
INTRODUCTION

Touch sensation is mainly mediated by three types of mechano-
receptors, slowly adapting type 1 (SA1), rapidly adapting (RA), and 
Pacinian (PC) afferents [1, 2], which are characterized by different 
response properties. These three types of mechanoreceptors have 

different ranges of sensitivity to various vibrotactile frequencies, 
and are primarily excited at low (<5 Hz), intermediate (5~50 Hz) 
and high frequencies (50~300 Hz), respectively [3]. It is believed 
that these afferents respond to different types of skin deformation 
and serve different functional roles such as shape, texture, and vi-
bration of the touched object [4]. 

Researchers have been wondering whether there are specific 
streams for distinct features of sensory stimuli from the periphery 
to the cortex. Utilizing two-photon imaging technology, it has been 
explored in the visual, auditory, taste and somatosensory cortex, 
which mainly focus on how similar but distinct sensory stimuli 
given at the periphery are separately represented in the sensory 
cortex [5-8]. In the study of touch sensation, it has been studied 

Multiplexed Processing of Vibrotactile Information in the 
Mouse Primary Somatosensory Cortex

Yoo Rim Kim1,2,3, Chang-Eop Kim1,4, Heera Yoon5, Sun Kwang Kim5,6* and Sang Jeong Kim1,2,3*
1Department of Physiology, Seoul National University College of Medicine, Seoul 08826, 2Department of Biomedical Sciences, 

Seoul National University College of Medicine, Seoul 08826, 3Neuroscience Research Institute, Seoul National University 
College of Medicine, Seoul 08826, 4Department of Physiology, College of Korean Medicine, Gachon University, Seongnam 
13120, 5Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, 6Department of 

Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea

https://doi.org/10.5607/en20041
Exp Neurobiol. 2020 Dec;29(6):425-432.
pISSN 1226-2560 • eISSN 2093-8144

Short Communication

The primary somatosensory (S1) cortex plays a key role in distinguishing different sensory stimuli. Vibrotactile touch information is conveyed 
from the periphery to the S1 cortex through three major classes of mechanoreceptors: slowly adapting type 1 (SA1), rapidly adapting (RA), and 
Pacinian (PC) afferents. It has been a long-standing question whether specific populations in the S1 cortex preserve the peripheral segregation by 
the afferent submodalities. Here, we investigated whether S1 neurons exhibit specific responses to two distinct vibrotactile stimuli, which excite 
different types of mechanoreceptors (e.g., SA1 and PC afferents). Using in vivo two-photon microscopy and genetically encoded calcium indicator, 
GCaMP6s, we recorded calcium activities of S1 L2/3 neurons. At the same time, static (<1 Hz) and dynamic (150 Hz) vibrotactile stimuli, which 
are known to excite SA1 and PC, respectively, were pseudorandomly applied to the right hind paw in lightly anesthetized mice. We found that most 
active S1 neurons responded to both static and dynamic stimuli, but more than half of them showed preferred responses to either type of stimulus. 
Only a small fraction of the active neurons exhibited specific responses to either static or dynamic stimuli. However, the S1 population activity pat-
terns by the two stimuli were markedly distinguished. These results indicate that the vibrotactile inputs driven by excitation of distinct submodali-
ties are converged on the single cells of the S1 cortex, but are well discriminated by population activity patterns composed of neurons that have a 
weighted preference for each type of stimulus.

Key words: Vibrotactile, Mechanoreceptors, Primary somatosensory cortex, Two-photon imaging

Submitted August 31, 2020, Revised October 24, 2020,
Accepted October 26, 2020 

*To whom correspondence should be addressed.
Sun Kwang Kim, TEL: 82-2-961-0323, FAX: 82-2-961-0333
e-mail: skkim77@khu.ac.kr
Sang Jeong Kim, TEL: 82-2-740-8229, FAX: 82-2-763-9667
e-mail: sangjkim@snu.ac.kr

Copyright © Experimental Neurobiology 2020.
www.enjournal.org

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License 
(http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and 
reproduction in any medium, provided the original work is properly cited.



