analyses have found that, despite high and increasing 
levels of community turnover, there is no clear overall trend in 
local-scale species richness1–4. However, it remains unclear how 
this result translates into functional changes. One of the most 
fundamental functional traits of a species is its size5,6 and there is 
an expectation that a warming climate will lead to a shift towards 
smaller species7–11, drawing upon metabolic theory12 and the 
observed distributional patterns described by Bergmann’s rule13,14. 
Temperature-driven shifts towards smaller species have been 
observed in tundra plant communities15 and some7,9,16, but not all11, 
aquatic systems. Furthermore, larger species have been more extinc-
tion prone during some previous mass extinctions17,18 and are more 
likely to show strong recent population declines19. Although rela-
tionships are threat dependent20,21, larger species tend to be assessed 
at a higher risk of extinction due to longer generational intervals 
and increased threat from habitat loss, fragmentation and hunting22.

One might therefore expect a detectable signal of shifts in com-
munity trait values beneath the apparent underlying consistency in 
taxonomic diversity. To examine this, we tested whether the size of 
a species is correlated with the change in abundance through time 
using the publicly available BioTIME database23. This database is 
the largest collection of time series of ecological communities and, 
despite considerable biases that we discuss below, has wide geo-
graphic and taxonomic scope23. It consists of ‘studies’ defined by 
a consistent sampling methodology and taxonomic focus. After 
cleaning and standardizing the names associated with the records, 
we linked six fundamental ‘size’ traits from four openly accessible 
trait databases representing four broad guilds: adult body mass 
from a database of amniote life history traits24, adult body length 
and qualitative body size of marine species from the World Register 
of Marine Species (WoRMS) database25, plant maximum height and 
seed mass from the TRY database26 and maximum body length of 
fish from a compilation27 based on data in the FishBase repository28.

Observations from single-location studies were combined, 
whilst widely dispersed studies were separately binned into a global 
grid of cells, each approximately 10 km wide, and data from each 
study and cell were treated as discrete assemblages, following pre-
vious analyses1,29. Selecting only assemblages with quantitative 
observations of ≥10 species, over ≥5 years and with ≥40% of the 

species having records for at least one size trait, we generated 12,956 
assemblage time series from 144 studies (Fig. 1). This filtered data-
set represented 2,109,593 observations of 10,286 species, of which 
7,234 could be linked to at least one size trait (representing 84.02% 
of observations). Equally weighting studies, the average time series 
length was 18.2 years (range 5–71.8 years), and the average number 
of species per included assemblage was 65.4 (range 10–337). The 
log10 ratio between the largest and smallest species in each study 
averaged 2.49 (range 0.55–6.73) across the ‘mass’ traits and 1.06 
(range 0.3–3.15) across the ‘length’ traits.

For each trait and community assemblage time series for which 
there were sufficient data, we first square-root transformed and 
standardized each time series following previous approaches3 
and calculated βi, the slope of a regression of abundance of spe-
cies i against time. We then calculated, for each assemblage, τ (the 
Kendall rank correlation coefficient between the trait in question) 
and β, across the species for which we had trait data. This gives a 
non-parametric measure of whether larger species are more or less 
likely than smaller species to have increased through time and, 
importantly, can be calculated where trait values for only a fraction 
of the observed species are available. To weight each study within 
BioTIME equally, where there were multiple assemblages per study, 
these were averaged to generate a τ value for each possible study–
trait combination. To provide a reference distribution against which 
to evaluate the statistical significance of this multistage analysis, we 
repeated the procedure with 10,000 trait randomizations within 
each assemblage.

