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SUMMARY

The nexus between environmental pollution (EP) and technological innovation is crucial for achieving sus-
tainable development. However, existing literature has paid less attention to the new formof high-quality
innovation (HI) in environmental management. This paper uses panel data from 31 Chinese provinces from
2008 to 2020, employing the two-stage least squares method to investigate the relationship between HI
and EP. The empirical results reveal that HI can effectively reduce the EP, which holds after multiple
robustness tests, and this effect is more obvious in southern China. Meanwhile, HI drives clean and effi-
cient energy transition and decreases EP. Moreover, increased environmental regulation weakens the in-
fluence ofHI on EP. Themajor contributions of this study are constructing anHI index including innovation,
human capital, and government support and examining its influence on EP in China. The findings
encourage government to implement policies of innovation-driven transformation, energy conservation
and emissions reduction.

INTRODUCTION

Environmental challenges, such as acid rain, soil degradation, and biodiversity reduction, have become someof themost pressing concerns in

recent years.1–3 The serious consequences of environmental pollution (EP) have adverse effects on ecosystem integrity, economic develop-

ment (ED), and human health, posing a threat to the United Nations Sustainable Development Goals (SDGs).4–7 For example, fatalities result-

ing from contemporary pollution such as ambient air and toxic chemical pollution have surged by 66%.8 In addition, the exacerbation of

global warming due to excessive carbon dioxide (CO2) emissions has led to climate anomalies that threaten ecosystems’ sustainability.9 In

response to the significant challenges in environmental management, the global community reached a consensus at COP26 and began

to actively pursue sustainable development.10,11 The pressing need for environmental protection has compelled countries to implement a

series of policies,12 promoting technological breakthroughs through high-quality innovation (HI) to achieve harmonious development.13,14

Compared with general innovation, HI can further improve product quality and create higher economic value while eliminating outdated pro-

duction and highly polluting enterprises.15,16 Moreover, HI advancement can reduce dependence on traditional fossil fuel energy, enhance

the effectiveness of waste use and treatment, and relieve pressure on the environment.17,18 In summary, HI advances may continuously up-

grade resource utilization and expedite the optimization of industrial and energy structures, advancing socioeconomic sustainable develop-

ment.19 Continued HI advancement can increase environmental protection and pollution control and enhance the living environment quality

for rural and urban residents, which are beneficial for establishing a national ecological civilization.20 Therefore, it is crucial to examine the

relationship between HI and EP, explore the internal influence mechanisms, and provide policy insights for the government, enterprises,

and other economic participants.

Following 40 years of reform and opening-up, China’s economy has achieved remarkable economic progress that has attracted global

attention.21,22 However, severe environmental vulnerabilities have also been generated by rapid economic growth.23,24 In 2018, 75.1% of

the 338 cities in China exceeded air quality standards, with severe or higher levels of pollution occurring 2,721 times.25 Moreover, the eco-

nomic losses caused by pollution in China amounted to RMB 2 trillion in 2015, which was expected to rise.26,27 There are several reasons

behind these challenges. First, China’s economic advancement has relied heavily on high-growth, energy-intensive industries,28 and its indus-

trial structure has not yet shifted to a more intensive model characterized by high technology, high added value, and low pollution.29 The

stage of China’s ED driven by industry established serious energy imbalances in which energy consumption exceeded regeneration rates

and environmental capacity.30,31 Second, the current environmental protection control system in China is predominantly government-

led.32 Measures such as emissions trading, the establishment of environmental courts, environmental regulation (ER), and promotional incen-

tives often rely onmarket efficiency and judicial effectiveness, which is limited to the short term.33 Furthermore, government control methods
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and institutional arrangements are prone to facilitating pollution transfer to less regulated regions, exacerbating issues of uncoordinated

regional development.34 Vigorously promoting the cultivation of new drivers of economic growth and upgrading innovation are crucial for

advancing the economic transition toward sustainable development.24,35 HI emphasizes market subjectivity and aligns with China’s emphasis

on efficiency, fairness, and environmentally sustainable development.7 Therefore, promoting HI development is beneficial for addressing

environmental issues while establishing an economically viable green mode of production and lifestyle.

Various studies have been conducted regarding the relationship between technological innovation and EP, but the results have been

inconsistent.36–38 This inconsistencymay be attributed to the use of singlemeasures for technological innovation, which overlooks the distinc-

tion between general innovation and HI.39,40 We argue that it is essential to define HI more accurately to explore its relationship with EP. This

study makes the following contributions. First, China faces huge pressure to address EP, and has incorporated the United Nations SDGs into

national development plans. These strategies strongly emphasize the role of technology development and adoption, especially HI, in

balancing progress in resource conservation, economic growth, and environmental preservation. Second, the externalities of innovation

on the environment remain inconclusive, which is associated with the gap in the standards of innovation development. General innovation

advances technological progress and economic growth, which increases fossil energy consumption and damages the environment.41,42

Therefore, distinguishing HI as a new form of innovation, rather than general innovation to examine its relationship with EP is crucial. This

study constructs a new composite HI index, incorporating aspects of innovation, human capital, and government support. The new HI index

comprehensively reflects the development level of innovation that considers social and economic benefits to effectively address the challenge

of EP. Third, unlike previous studies on EP in China that have relied on single indicators such as CO2 and sulfur dioxide (SO2), this study

constructs a composite index that includes gas, water, and solid waste using the entropy method. This new indicator reflects the diversity

of pollutants in addition to considering differences in various pollutants’ response to economic and technological progress. Finally, this paper

employs the two-stage least squares (2SLS) method, accompanied by heterogeneity and robustness tests, to ascertain the role of HI in ad-

dressing EP. The findings will contribute valuable insights for the decision-making processes of authorities aiming to pursue green and sus-

tainable development, particularly for different provinces in China that have exerted equivalent efforts.