426 www.enjournal.org https://doi.org/10.5607/en20041

Yoo Rim Kim, et al.

whether the information derived from distinct submodalities is 
segregated or converged at the upper levels of the somatosensory 
pathway, including the S1 cortex [9-14]. Recently, the principle 
of convergence has been proposed in a few studies [15-18]. Our 
previous study has also revealed that the texture feature of touch 
is selectively encoded in the S1 neurons, whereas S1 neurons are 
less selective to dynamics feature (static [<1 Hz] versus dynamic 
[1 Hz]) of touch [19]. However, the frequency difference between 
those stimuli given for dynamics feature in the study was not large 
enough to activate different types of mechanoreceptors. Therefore, 
this subject needs to be reevaluated through experiments in which 
distinct vibrotactile stimuli excite the different types of mechano-
receptors. 

In this study, static (<1 Hz) and dynamic (150 Hz) vibrotactile 
stimuli, known as stimuli frequencies to excite SA1 and PC, re-
spectively, were used to investigate how distinct vibrotactile stimuli 
are encoded in the S1 cortex at the single-cell and population 
levels. Using in vivo two-photon calcium imaging, we found that 
the majority of the S1 L2/3 neurons were discriminative neurons 
with weighted responses between the static and dynamic stimuli. 
Only about 20% of them were specific neurons that have selective 
responses to either static or dynamic stimuli. However, the popula-
tion activity patterns in the S1 cortex were clearly distinguished 
between the two stimuli. Taken together, these results suggest that 
the vibrotactile inputs from different types of mechanoreceptors 
are generally converge on the S1 cortex at the single-cell level, but 
differentially encoded at the population level through the com-
putation of responses from the preferred neurons as well as the 
specific neurons.

MATERIALS AND METHODS

S1 craniotomy and viral injection 

All experimental procedures were approved by the Seoul Na-
tional University Institutional Animal Care and Use Committee 
and performed in accordance with the guidelines of the National 
Institutes of Health. All surgical and viral injection procedures 
were described in detail in a previous study [19]. Briefly, we used 
C57BL/6 male mice for in vivo  two-photon calcium imaging. A 
small craniotomy was conducted over the left S1 cortex (size, 2×2 
mm; center relative to Bregma: lateral, 1.5; posterior 0.5 mm) cor-
responding to the right hind-paw of the anesthetized mice (iso-
flurane, 1~1.5%). The dura was left intact and the animal skull was 
carefully removed using a #11 surgical blade. And then we injected 
adeno-associated virus expressing GCaMP6s (AV-1-PV2824) into 
the exposed cortex at 2~3 sites using a glass pipette (20~40 µm tip 
diameter). Finally, the exposed cortex was sealed with a cover glass 

(Matsunami, Japan) using Vetbond (3M). Body temperature of the 
mouse was maintained at 38°C using a heating pad (IL-H-80, Live 
Cell Instrument) during all experimental procedures. In vivo cal-
cium imaging was performed two weeks after the surgery.

In vivo two-photon calcium imaging of layer 2/3 neurons 

in the S1 cortex

All imaging were conducted in lightly anesthetized mice express-
ing GCaMP6s. Two-photon calcium imaging was performed with 
a two-photon microscope (Zeiss LSM 7 MP, Carl Zeiss, Jena, Ger-
many) equipped with a water immersion objective (Apochromat 
20×, NA=1.0, Carl Zeiss). Two-photon excitation for GCaMP6s 
imaging (900 nm) was supplied by a mode locked Ti: sapphire 
laser system (Chameleon, Coherent). Imaging data were gained 
using ZEN software (Zeiss Efficient Navigation, Carl Zeiss). For 
calcium imaging of the L2/3 neurons, recording was performed at 
a depth of approximately 200 µm from the surface. 

Peripheral vibrotactile stimulation 

All stimuli were applied to the right hind-paw of the lightly 
anesthetized mice while transient calcium activities of S1 neurons 
were recorded. Static (<1 Hz) and dynamic (150 Hz) stimuli were 
pseudo randomly delivered to the right hind-paw using a custom-
made vibrotactile stimulator. Static or dynamic stimuli were ap-
plied in 6 trials for 5 seconds each. Each stimulus was given in a 
20-second interval to minimize sensitization.