Certain individual studies showed significant relationships 
between size traits and population trends (coloured dots in Fig. 2 
and Extended Data Fig. 1). However, for five of the six tested size 
traits, the overall mean τ values did not differ significantly from 
the null model (Fig. 2). For one trait (amniote body mass, Fig. 2d) 
we found a marginally significant (unadjusted for multiple com-
parisons) overall average positive relationship between size and the 
slope of population trends (β). Alternative population data trans-
formations gave highly concordant results (Extended Data Figs. 2 
and 3). Possible confounding factors for the value of τ associated 
with each study, namely the total span of the time series, the num-
ber of sample points, the species richness, the range of traits in 
the assemblage, the average size trait completeness, the number of 
assemblages within the study, the grain of the study and the abso-
lute latitude, did not consistently predict either τ or τ2 (Extended 
Data Figs. 4 and 5 and Supplementary Tables 1 and 2). Further, the 
likelihood of an individual species showing either a statistically sig-
nificant positive or negative population trend was not linked to its 
relative size trait value within the assemblage (all P > 0.05; Extended 
Data Fig. 6 and Supplementary Table 3).

These results indicate that there is not yet evidence for widely 
pervasive within-assemblage trends in a core functional trait, size. 

No pervasive relationship between species size 
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Importantly however, this study should not be seen as a refutation 
or diminishment of the heightened threats faced by the very largest 
apex species30,31, which constitute only a minor component of the 
BioTIME database. Rather, against a background of considerable 
turnover2,3 across whole observed community assemblages, on aver-
age, species positions in communities are being taken up by species 
of comparable size. Our results suggest that previously identified 
shifts towards smaller species found in some aquatic systems9,16 may 
not be as universal as currently expected7,11 and align with the diver-
gent changes in global body-size abundance distributions observed 
between mammal guilds32 and the apparent stability of trait diver-
sity in North American birds despite declines in abundance33.

The tendency towards an overall positive association between 
body-size and population trends across the amniote studies could 
have a number of drivers that would benefit from further inves-
tigation. One putative explanation that has been put forward for 
positive size trends is that anthropogenic dispersal limitations (gen-
erally considered to act more strongly against smaller species) may 
be having a greater immediate impact than climate change34. There 
are also indications of differences between terrestrial and marine 
systems. Previous work with the same datasets1,29 has found greater 
species richness and abundance changes in marine than terrestrial 

systems, whilst here we see a signal of greater trait changes in the 
(largely terrestrial) amniotes.

In our dataset, the fish length trait studies displayed a particu-
larly skewed distribution of τ values (Fig. 2c), with a modal peak of 
studies showing small negative values then a tail of strongly positive 
relationships. This guild is also the most likely to have experienced 
sustained anthropogenic pressure35, and many of the ‘fish’ datasets 
in BioTIME include data from surveys of actively fished and man-
aged areas. Accurately quantifying marine community trends is a 
challenge36,37, but this pattern could reflect the imposition or relax-
ation of anthropogenic pressure across marine systems38,39. Positive 
τ values could represent recoveries from past pressures on larger 
species, and positive τ values were associated with shorter study 
durations in the fish studies (Extended Data Fig. 4).

Our analysis necessarily sacrifices fine resolution for global scale. 
Technically, BioTIME studies represent assemblages defined by  
taxonomy and sampling protocol rather than complete ecological 
communities. We must implicitly assume that the scope of each 
study within BioTIME strikes a reasonable balance between the 
need to include a sufficiently diverse set of species to be able to 
observe any potential impact of trait differences whilst maintaining 
meaningful comparability. Limitations to total time series lengths 

Terrestrial
a

b
Aquatic
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Population change–size trait
rank correlation (τ) Marine: body length

Marine: qualitative body size
Fish: maximum length

Amniotes: adult body mass
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Fig. 1 | Global distribution of studies in our dataset, showing average τ for each study–trait combination and divided into aquatic and terrestrial realms. 
The aquatic realm is principally marine but includes three freshwater studies. Note that the locations are shown as the centre point of each study, which 
can cause oceanic studies to be ‘located’ on land. See Extended Data Fig. 1 for full details of study-level results.
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and the limited range of sizes recorded within each dataset inevita-
bly constrain our capacity to detect gradual changes or subtle influ-
ences of size. Although the lack of consistent study-level drivers of 
τ suggests that the results are unlikely to be solely determined by 
the inevitable spatial and temporal limitations of the BioTIME data-
base, future work should seek to improve the scope and resolution 
of available data to enable more strongly parametric analyses and 
examine additional measures of community change.