RESULTS

Innovation quality in China

Innovation quality refers to innovations’ actual technological impact, economic application value, and effectiveness.43,44 China is currently

undergoing a transition from prioritizing innovation quantity to focusing on innovation quality.45 Enhancing the quality of innovation has

become an essential aspect of implementing the nation’s innovation-driven development strategy.46 Some studies have begun to examine

innovation quality in China, examining its potential influencing factors. Feng and Li46 found that international technology spillovers, primarily

from imports and outward foreign direct investment (FDI), have critical influence on Chinese innovation quality, with imports having a more

substantial impact. Duan et al.47 revealed an inverted U-shaped relationship between innovation quality and explicit and tacit knowledge-

hiding behaviors, indicating that curvilinear correlations are favorably regulated by knowledge flow throughout an organization. Wang

et al.48 demonstrated that while high government investment has significantly increased the quantity of innovation in China, innovation quality

has not significantly improved. Huang et al.49 discovered that green finance prevents enterprises from pursuing low-quality innovation while

simultaneously motivating them to foster HI in the long term. Xu et al.16 showed that digitally inclusive finance has a more significant influence

on innovation quality in China compared with motivating enthusiasm for innovation. Huang et al.13 found that China’s New Environmental

Protection Law has a positive influence on the quantity of corporate innovation, but weakens innovation quality. Zhu et al.50 determined

that innovation quality is influenced by an imperfect patent system, unreasonable industrial policies, and the typical financial and temporal

risks of long cycles. Zheng et al.51 revealed that China’s national innovation strategy effectively contributes to technological innovation quan-

tity and quality. Han and Mao52 showed that intelligent transformation improves innovation quality through human capital, research and

development (R&D) expenditure, information sharing, and factor allocation.

Innovation and environmental management

The increasing appeal for healthier environmental has resulted in searching for reducing EP and pursuing sustainable development.53 Among

the measures and policies, technology and its innovation own positive externalities for environment, and can fundamentally solve EP prob-

lems, which attracts increasingly widespread attention.54 Erdogan55 demonstrated that increased technological innovation reduces carbon

emissions among Brazil, Russia, India, China, and South Africa (BRICS) countries. Ma et al.56 exposed the environmental quality-deteriorating

impact of technological innovation amongBRICS countries. Rej et al.57 found that there is a unidirectional causality fromenvironmental quality

to environmental-related technological innovation in short-, medium-, and long-term frequency in India. Hossain et al.58 and Hossain et al.40

showed that technological innovation seems to emanate as a panacea for environmental degradation, such as CO2, in the long-run inMexico.

Hossain et al.59 discovered that eco-innovation positively impresses the load capacity factor, which helps the US maintain its environmental

sustainability. Chen et al.60 confirmed that there is a steady long-term relationship between technological innovations and ecological sustain-

ability among newly industrialized countries.

However, there still exist controversial in the academic community due to differences in national environments, assessment methods, and

time periods. Santra61 discovered that the consumptions of energy and CO2 in BRICS economies are improved by innovations. Dauda et al.62

indicated that advanced innovation activities raise ecological deteriorations in BRICS countries while innovation decreases carbon emissions

in G6 countries. Tobelmann andWendler63 reflected that ordinary innovation activities do not achieve the goal of reducing carbon emissions,
2 iScience 27, 110231, July 19, 2024
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but innovation practices measured by environmental patent applications do well. Gao et al.64 indicated that climate change mitigation-

related innovations improve environmental conditions whilemore environmental management-related innovations exert environmental qual-

ity-inhibiting impacts among BRICS countries. Das et al.65 pointed out that the increased use of sustainable environmental technologies

would bring decrease in the overall environmental sustainability in long-run across India due to greenwashing behaviors. Aytun et al.66

showed that technological innovation does not have a statistically significant impact on the ecological footprint, and is not beneficial for

achieving the sustainable development for middle-income countries.

For China, the relationship between technological innovation and environment attracts increasing attention. Some literatures argue that

innovation plays an important role in coping with environmental problems. Ahmad et al.67 demonstrated that technological innovation is an

important driver in promoting sustainable development, revealing that innovation adds to economic growth without harmful effects on the

environment. Liang et al.68 showed that the breakthrough of technological innovation can reset the technologies trajectory, stimulate related

innovations, and form newproduction system, which is beneficial for reducing pollution emission. Hasan andDu69 showed that green financial

innovation and green technical innovation are essential approaches for achieving environmental sustainability. Zhao et al.70 found that pos-

itive effects have replaced negative ones as a result of China’s technological innovation in terms of carbon emission efficiency. However, in-

novations sometimes raise concerns regarding environmental sustainability. Zhu et al.71 found that innovation actions reflect that innovation

worsens the ecology at the national standard in China on the basis of active and prominent coefficients. Khattak et al.72 discovered that the

ecological quality goals have not been reachedwith the help of technological innovation in China. Ke et al.73 revealed that the improvement in

technological innovation has a negative double threshold in influencing ecological footprint throughout China.