Data analysis

All analysis protocols are consistent with those in our previous 
study [19]. Regions of interest (ROIs) were manually marked in 
circles by detecting fluorescence of individual cell bodies in the re-
corded time-lapse movie. Only soma was included in our analysis. 
Customized scripts in MATLAB were used to analyze the obtained 
calcium signals. Calcium signal amplitudes were calculated as ΔF/
F0 (ΔF=F-F0) for each neuron. F0 means the baseline fluorescence 
signal computed by averaging the lowest 30% of all fluorescence 
signals from individual traces. We analyzed responsive neurons 
only, which were defined as neurons with ΔF/F0>30% to a stimu-
lus. To determine the degree of preference to each stimulus, we 
calculated preference index (PI) that ranges from 0 to 1. PI of cell i 
for stimulus j (PIij) was defined as 
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is the highest value that cell i showed during the experiments. We 
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Statistics

All data were analyzed and plotted using custom-written MAT-
LAB scripts (MathWorks) or Prism software (Gragh Pad Software, 

USA). To determine the significance in statistical comparisons, 
Two-tailed paired t -test (Fig. 1C~E), one-way ANOVA with 
Tukey’s post-hoc test (Fig. 2C and 2D were used. All data are repre-
sented as mean±s.e.m. The differences were considered significant 
if a p value is below 0.05. NS indicates p>0.05, * indicates p<0.05, 
** indicates p<0.01, *** indicates p<0.001. 

RESULTS AND DISCUSSION

We used in vivo two-photon calcium imaging with mice express-
ing GCaMP6s and primarily examined how distinct vibrotactile 
stimuli were represented in the S1 cortex. To this end, calcium 
activities of S1 L2/3 neurons were recorded while static and dy-
namic stimuli were pseudorandomly applied to the right hind paw 
in lightly anesthetized mice (Fig. 1A). We found that the S1 L2/3 
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neurons responded well to both types of stimuli, but overall re-
sponded better to dynamic stimuli (Fig. 1A, B). The proportion of 
responsive neurons was significantly greater for dynamic stimuli 
than for static stimuli. Additionally, fidelity and ΔF/F0 were also 
significantly greater for dynamic stimuli (Fig. 1C~E). Although the 
S1 neurons tended to respond better to dynamic stimuli, neurons 
with various response patterns were intermingled.

Next, we classified cell types according to the response patterns 
of the active neurons to static and dynamic stimuli (Fig. 2A). First, 
there were neurons that showed a similar level of response to both 
stimuli. However, a large fraction of responsive neurons exhibited 
better responses to one type of the two stimuli. Next, we calculated 

the preference index (PI) based on their response fidelity and 
amplitude to each type of stimulus to quantify the response prefer-
ence of the individual responsive neurons for static and dynamic 
stimuli (Fig. 2B). Based on the PI, individual neurons were clas-
sified into broadly tuned neurons and vibration discriminative 
neurons (static or dynamic discriminative neurons) (Fig. 2C). The 
broadly tuned neurons exhibiting similar levels of response to 
each type of stimulus occupied approximately 30%. The propor-
tions of static and dynamic discriminative neurons were approxi-
mately 10% and 60%, respectively, and the fraction of dynamic 
discriminative neurons was significantly higher. These vibration 
discriminative neurons responded to both static and dynamic 
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stimuli but had weighted responses. Next, we further examined the 
extent to which different vibrotactile information converges in the 
S1 cortex. To confirm this, all the vibration discriminative neurons 
were divided into preferred neurons, which responded to both 
types of stimuli but significantly better to either static or dynamic 
stimuli, and specific neurons that exhibited selective responses to 
either type of stimulus (Fig. 2D). The specific neurons accounted 
for approximately 20%, whereas the proportion of preferred neu-
rons was more than twice (47%) that of specific neurons. These 
results suggest that the information of different vibrotactile stimuli 
is considerably converged in the S1 neurons while maintaining a 
partial segregation. 

Thus far, the results indicate that a large fraction of the neurons 
receive inputs from both types of mechanoreceptors at the single-
cell level. We next examined whether distinct vibrotactile stimuli 
are distinguished at the S1 population level. Principal component 
analysis (PCA) is a dimensionality reduction method and was 
used to represent population activity patterns of S1 neurons for 
each type of stimulus (Fig. 3). We found that S1 population ac-
tivities exhibited clearly distinguished trajectories in projected 

three dimensions to each kind of stimulus (Fig. 3A). We further 
identified the population activity patterns of neurons that only 
responded to static or dynamic stimuli. The population activity 
patterns of dynamic-preferred neurons (static-preferred neurons) 
were less separated between different states, particularly for non-
preferred stimuli (Fig. 3C, D). As expected, the population activity 
patterns of broadly tuned neurons were largely intermingled and 
indistinguishable from each other given different types of stimuli 
(Fig. 3B). Taken together, these results indicate that even though 
distinct frequency information is multiplexed at the single-cell 
level by the broadly tuned and preferred neurons, it can be clearly 
discriminated with the S1 population activities produced by pre-
ferred neurons having weighted responses for either type of the 
stimuli.