Whilst available trait databases of amniotes and fish are carefully 
curated, checked and taxonomically tidy, the other databases pose 
more problems in terms of taxonomic matching and consistency of 
trait measurements. Without direct correspondence between the 
sources of dynamics and trait data, it is necessary to take traits as 
fixed values for each species, despite known differences in traits in 
time8,40–42 and space43 that may themselves represent responses to 
global change. However, in Celtic Sea fish, within-species shifts have 
been shown to contribute less to community-level size shifts than 
changes in species composition44. We also note that ‘size’ traits for 
indeterminately growing plants have a less clear meaning than for 
animals. However, both seed size and maximum height are linked to 
environmental variables45,46, plant size is linked to life history47,48 and 
changes in community height driven by species turnover have been 
observed in tundra plants15.

Many of the criticisms and defences regarding earlier studies  
using the BioTIME dataset, and indeed other analyses of large 
collections of time series, also apply to this work49,50. The consis-
tency between the alternative approaches we tested to determine 
population trends (Extended Data Fig. 3) demonstrates that our  
conclusions are not dependent on particular data transformation 
choices. However, a largely non-parametric statistical approach was 

necessitated by the unevenness of the available data, and it must be 
noted that it could lack the power and resolution to identify subtle 
changes. Biases in the underlying BioTIME database towards ver-
tebrate taxa, particular biomes and temperate North American 
and European sites23 are further exaggerated when crossed with 
trait data availability (Fig. 1). One particularly concerning gap is 
the absence of any insect studies in our dataset due to a paucity 
of usable trait information. Observations suggest that there have 
been considerable changes in the structure of insect communi-
ties34,51,52. Developing comprehensive insect trait datasets, including 
using proxies and data imputation, will be crucial to address this 
deficit53–55.

In conclusion, despite necessary reservations, this global analy-
sis suggests that examples of relative increases of larger species11,34 
may in fact be as frequent as shifts towards smaller-sized species16. 
Community responses appear to be considerably more nuanced 
and localized than previously considered based on theoretical 
macro-ecological expectations7.

Methods
Generating assemblage time series. We downloaded all studies available in the 
‘open’ component of the BioTIME database of community time series23 from 
https://doi.org/10.5281/zenodo.3265871. BioTIME contains observations from 
both fixed plots (repeat measures from the same set of specific localized sites) 
and from wide-ranging surveys and transects that may not necessarily precisely 
align year on year. We followed previous approaches1 and first identified studies 
as ‘multi-site’ or ‘single-site’ based on the number of coordinates in the BioTIME 
database. Single-site studies were considered as one combined assemblage, whilst 
widely dispersed ‘multi-site’ studies were portioned into assemblages based on a 
global hexagonal grid of 96 km2 cells using dggridR56. We retained records from 
assemblages with abundance or biomass data of at least 10 distinct species and at 
least 5 years between the first and last record.
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Fig. 2 | Correlation between six body-size traits and changes in abundance through time (τ). a–f, Distribution of Kendall rank correlation coefficient 
between body-size traits for body length (a) and qualitative body size (b) of marine species, maximum length of fish (c), adult body mass of amniotes 
(d) and seed mass (e) and maximum height (f) of plants versus changes in abundance through time. Each dot represents one study, averaging across the 
constituent assembly time series for studies of large spatial extent. Study-level results are binned into classes 0.05 units of τ wide. Coloured dots highlight 
studies that were individually identified as showing a significant trend (yellow for negative, blue for positive; see Extended Data Fig. 1 for study-level 
intervals). The error bar below each plot displays the distribution (central 95% and 66%) of mean τ values over 10,000 permutations of the size trait data, 
whilst the red line indicates the observed mean τ value within that panel. Displayed P values are calculated from permutation tests. Equivalent results 
using alternative approaches to transforming the community data are given in Extended Data Fig. 3.
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Cleaning names. Although the majority of the records are identified with 
binomials to species level, a portion of the records in the BioTIME database 
are labelled only at higher taxonomic levels. For simplicity, we refer to all 
distinct names as ‘species’. We identified uninformative labels (for example ‘spA’, 
‘unidentified’, ‘Miscellaneous’, ‘larvae’, ‘grass’), and common names (mostly birds) 
were converted to binomials using the Encyclopaedia of Life tool via the taxize  
R package57,58 followed by manual inspection based on study location and species 
distribution where multiple options were presented. We excluded studies where 
the species are listed using codes. Informative names were standardized against 
the Global Biodiversity Information Facility name backbone59 using ‘taxize’. The 
dominant kingdom represented in each study was used to distinguish homonyms. 
Where BioTIME included only a genus-level identification, we matched these to 
genus-level size trait values listed in trait databases. Where BioTIME only included 
taxonomic information of higher rank than genus, we did not attempt to match  
the traits.