This study employs the 2SLS method. Previous studies have examined technological innovation and environmental issues using the time

seriesmethod,28,74 and ordinary least squares (OLS).75 Comparedwith othermethods, the 2SLS approachwas created as a simplermodel that

requires less data and has useful applications for estimation.76 2SLS can handle issues of heteroskedasticity, multicollinearity, autocorrelation,

and endogeneity, and performs better than time series and OLS methods.77,78 In addition, 2SLS is an extended regression method to cover

models that violate OLS assumptions of exogeneity so that the disturbance term of the dependent variable is correlated with the cause(s) of

the independent variable(s).79 As a result, 2SLS-estimated equations are more accurate in capturing the causal and feedback effects among a

system’s primary factors and the interactions between equations.80 The superior performance of 2SLS has led to its widespread application in

various fields, including financial markets,81 the environment,82 and corporate finance.83

Research gap

In the previous research, the specific effects of innovation on environmental deterioration are exceedingly complex,54,66 particularly in the

context of China.71,84 The direction and degree of the influence of innovation on the environment largely depend on the level of innovation.

Although the concept of high-quality development has been proposed in China, relevant literature that provides a clear definition of HI is

lacking. Moreover, current studies have widely examined technological innovation, including green innovation, at the national level,40,59

with a particular focus on China.46,51 However, significant differences exist in ED level, population size, industrial structure, and other factors

among different provinces, whichmay impact the performance of technological innovation. Therefore, this studymeasures China’s HI among

different provinces from innovation environment and output perspectives, demonstrating that HI is an internal driving force for environmental

protection and sustainable development in China.

Theoretical foundation

Theoretical frameworks related to the relevant economic indicators can provide insights into the anticipated outcomes of the relationships

between variables, transcending a mere data-driven exercise.11 This subsection elucidates the connections between the pertinent variables

by drawing inferences from existing theoretical hypotheses and previous empirical findings. The subsequent paragraphs offer comprehensive

descriptions regarding the association between HI and EP, the mediating influence of energy transition (ET), and the moderating impact

of ER.

China has recognized that innovation is a primary source of economic growth and social development.85 In the past decades, strategic and

symbolic innovation practices and programs have been implemented in China to pursue a higher quantity of innovation rather than empha-

sizing quality.14,86 However, as China’s economy transitions to high-quality development, improving innovation quality has attracted

increased attention.63,87 HI can stimulate technological progress, optimize industrial structure, and improve waste recycling efficiency,

contributing reduced EP.88,89 First, HI can advance structural optimization, reducing EP. It better reflects innovation capabilities, which can

generate high economic value, ultimately promotingmore rapid value chain advancement.90,91 Thismay expedite industrial structure renewal

and adjustment, leading to the transformation of the ED toward a more intensive, low-pollution mode and reducing EP.92 Second, HI accel-

erates technological progress, leading to more effective EP reduction. HI can considerably improve production and pollution control tech-

nology, lowering pollutant emissions and improving efficiency in waste recycling and utilization during the production process, ultimately

reducing EP intensity.93 Therefore, this study proposes hypothesis 1.

Hypothesis 1: High-quality innovation can effectively reduce the environmental pollution.

This study examines whether HI can reduce EP in China by promoting ET. Energy is the foundation of economic and social advancement,

and excessive energy consumption degenerates ecological quality.94 As China enters the stage of high-quality advancement, the nation

needs the support of a clean energy system, which motivated the new ET strategy.95 With 6.37 Exajoule (EJ) of renewable energy consumed

in 2018, China topped the global renewable energy consumption chart.96 In addition to national strategies, saving and effectively using
iScience 27, 110231, July 19, 2024 3
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resources and energy in themanufacturing process depends on technological innovation,97 particularly HI.98 In addition, HI can improve ther-

mal power generation efficiency, reducing demand for fossil energy such as coal.99 Therefore, HI can optimize the energy structure more

effectively, develop renewable greener and cleaner energy sources, decrease dependence on traditional fossil fuels, and ultimately reduce

EP.100 In summary, based on the mediating effect analysis, this study proposes hypothesis 2.

Hypothesis 2: High-quality innovation can effectively reduce environmental pollution by promoting energy transition.

ER can hinder HI effectiveness in reducing EP. Environmental laws and regulations require economic participants to invest in managing

environmental impact, increasing the cost of production and pollution control, which reduces available R&D capital due to compliance

costs.13,101 The compliance cost effect makes it challenging for enterprises to improve environmental quality, as it reduces the motivation

to learn from low-pollution and efficient counterparts and restricts the pace of innovation.102 However, one study argued that appropriate

ER is beneficial for improving innovation standards and increasing economic participants’ capabilities to reduce pollution.103 The innovation

compensation effect arises when the income generated can cover the cost of implementing ERs entirely or in part,104,105 which advances

pollution control. Therefore, this article proposes hypothesis 3.

Hypothesis 3: Environmental regulation weakens the effect of high-quality innovation on reducing environmental pollution.
Data selection

Dependent variable: EP

The single pollutant cannot accurately represent the real situation of pollution. Referring to Zhao et al.106 and Ren et al.,107 we construct a

comprehensive index of the degree of EP through the entropy method, which includes diversified pollutant emissions of waste-water per

capita, waste-gas (SO2) per capita, and waste-solid per capita. The data on industrial solid waste emissions are missing for some years, so

we use the production instead of the emissions of industrial solid waste. This can accurately and scientifically reflect the actual EP situation

in a certain area. In order to eliminate the influence of the order of magnitude and dimension, the original data are standardized as following.

x0ij =
xij � min

�
xij
�

max
�
xij
� � min

�
xij
� (Equation 1)
ej = � ð1 = lnmÞ
Xm
i = 1

pij ln pij;pij = x0ij

,Xm
i = 1

x0ij (Equation 2)
wj =
�
1 � ej

�, Xn

j = 1

�
1 � ej

�
(Equation 3)
EPi =
Xn

j = 1

�
wj 3 x0ij

�
(Equation 4)

where xij is the jth pollution in i region. maxðxijÞ andmin ðxijÞ represent themaximum andminimumpollutant emissions. ej is the entropy.wj is

the weight. EP is environmental pollution index.