In this study, we have revealed how static and dynamic stimuli, 
which excite different types of afferents (static, SA1; dynamic, 
PC), are represented both at the single-cell and population levels 
in the S1 cortex. About 30% of responsive neurons in the S1 L2/3 
responded indiscriminately to the static and dynamic stimuli, 
whereas approximately 70% exhibited discriminative responses 
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between the stimuli. Of the 70%, however, only 20% showed selec-
tive responses to either type of stimulus. This means that a large 
fraction of the S1 L2/3 neurons exhibited converged but preferred 
responses with a weighted preference to either type of the stimuli 
when static or dynamic stimuli were given (Fig. 4). Nevertheless, 
distinct vibrotactile stimuli were perfectly distinguished by the S1 
population activity patterns. It implies that the vibrotactile inputs 
driven by excitation of different submodalities are substantially 
converged, but are well encoded in the S1 cortex. 

It has been a long-time question how vibrotactile information 
derived by each type of afferent classes with different response 
properties is represented at each level of the somatosensory path-
ways. Some studies have argued that submodality-specific streams 
exist in the somatosensory pathways [10, 12, 20]. In particular, Ver-
non Mountcastle demonstrated submodality segregation at the S1 
cortex by showing S1 neurons being classified as rapidly or slowly 
adapting. Recent studies, however, have yielded results contrary to 
the research [18, 21-23]. Pei et al. demonstrated that S1 neurons 
received mixed input from different afferents classes, and Saal et al. 

also insisted that stimulus information from RA and PC was inter-
mixed onto S1 individual cells. In line with these results, our study 
showed that the vibrotactile information driven by excitations of 
different submodality classes corresponding to low and high fre-
quency, respectively, is multiplexed onto the S1 individual neurons. 
These accumulated results imply that the inputs of each type of 
stimulus from the periphery are not preserved in the cortex, but 
rather converge into individual cells and are distinguished as the 
different perception by the ensemble activity patterns of S1 neu-
rons. Saal et al. [18] revealed that intermixed information in the 
cortical neurons influences distinct aspects of responses of the S1 
neurons. They reported that RA input affected the spike rate of S1 
responses, but PC input affected the spike timing and excitation-
inhibition balance. Zuo et al. [24] also demonstrated that the in-
formation in the spike timing of the neurons conveys more texture 
information, but the spiking rate and timing are complementarily 
multiplexed in the somatosensory cortex for perceptual decisions. 
This phenomenon could be an optimal strategy for the limited ca-
pacity of cortical neurons to efficiently process inputs by multiple 
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afferents, which are simultaneously activated by natural stimuli 
encountered in the environment.

Our previous study reported how texture, dynamics and nox-
iousness features of touch and pain are encoded at the single-cell 
and population levels in the S1 cortex [19]. We showed that S1 
neurons exhibited nonselective responses to dynamics feature. 
However, it was difficult to assume that the given stimuli were 
mediated by different mechanoreceptors at the periphery. We 
redeemed that in this study and applied two types of vibrotactile 
stimuli that have a large difference in the frequency of vibration 
and are known to excite SA1 and PC, respectively. As a result, 
we reaffirmed that tactile information by different submodality 
classes is collectively conveyed to the S1 neurons in a convergent 
manner, even though a few specific neurons exist.

If this is so, how are the segregated peripheral inputs converged 
at the upper levels, including the S1 cortex? One of the possible 
mechanisms was proposed by Sakurai et al. [16], showing that 
axonal projections of distinct types of touch sensory neurons con-
verge on the same second-order projection neurons in the brain-
stem. They hypothesized that mixed and preferred signals already 
occurred in the projection neurons, which coincidentally detected 
the transient synchronous spikes between various sensory neurons 
with different response properties. It is possible that the S1, down-
stream of the submodality-specific afferent neurons, processes 
more abstract aspects of the somatosensory information given the 
general principles of information processing of the brain or brain-
inspired artificial neural network such as a convolutional neural 
network [25]. It is an interesting subject to be discussed in the next 
study as to how and why the information exhibiting distinct func-
tional response properties appears in a convergent manner, rather 
than being conveyed and processed by specific neurons in the S1 
cortex.
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