Trait data. We used four separate trait databases that include some measure 
of organism size, but we did not mix information between databases. For 
amniotes, the life history database was downloaded from https://doi.org/10.6084/
m9.figshare.c.3308127.v124 from which we used the ‘adult_body_mass_g’ field. 
For plants, we downloaded from the TRY database (https://www.try-db.org/)26 
all records of ‘seed dry mass’ (trait 26) and ‘plant height vegetative’ (trait 3106). 
We grouped these by accepted species name, and calculated the mean of the 
log10(seedmass) values and the maximum observed height. We did not assign 
a value when the standard deviation of log10(seedmass) values was greater 
than 1. The resultant dataset was derived from 91 original datasets (cited in 
Supplementary Information). For fish, we downloaded a curated database 
of fish traits from https://store.pangaea.de/Publications/Beukhof-etal_2019/
TraitCollectionFishNAtlanticNEPacificContShelf.xlsx27, which in turn is largely 
based on data from the FishBase database28. It is focused on the North Atlantic and 
Pacific continental shelf, but this represents the majority of the relevant BioTIME 
studies. It includes values for both genus and species level. We used maximum 
length, and when there were multiple values for a particular species, we took an 
average. For marine species, we downloaded size data from the WoRMS database25. 
Aphia identifications (IDs) for all the species in our assemblages (excluding plants 
and fungi) were identified and used to download all attributes associated with 
these IDs held on WoRMS using the ‘worrms’ R package60. Quantitative ‘body size’ 
measurements of length were scaled to millimetre units. We discarded values from 
stages other than adults, and values corresponding to minimums or thicknesses, 
then took a mean, except where the values differed by over an order of magnitude, 
which we discarded. Qualitative body sizes listed on WoRMS are divided into four 
categories (<0.2 mm, 0.2–2 mm, 2–200 mm, >200 mm), that were carried forwards 
as simple numbers (1–4). Data not from adults were discarded, and where an ID 
was associated with multiple distinct size categories, it was discarded.

Summaries of the size trait data completeness are given in Extended Data Fig. 7.  
Note that 66 studies had sufficient data for analysis under multiple size traits: 36 
with both categories of plant data, 25 with length data from both WoRMS and the 
fish-specific database, 1 study spanning the amniote life history traits and WoRMS 
database, and 4 studies sharing both qualitative and quantitative size information 
from WoRMS.

Abundance change–trait correlation. We assessed each assemblage–trait 
combination where ≥40% and ≥5 of the species had data for that trait and >80% 
of year samples contained at least 5 species. We excluded transitory species within 
each assemblage by including only those species that were seen in over half of 
the year samples. Where this filtering left data from less than 1% of the cells in 
the original study, we removed the whole study. Where a study included both 
‘abundance’ and ‘biomass’ data, we preferentially used the abundance data. Studies 
with only presence–absence data were not used.