Independent variable: HI

To estimate the current advancement standard of China’s HI, we compound an integrated index through the entropy method for the mea-

surement of innovation, human capital and financial support from the government.108,109 The reason is that the number of patents granted

alone is not enough to accurately reflect the current China’s level of HI. Regional educational quality, technological innovation level and gov-

ernment financial support can be regarded as an organic whole that better highlights China’s actual level of innovation in the context of high-

quality advancement. In detail, educational quality includes the number of universities per ten thousand people, the number of teachers per

ten thousand people, and the number of students enrolled ten thousand people. Technological innovation level contains the proportion of

technology professionals, and patent authorization per ten thousand people. Government financial assistance covers the share of technolog-

ical spending in the overall government expenditure, and the proportion of educational expenditure in total government expenditure. The

data processing process is similar with EP through standardized method.

Control variables

The relative research confirms that the regional economic advancement standard, industrial structure, openness, population density (PD) and

energy consumption intensity (EC) all affect the regional EP. Hence, this study selects five variables as control variables to limit estimation

errors.110 The first variable is ED. Following standard practice,106 the natural logarithm of provincial Gross Domestic Product (GDP) per capita

is utilized as indicator for presenting ED. The second variable is PD. Total population divided by the total area in square kilometers is adopted

to measure this index.111 The third variable is EC. Themeasure of EC is the ratio of provincial electricity consumption to regional GDP.112 The

fourth variable is FDI. It is represented by the natural logarithm of the exact use of FDI.113 The fifth variable is rationalization of industrial
4 iScience 27, 110231, July 19, 2024



Table 1. Descriptive statistical results of panel data for each variable

Variables Observations Mean Standard deviation Min Max

EP 403 0.301 0.186 0.000 0.728

HI 403 0.149 0.102 0.063 0.839

ED 403 10.673 0.532 9.147 12.013

PD 403 5.314 1.496 0.866 8.281

RIS 403 0.516 0.311 �0.098 1.361

FDI 403 5.103 1.906 �1.220 7.495

EC 403 0.108 0.073 0.031 0.409

ET 403 1.348 1.154 0.000 5.546

ER 403 1.283 0.605 0.271 3.884
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structure level (RIS). Referring toHu et al.,29 we construct the following formula RIS =
Pn

i = 1

�
Yi

Y

�
ln
�Yi
Li
Y

L

�
, where Y reflects the real output values,

L shows employment level, i denotes the industry, and n indicates the amount of sector.

Mediating variable

In this research paper, ET is identified as the mediating variable. Conforming to the research conducted by Bhupendra and Sangle114 and

Wang et al.,99 ET is assessed through regional thermal power generation data. Currently, thermal power generation remains the predominant

source of electricity in China. Statistics suggest that coal-fired electricity continued to dominate, representing 70.5% of the total in 2017.99

Moreover, the primary energy source for thermal power generation is predominantly coal, characterized by low conversion efficiency and sig-

nificant pollution levels. These factors contribute to substantial environmental damage, as highlighted in the research by Fang et al.115 The

heavy reliance on coal in thermal power generation poses challenges for sustainable energy practices and environmental conservation efforts

in China.116

Moderating variable

Our study selects the ER asmoderating variable. As for ER, scholars havemeasured it from different angles such as ER policies, environmental

governance investment, pollution emissions, and environmental governance performance.117 However, these indicators can only reflect the

level of ER from a certain side but cannot reflect the comprehensive level of it. Drawing on the practice of Wu et al.,118 the ratio of regional

GDP to whole regional energy utilization is used to reflect the intensity of ER, which can reflect the comprehensive effect of regional ER. The

larger the ratio means that the more obvious the efficiency of ER on energy conservation and emission decrease is at a certain level of GDP. It

also indicates that the intensity ER it is greater.
Preliminary analysis

Our study selects the panel data from 2008 to 2020 of 31 China’s provincial-level administrative regions. The original data can be obtained

from the National Bureau of Statistics,China Statistical Yearbook,China Energy Statistical Yearbook andChina Environmental Yearbook. The

HI index and the EP index have eliminated dimensional considerations.119 In addition, the data of the relevant control variables are logarith-

mically processed.120

In Table 1, the mean value of EP keeps 0.301, reflecting that the EP situation is still high. Being confronted with serious EP, China has taken

active policies, such as New Environmental Protection Law, but the environmental issues remain severe. Yale University published The Global

Environmental Performance Index (EPI) Report (2020), China’s EPI score dropped from 60.74 in 2018 to 37.3 in 2020, ranking 120th among 180

participating countries and regions.93 The standard deviation of EP is 0.186, which is reversely huge, showing that there are great differences

among different regions. Moreover, the mean value of HI is 0.149, which reflects that China’s innovation abilities should be tomove forward a

single step, and its standard deviation of 0.102 remains reversely high, showing that there are distinct differences in HI in various districts.
Benchmark regression results

This study first employs the benchmark panel econometric model to verify the linear impact of HI on EP in China’s 31 provincial-level admin-

istrative regions. Based on Hausman test results, we adopt the fixed-effects model. We conduct stepwise regression analysis by gradually

introducing control variables to overcome potential omitted variables bias. Table 2 presents the findings for Equation 5. Columns (1)–(6)

in Table 2 show the estimated findings with control variables systematically added. The coefficients of HI in each column are negative and

statistically significant, demonstrating that HI is beneficial for reducing EP. The results are consistent with Chen et al.121 and support hypoth-

esis 1. In China, the average annual growth rate of high-tech patents granted exceeded 20% between 2012 and 2020.122 Therefore, increasing

HI is beneficial for developing pollution control technologies as well as optimizing energy consumption and industrial structure.123 It is
iScience 27, 110231, July 19, 2024 5



Table 2. Benchmark regression results

Variables (1) (2) (3) (4) (5) (6)

HI �0.390*** (�4.10) �0.415*** (�4.37) �0.366*** (�3.86) �0.366*** (�3.86) �0.300*** (�3.08) �0.288*** (�2.99)

ED 0.056*** (2.61) 0.069*** (3.24) 0.069*** (3.24) 0.084*** (3.83) 0.097*** (4.36)

PD 0.140*** (2.09) 0.140** (2.09) 0.150*** (2.26) 0.176*** (2.65)

RIS 0.003*** (2.98) 0.033*** (3.24) 0.029*** (2.76)

FDI �0.013*** (2.63) �0.015*** (�2.99)

EC 0.376*** (2.64)

Constant 0.374*** (27.16) �0.182 (�0.85) 0.396 (1.06) 0.396 (1.06) 0.355 (0.96) 0.326 (0.88)

Province YES YES YES YES YES YES

Year YES YES YES YES YES YES

R2 0.198 0.213 0.243 0.243 0.258 0.274

Obs 403 403 403 403 403 403

Note: *** and ** indicate significance at 1% and 5% levels, respectively.
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estimated that non-fossil energy consumption and natural gas will account for a combined 35% of total energy consumption, which is ex-

pected to reduce EP.

In terms of control variables, ED’s coefficient is considerably positive, demonstrating that environmental quality shows signs of continuous

deterioration in the process of pursuing increased regional per capita GDP. In general, economic growth tends to raise energy consumption,

particularly fossil fuels, which inevitably increases pollution emissions.124 The coefficient of PD is positive, demonstrating that increased PD

worsens environmental quality. Higher PD increases transportation use (i.e., cars and planes) and raises household incomes, which stimulates

energy consumption and EP.125 The coefficient of RIS is also positive, indicating that secondary and tertiary industry development remains

unbalanced in most areas of China, which has a considerable influence on regional EP. From 1978 to 2019, China’s production of major in-

dustrial products grew rapidly. For example, steel and automobile products maintained 10.2% and 13.4% annual growth rates, respectively.1

In other words, China’s industrialization is still undergoing development, with a negative influence on the environment.

Furthermore, the coefficient of the degree of opening to FDI is significantly negative. For every 1% increase, EP is reduced by 0.015%. This

indicates that the entry of foreign capital introduces progressive management experience, technologies, and environmental protection stan-

dards that are beneficial for reducing EP.126 China’s average annual FDI since 2001 is US$ 55.24 billion, and has started to flow into capital

intensive industries such as high-tech and high-end equipment, providing technological support for addressing environmental issues.127

Finally, the coefficient of EC is positive, indicating that 1% growth in national EC will result in a 0.376% increase in EP. The finding indicates

that EC growth will have a negative effect on environmental quality and further aggravate EP. China generated 7,779.06 billion kWh of elec-

tricity in 2020, with 5,330.25 billion kWh coming from thermal energy production, representing 68.5% of total generation.81 The high share of

thermal power generation directly emits an enormous quantity of pollutants such as CO2 and SO2, with an extremely negative effect on the

environment.

Endogeneity must be addressed because the outcomes in Table 2 indicate an obviously negative connection betweenHI and EP. First, the

model may be affected by stochastic bias resulting from a nonrandom sample.128 Second, themodel could possibly omit relevant variables as

it is difficult to identify all decisive factors. Hence, we next examine how to solve potential endogeneity issues. The universally employed

approach is to identify an effective instrumental variable (IV) to overcome the endogenous issues in the overall model. The IV should not

have a direct impact on EP but should be linked to HI in China. Due to data limitations and the potential difficulty of exploring variables

that can be used as effective IVs, we used the lagged phase of HI (LHI) as an IV. Table 3 shows the regression results after solving the
Table 3. Test of endogeneity

Variables (1)

LHI �0.281*** (�2.87)

Control variables YES

Constant 0.166 (0.46)

Province YES

Year YES

R2 0.309

Obs 403

Note: *** indicate significance at 1% level.

6 iScience 27, 110231, July 19, 2024



Table 4. Results of bootstrap mediation regression analysis

Mediator Effect Obs coef. Bootstrap std. err P>｜Z｜ [95% Conf. interval]

ET Direct �0.309 0.072 0 [-0.452, �0.168]

Indirect �0.599 0.068 0 [-0.731, �0.466]
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endogeneity problem.When we lag the core explanatory variable by one period, the regression results confirm our expectations. The results

reveal that EP decreases by 0.281% when LHI increases by 1%, indicating that the IVs are effective.

Mechanism test

Hypotheses 1 can be effectively assumed based on the evidence above; however, the mechanism through which HI influences EP requires

further investigation. In the aforementioned discussion, this study identified themechanism of ET through which HI affects EP. HI is beneficial

to more enterprises, particularly those in the secondary industry, increases resource efficiency, and promotes the application of renewable

energy sources instead of traditional fossil fuels to reduce EP. The outcomes of bootstrap analysis of the mediating effect are reflected in

Table 4, revealing a significant mediating effect. According to the confidence intervals corresponding to the indirect effect, all mediators

exclude zero, verifying that HI can reduce EP through energy structure adjustment. Further testing the weight of the mediating effect reveals

that a total effect coefficient of � 0.908, the direct effect coefficient was �0.309, and the mediating effect coefficient was �0.599. Through

calculation, the mediating effect accounted for 65.9%, indicating that HI is beneficial for reducing EP by promoting ET. For instance, China

launched The Action Plan for Energy Development Strategy, which aims to develop renewable energy and achieve ET. In 2019, China’s total

power generation from renewable sources was 732.3 GWh, representing 26.1% of the global total, and the average annual rate exceeds

126.47%.129 Therefore, hypothesis 2 is validated.