We largely followed a data transformation approach previously established 
on the BioTIME dataset3 for each species time series. Where a species’ time series 
included repeated trailing or leading zeros, these were cut to one to avoid artificial 
flattening of the slope. The totals for each species were square-root transformed, 
then scaled to a mean of 0 and a standard deviation of 1. We fit an ordinary 
least-squares regression model through the transformed population series against 
year for each species in the assemblage. The set of slopes (β) of these linear models 
within each dataset summarized the relative change in abundance of each species 
in the assemblage through time. Very small β values (<10−5), caused by model 
fitting errors when there is no change in rank abundance, were set to 0 to avoid 
spurious rankings. The main response variable τ for each assemblage was then 
computed as Kendall’s rank correlation coefficient between size trait values and 
the set of βs. Species with missing trait values were excluded from the calculation 
of τ. The default τB approach was used for ties61. Where there were multiple 
assemblages per study, study-level τ was taken as a simple arithmetic mean of all 
assemblage-level τ values.

We also test two alternative transformations of the population data (Extended 
Data Figs. 2 and 3): (1) A ranking approach where, within each year, all n species 
in the assemblage were assigned relative ranks (from 1 for the highest to 1/n for 
the lowest) by their abundance or biomass depending on the fields available in 

BioTIME. Ties were averaged, and where a species was not observed in a particular 
year, it was assigned a rank of zero for that year. (2) Transformation by dividing 
each population time series by its mean value.

Statistics. To generate a null model for the impact of traits, the abundance change 
slopes (βs) were computed as above, but the available trait values (including ‘NA’s 
where trait data were missing) were randomly reassigned to the species in that 
assemblage and τ was recalculated. This was repeated 10,000 times per assemblage 
to generate a null distribution of expected τ values for each study. The significance 
of size-trend relationships within each study was determined based on whether 
the observed τ value fell within the central 95% interval of the null distribution. 
Similarly, the significance of overall patterns within each size trait was determined 
by comparison of the observed mean τ value across all studies within the trait, with 
the distribution of within-trait means from the randomized dataset.

To examine study-level determinates of τ within each size trait, for each study 
we calculated: (1) the mean total species richness of each assemblage over the time 
frame, (2) the mean assemblage-level trait data completeness, (3) the mean number 
of years from which there were data, (4) the mean span of years from which there 
were data, (5) the log10-transformed number of assemblages within the study (that 
is, the spatial extent), (6) the absolute latitude of the centre of the study and (7) the 
range of traits in the assemblage (log10(max) − log10(min)). We fitted a set of linear 
models to assess whether these factors could predict either τ or τ2.

In a secondary analysis that emphasizes species-level changes, we tested 
whether relative size within an assemblage affects the likelihood that a species 
can be clearly identified as increasing or decreasing its population. We focused on 
those species observed in at least five different years over the time series. Following 
previous work with the dataset3, we assigned each species as either a ‘winner’, ‘loser’ 
or without an identifiable trend based on the sign and significance (P < 0.1) of 
the year terms (βs) described above (Supplementary Table 4). Then, within each 
trait, we conducted separate logistic regressions to test for significant relationships 
between the relative trait rank and the likelihood of a species’ being identified as 
either a ‘winner’ or (in separate tests) a ‘loser’. To prevent domination by species 
that occur in many assemblages within a study, the regression was downweighted 
by the number of assemblages in which each species appeared within each study.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Original sources of open-source datasets are listed in the Methods. Core results 
and list of BioTIME studies used are available in .csv format as Supplementary Data 
1. Full processed data are available alongside analysis code at https://github.com/
jcdterry/BioTIME_BodySize and archived on Zenodo62.

Code availability
All analyses were conducted using R. Code and illustrative notebooks to reproduce 
all steps are available at https://github.com/jcdterry/BioTIME_BodySize and 
archived on Zenodo62.
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Extended Data Fig. 1 | Significance of trait-trend correlation (τ) for each trait-study combination. Within each study, the trait values (including NAs) 
were randomised 10000 times, and the Kendall rank-correlation recalculated to generate a reference distribution. Black lines show 95% and 66% 
intervals, dots show observed values. Individual studies were coloured if τ fell outside the central 95%.
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Extended Data Fig. 2 | Strong correlation between all trend slopes (β‘s) calculated using alternative population data transformations. Transformation A 
is that presented in the main text results, Transformation B is the standardisation by dividing by the mean population values, and Transformation C is the 
rank based approach. Correlations shown are Pearson’s correlation coefficients.
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Extended Data Fig. 3 | Strong concordance of overall results under different data transformations. Figure elements are the same as in the main text Fig. 
2. The red dotted line shows the mean τ value in each facet. All three transformations show the same pattern of trait-level significance - the only guild 
where a significant (positive) deviation from the null distribution (bar under histograms) is detectable is the amniotes.
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Extended Data Fig. 4 | No consistent relationships between the suite of study-level predictors and the principal response variable τ. Predictors 
(left-right): sampling grain (as listed in BioTIME metadata, the fraction of species in the study that had trait data, the range of years from the start to the 
end of the study, and the total number years for which there was sample data. Further possible predictors are shown in Extended Data Fig. 5. Statistical 
results are given in Supplementary Tables 1 and 2. Results are facetted by trait.
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Extended Data Fig. 5 | No consistent relationships between the suite of study-level predictors and the principal response variable τ (continued). 
Predictors (left-right): absolute latitude of study as listed in BioTIME metadata, number of spatially binned assemblages the study was divided into, 
whether the site was a protected area as listed in BioTIME metadata, the total number of species in the assemblage, and the size difference between the 
largest and smallest species in the assemblage. Statistical results are given in Supplementary Tables 1 and 2. Results are facetted by trait.
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Extended Data Fig. 6 | Species-level analysis of population trends. Colours show proportion of species in each relative size bin that are identifiable as a 
‘winner’ or ‘loser’ based on the sign and significance (p < 0.1) of a regression line of the transformed abundance against time. Compared to the analysis 
in the main text (which effectively weights each study equally), this analysis weights each species in each study equally. Species from across the whole 
dataset are binned along the x-axis by their relative trait value within their assemblage. Because the ‘Qualitative Body Size’ trait has only a limited number 
of categories, some relative trait ranks did not occur. Where a species is observed in multiple assemblages within a study, the contribution of each time 
series is downweighted so that each species contributes equally for each study it is in. Statistical summaries are given in Supplementary Tables 3 and 4.
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Extended Data Fig. 7 | Further details of degree of overlap and correspondence between traits. a) Number of species that could be related to at least 
one trait from the four sources. b) Overlap within the WoRMS database between the quantitative and qualitative body lengths was relatively low. In 
cases where the data was available on both categories, the Spearman’s rank correlation was 0.65. c) Very strong correlation between the size traits for 
species that had data in both the WoRMS and the FishBase databases. d) Overlap in trait data between then plant species held in the TRY database was 
comparatively high. e) Correlation between the seed mass and vegetative height trait values was moderate, and considerably less within guilds.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Original data was downloaded from open databases as described in methods. Certain parts were downloaded from public APIs using R code 
publicly available in the project repository https://github.com/jcdterry/BioTIME_BodySize

Data analysis All analysis code was written in R and is publicly available at  https://github.com/jcdterry/BioTIME_BodySize and archived on Zenodo at 
https://doi.org/10.5281/zenodo.4745554 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Original sources of open-source datasets are listed in the methods. Processed data are available with analysis code at: https://github.com/jcdterry/
BioTIME_BodySize and archived on Zenodo at https://doi.org/10.5281/zenodo.4745553
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We linked a large database of that collates studies of ecological community time series (BioTIME) to databases of body size traits, to 
detect if there are global patterns in the community dynamics of larger or smaller species.  
Although we used millions of observations in our analysis, the fundamental statistical unit was the ‘study’ as tabulated in BioTIME. 
For each study we calculated the rank-correlation between a body-size trait of the species in that assemblage and changes in their 
abundance through time (which we termed ‘tau’). Where a study covered a very large spatial extent, observations divided into grid 
cells, trait correlations calculated and then an overall average tau value for the study as a whole calculated. We tested three 
approaches to transforming the community abundance data, as detailed in the methods.  
Trends in this set of ‘tau’ correlation values was then tested using simple statistical tests. Firstly, to test if the mean was different to a 
null expectation (effectively zero). For this we generated null-data by randomising available trait data within each assemblage and 
carrying out permutation tests. Secondly, to detect if ‘tau’ was influenced by a suite of properties for the study (e.g. latitude or 
duration of the study) we fit linear models, transforming the predictor variables if necessary.  
We tested 6 body size traits, which largely correspond to different ecological guilds. We treated each of the 6 guild/trait 
combinations as independent samples. However, we note that a number of studies had sufficient trait data to appear in multiple 
tests, as detailed in the main text methods.  