To further consider howHI affects EP under ER, we add an interaction termbetween ER andHI based on the benchmark regression and the

result is reflected in Table 5. The coefficient of the interaction term is 0.201; thus, the final coefficient of HI is�0.43 (�0.631 + 0.201). Thismeans

that ER weakens the function of HI in reducing EP. The rationale for this pattern is that as ER becomes stricter, the costs of compliance rise,130

which takes away money from R&D investments. Furthermore, investment in pollution reduction initiatives does not yield immediate profit,

which can determanagers frommakinggreen innovation investments because short-termprofit is prioritized over long-term sustainable prac-

tices. Unfortunately, the low return on investment from innovation often has a negative knock-on effect on product quality and quantity.

Consequently, companies are hesitant to take risks on innovation and instead opt for more traditional, cheaper approaches to production,

even when they are environmentally harmful. Hypothesis 3 is verified.

Heterogeneity analysis

The estimates in the previous section support the theory expressed in hypothesis 1 but do not examine the provinces’ locations. Due to imbal-

anced regional development, HI may have heterogeneous effects in different regions. Therefore, we next examine the differences between

China’s southern and northern regions,131,132 to explore whether the effect of HI on EP is diverse, presenting the results in Table 6. We

conclude that the effectiveness of HI in reducing EP differs significantly between the south and the north. According to column (1) of Table 6,
Table 5. The moderating effect of environmental regulation

Variables (1)

HI �0.631** (�2.42)

ER �0.184*** (�8.46)

ER*HI 0.201*** (4.14)

ED 0.107*** (4.98)

PD �0.195*** (�3.14)

RIS 0.030*** (3.12)

FDI �0.006*** (�1.35)

EC 0.253** (2.07)

Constant 0.470 (1.39)

Province YES

Year YES

R2 0.397

Obs 403

Note: *** and ** indicate significance at 1% and 5% levels, respectively.
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Table 6. Heterogeneity estimation results

Variables (1) (2)

HI �0.237** (�2.16) �0.532*** (�2.63)

Control variables YES YES

Constant 0.247 (0.43) �2.107 (�1.36)

Province YES YES

Year YES YES

R2 0.969 0.946

Obs 208 195

Note: *** and ** indicate significance at 1% and 5% levels, respectively.
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the coefficient of HI in northern provinces is�0.237, with a 5% significance level, while in column (2), the coefficient of HI in southern provinces

is �0.532, with a 1% significance level. Therefore, the impact of HI on EP is more effective in the south, based on similar sample sizes.

The rationale for this phenomenon is attributable to the four circumstances. First, from the perspective of innovation subjects, more inno-

vative enterprises have been established in the south than in the north, and this gap is increasing.133 From 2009 to 2018, the gap between the

number of new innovative enterprises in northern and southern China widened from 142,000 to 1.586 million. Second, the growth of innova-

tion input in the north slowed down, and the gap between the north and south considerably widened.134 From 2009 to 2017, the gap in in-

vestment in innovation between the north and south widened from 10.06 billion yuan to 427.16 billion yuan. Third, from 2009 to 2017, the gap

between northern and southern universities’ graduating undergraduates widened from 137,000 to 324,000, expanding the pool of innovative

talent.135 Fourth, in terms of innovation output, more patent applications are filed in the south than in the north. By 2017, the amount of new

patent applications in the south was 2.8 times higher than in the north, marking the peak of China’s north–south gap.

China’s regional ED has exhibited clear patterns of division, with the south experiencing faster growth and a rising economic share, while

the north lags behind, resulting in a shift in the country’s economic center of gravity toward the south.136 The unequal distribution of financial

resources across geographical domains highlights the north-south economic divide. The northern region’s capacity to allocate financial re-

sources is noticeably inadequate, as seen from the financing size statistics. In 2013, the northern region accounted for 42.8% of the nation’s

social financing; however, this figure had dropped to 28.3% by 2021. According to Yang and Zhou,137 the ‘‘financial accelerator’’ approach has

contributed to the growing economic imbalance between the north and south due to the unequal distribution of financial resources. Without

sufficient financial resources, regions can find it challenging to leverage the multiplier effect of technology investment.117 Furthermore,

regarding industrial structure, private, high-tech businesses in southern China demonstrate impressive dynamism, whereas state-owned,

highly polluting enterprises remain crucial in the country’s north. Therefore, northern China faces increasing pressure to advance industrial

modernization, but provinces lack adequate technological assistance and funding support. In summary, differences in innovation capacity,

economic division, financial support, industrial structure, and other factors between the north and south have led to divergent EP control

outcomes.
Robustness tests

Wenext broaden the scopeof the explained variables and replace EPwith PM2.5 (PM2.5 refers to particulatematter with diameters that are less

than 2.5 mm) particulate matter.138 PM2.5 is a major pollutant, and can also reflect the degree of air pollution.139 Column (1) of Table 7 shows

that the coefficient is�1.087, and is statistically significant at 1% level. The results demonstrate that HI is beneficial for reducing PM2.5, which is

consistent with our benchmark regression results. China’s rapid ED has brought enormous damage to the environment. For example, in 2019,
Table 7. Test of robustness

Variables (1) (2) (3)

HI �1.087*** (�6.33) �0.896*** (0.226)

GTI �0.058*** (�5.21)

Control variables YES YES YES

Constant 4.656*** (7.10) 0.166 (0.46) 0.172 (0.484)

Province YES YES YES

Year YES YES YES

R2 0.827 0.309 0.951

Obs 403 403 351

Note: *** indicates significance at 1% level.
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Table 8. The regression results for EP*

Variables (1)

HI* �0.036** (0.012)

ED �0.128 (0.198)

PD �35.950*** (4.145)

RIS* 0.102* (0.039)

FDI �0.049* (0.024)

EC* 0.292*** (0.031)

Constant 163.160*** (19.633)

Province YES

Year YES

Note: ***, **, and * indicate significance at 1%, 5%, and 10% levels, respectively.
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the nation’s 337 cities experienced 1,666 days of severe pollution, with PM2.5 being the primary pollutant on 1,313 of those days.140 Consid-

ering the severe PM2.5 pollution, the Chinese government continuously reinforces policies to promote high-quality technology development

and adoption, such as The 14th Five-Year Plan for Technological Innovation in the Ecological Environment Field. Such initiatives can reduce

the use of raw materials and improve environmental quality in addition to enhancing sustainable development and green transition.141

We next employ the number of green technology innovation (GTI) patent applications as an alternative independent variable to replace

HI.142 The ecological value of GTI is well known, and can reflect the application of HI in the field of environmental protection. In column (2) of

Table 7, we replace the explanatory variable with GTI. The result after replacing the independent variable shows that for every 1% rise in green

technology development, EP drops by 0.058%. This confirms that the baseline regression estimates are robust. The 20th Communist Party of

China (CPC) National Congress in China highlighted the contribution of GTI to advancing sustainability as a crucial technological backbone

for improving development of the highest caliber.27 Green patents granted in China rose to 31,100 in 2020, and the average annual growth

rate has exceeded 20% since 2012.124 Increasing green technologies strengthens environmental protection, resource conservation, andwaste

recycling, which is beneficial for the environment.

We next change the sample size to ensure the common function of HI in addressing EP by excluding Beijing, Shanghai, Xizang, and Xin-

jiang from the original dataset to determine whether the empirical results remain robust after deleting some provinces. The reasons for this

choice are that Beijing and Shanghai have the richest educational and research resources in China; therefore, subsequent HI may raise the

overall level of innovation. In addition, Xizang and Xinjiang are located in western China, with large land areas and lower populations, indi-

cating less active social activities. In column (3) of Table 7, we re-estimate = Equation 5 with the revised sample. The result shows that the

coefficient of HI is �0.896, demonstrating 1% rise in HI development, and EP drops by 0.896%. This finding conforms to the baseline regres-

sion results, validating that the estimates are robust. The results also demonstrate the importance of implementing a national strategy to

develop science and technology and achieve sustainable development for society, humanity, and the economy.

Further analysis

To conduct comparative analysis, we select BRICS countries as a research sample, excluding Russia due to data availability and war. The re-

maining countries include Brazil, India, China, and South Africa. As these countries are considered developing countries that face serious EP

challenges,84,143 we examine the relationship between technological innovation and EP for comparison. Due to a lack of data for constructing

HI and EP indices for these countries, we use global innovation index andCO2 per capita to represent HI (HI*) and EP (EP*). These two datasets

are obtained from theWorld Intellectual Property Organization and theWorld Bank. Considering data availability, we employ the proportion

of renewable energy in energy consumption and the proportion of workers in the secondary industry tomeasure EC (EC*) and RIS (RIS*). Con-

trol variables are consistent with the baseline model, including GDP per capita, PD, and FDI.

The corresponding empirical results are presented in Tables 8 and 9, revealing that the coefficients of HI* demonstrate that technological

innovation is beneficial for addressing EP. BRICS countries are situated at the end of the global value chain, indicating that ED comes at the

cost of sacrificing the environment. Thus, these countries also have to depend on innovation, especially HI, to overcome technological barriers

and achieve sustainable development. In detail, governments must promote innovation and R&D efforts in green technologies, formulating

and improving policies to guide enterprises to choose appropriate directions for technological advancement through collaboration between

science, technology, and industry. Furthermore, countries should enhance regional cooperation and exchange in green and low-carbon tech-

nologies; promote technology spillover, diffusion, and transfer; and establish new patterns of mutually promoting GTI.

DISCUSSIONS

This study examines the functional role of HI in addressing EP in China, specifically focusing on ET, ER, and regional heterogeneity. The results

provide empirical evidence using the annual data from 2008 to 2020 encompassing 31 provinces in China and employing the 2SLS method.

The following fivemajor empirical findings emerge. First, the results confirm the positive role of HI in reducing EP after excluding the influence
iScience 27, 110231, July 19, 2024 9



Table 9. The regression results for BRICS countries

Variables

HI �0.036*** (0.011)

ED �0.128 (0.198)

PD �35.950*** (4.145)

RIS 0.102** (0.038)

FDI �0.049* (0.024)

EC 0.292*** (0.031)

Constant 163.160*** (19.663)

Province YES

Year YES

Note: ***, **, and * indicate significance at 1%, 5%, and 10% levels, respectively.

ll
OPEN ACCESS

iScience
Article
of control variables. Second, the mediating effect of ET is demonstrated, showing that HI increases resource efficiency and non-fossil energy

use and accelerates the ET process. Third, ER increases the costs of compliance, which reduces risk preference for HI, causing managers to

opt for traditional high pollution processes instead. Fourth, the benchmark regression results remain robust and consistent after changing

dependent and independent variables and the estimation regression method. Fifth, regional differences in innovation resource levels reflect

various effects of HI on EP, with the south outperforming the north.