Research sample Community dynamics data was sourced from the BioTIME database (http://biotime.st-andrews.ac.uk/downloadArea.php). This was 
selected as it is the largest and most comprehensive such database, that has given considerable insight into global biodiversity 
trends.  
Trait databases were selected based on scale and the species groups contained within BioTIME and are cited in the methods section 

Sampling strategy We sought to maximise our sample size  by using all data available that was of sufficient quality. The number of studies is moderate 
(and clearly displayed in the dotplots). We directly present the null distribution with which we compare each mean and the number 
of samples in the dotplots, so readers should be able to comprehend the statistical power available to us. 

Data collection Original data was collected from a huge number of authors, as detailed in the database references. Data processing was all carried 
out by JCDT as outlined in the methods and presented in the publicly available code. 

Timing and spatial scale Our data filtering to exclude short time series (less than 10 years span) in the BioTIME database was pre-determined as offering some 
chance of detecting major trends.  
The datasets used are global in scope, although the distribution is skewed. The spatial grain of each study (as reported in BioTIME) is 
included in our results. The spatial scale of assignment to cells of dispersed studies was based on previous work and corresponds to 
the larges single site studies.  

Data exclusions Data exclusions fall into two categories. Firstly, some data was excluded due to being from time series that were too short or from 
too simple a community to be useful. There are a number of stages to this, and are detailed in our methods. Secondly, the process of 
cleaning 10’000s of names necessitates automation that cannot be comprehensive, and often has to err on the side of not matching 
uncertain fields and hence excluding data by default. With considerable further manual work, a moderate number of more species 
listed in BioTIME could be linked to trait values, but this is unlikely to significantly change the key results (study-level trait 
completeness was not predictive) 
 
All such decisions are noted within the analysis code and all significant such choices are listed in the methods. 

Reproducibility The whole analysis is fully reproducible based on publicly available code and datasets. 

Randomization Not relevant – we used all data available and did not assign samples to treatments

Blinding This was largely not relevant. Trait databases were constructed without reference to the dynamics of the species in question to 
mitigate possible biases in effort applied to assigning trait values. 

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 



3

nature research  |  reporting sum
m

ary
April 2020

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging


	No pervasive relationship between species size and local abundance trends

	Methods

	Generating assemblage time series
	Cleaning names
	Trait data
	Abundance change–trait correlation
	Statistics
	Reporting summary

	Acknowledgements

	Fig. 1 Global distribution of studies in our dataset, showing average τ for each study–trait combination and divided into aquatic and terrestrial realms.
	Fig. 2 Correlation between six body-size traits and changes in abundance through time (τ).
	Extended Data Fig. 1 Significance of trait-trend correlation (τ) for each trait-study combination.
	Extended Data Fig. 2 Strong correlation between all trend slopes (β‘s) calculated using alternative population data transformations.
	Extended Data Fig. 3 Strong concordance of overall results under different data transformations.
	Extended Data Fig. 4 No consistent relationships between the suite of study-level predictors and the principal response variable τ.
	Extended Data Fig. 5 No consistent relationships between the suite of study-level predictors and the principal response variable τ (continued).
	Extended Data Fig. 6 Species-level analysis of population trends.
	Extended Data Fig. 7 Further details of degree of overlap and correspondence between traits.