Based on the empirical outcomes, we provide the following policy suggestions. First, the positive role of HI in reducing EP implies that the

government should establish long-term incentivemechanisms to promote HI and improve supporting systems related to innovation. This can

be accomplished by advancing high-quality human resources, strengthening cooperation between universities and scientific research insti-

tutes, and providing financial support for developing innovative applications. Second, themediating effect of ET is confirmed in the empirical

analysis, which encourages the government to adopt active energy policies. China not only promotes innovation in decarbonization process

of fossil energies, but also endorses technological breakthroughs in non-fossil energies. In addition, some national environmental strategies,

such as carbon peak and neutrality must be strategically implemented and dominate the ET process. Third, increased ER intensity weakens

the effect of HI on reducing EP. Therefore, reasonable ER policies must be formulated based on the realities of ED, R&D investment, and

human capital. Furthermore, incentive-based policies are also needed to reduce compliance costs and make enterprises more focused on

HI activities. Fourth, regional differences in the allocation of innovation resources explain the variations in reducing EP caused by HI in China.

Local governments must focus on the driving role of innovation in key regions and industries, promote the integrated development of new

industries and local traditional business, and advance the efficient allocation and intensive use of industrial ecosphere elements such as talent,

capital, and technology.

Limitations of the study

This study uses provincial panel data instead of city-level data due to missing data at the city level. In future analyses, we aim to explore the

possibility of replacing the original indicators with new ones and constructing city-level HI and EP indices to re-examine their relationship. In

addition, we can also conduct comparative analyses for countries that face similar technological dilemmas and EP by developing national HI

and EP indices.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

environmental pollution intensity China Statistical Yearbook; China

Environmental Statistics Yearbook

https://www.stats.gov.cn/; https://cnki.nbsti.net/

high-quality innovation China Statistical Yearbook; China’s

State Intellectual Property Office

https://www.stats.gov.cn/;http://www.cnpat.com.cn/

economic development China Statistical Yearbook https://www.stats.gov.cn/

population density China Statistical Yearbook https://www.stats.gov.cn/

energy consumption intensity China Statistical Yearbook; China

Energy Statistical Yearbook;

China Environmental Statistics Yearbook

https://www.stats.gov.cn/; https://cnki.nbsti.net/

foreign direct investment China Statistical Yearbook https://www.stats.gov.cn/

rationalization of industrial

structure level

China City Statistical Yearbook https://cnki.nbsti.net/

energy transition Energy Statistic Yearbook; China

Electric Power Yearbook

https://cnki.nbsti.net/

environmental regulation China City Statistical Yearbook https://cnki.nbsti.net/

Software and algorithms

Stata StataCorp LLC https://www.stata.com/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Yun Tang (tangyun@ucas.ac.cn).
Materials availability

This study did not generate new unique reagents.
Data and code availability

� This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources table.
� Code for the analysis was written in STATA and is available from the lead contact upon reasonable request.

� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Two-stage least squares (2SLS) regression method

This article empirically examines the impact of HI on EP of China’s 31 provinces by Two-Stage Least Squares (2SLS) regression method, and

provincial panel data. The benchmark regression is denoted as Equation:

EPit = a0 +a1HIit +a2Xit +mi + lt + εit (Equation 5)

where EP is environmental pollution. HI is high-quality innovation. i and t showprovince and year, separately. εit , mi and lt represent error term,

province fixed, and year fixed effect, respectively. ai (i=1,., n) are the corresponding coefficients. Xit is matrix of control variables, including

foreign direct investment (FDI), population density (PD), economic development (ED), rational industrial structure (RIS), and energy consump-

tion intensity (EC).

Then, this paper selects energy transition (ETit ) as an important mediating variable, which affect the correlation between HI and EP. Xit

represents control variables that are consistent with Equation 5. Therefore, the mediating effect models are constructed as follows:

ETit = b0 + b1HIit + b2Xit +mi + lt + εit (Equation 6)
16 iScience 27, 110231, July 19, 2024
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EPit = b3 + b4HIit + b5ETit + b6Xit +mi + lt + εit (Equation 7)

where bi presents the corresponding coefficients. Especially, when coefficients of b1, b4, and b5 are significant, which demonstrates ETit has a

significant mediating function in the connection between HI and EP.

Further, this paper chooses environmental regulation (ERit ) asmoderating variable, and discusses its role in the association betweenHI and

EP. Therefore, the moderating effect model is built as follows:

EPit = g0 +g1HIit +g2Xit +g3ERit +g4ERit � HIit +mi + lt + εit (Equation 8)

where gi shows the corresponding coefficients. Especially, when coefficients of g3 and g4 are significant, indicating ERit provides a clear

moderating effect on the interaction between HI and EP.

The two-stage least squares (2SLS) method is a regression modeling approach that can handle violations of the ordinary least squares

(OLS) assumption, thereby addressing issues such as heteroscedasticity, multicollinearity, autocorrelation, and endogeneity.77–79 As a result,

the 2SLS-estimated equations are more accurate in capturing the causal and feedback effects among the system’s primary factors as well as

the interactions between the equations.80 The superior performance of this method has led to its widespread application in various fields,

including financial markets,81 the environment,82 and corporate finance.83
QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed in Stata.
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