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Understanding mechanisms shaping distributions and interactions of soil microbes is

essential for determining their impact on large scale ecosystem services, such as

carbon sequestration, climate regulation, waste decomposition, and nutrient cycling. As

the functional unit of soil ecosystems, we focus our attention on the spatial structure

of soil macroaggregates. Emulating this complex physico-chemical environment as a

patchy habitat landscape we investigate on-chip the effect of changing the connectivity

features of this landscape as Escherichia coli forms a metapopulation. We analyze

the distributions of E. coli occupancy using Taylor’s law, an empirical law in ecology

which asserts that the fluctuations in populations is a power law function of the mean.

We provide experimental evidence that bacterial metapopulations in patchy habitat

landscapes on microchips follow this law. Furthermore, we find that increased variance

of patch-corridor connectivity leads to a qualitative transition in the fluctuation scaling.

We discuss these results in the context of the spatial ecology of microbes in soil.

Keywords: landscape ecology, metapopulations, spatial microbial ecology, Taylor’s Law, scaling laws,

microfluidics

INTRODUCTION

Soil microbial inhabitants provide numerous ecosystem services that are fundamental for the
persistence of multicellular life on earth (Smith et al., 2015). Despite the central role these
communities play in the flow of the nutrient cycles, primary production and climate regulation
underpinning earths biosphere, we still know very little about the processes shaping their dispersal,
colonization dynamics, and overall spatial distributions (Raynaud and Nunan, 2014). This is due
in part to the complex physico-chemical spatial structure generated by soil (Ettema and Wardle,
2002). Soil aggregate structure plays a crucial role in community and organic matter dynamics
(Six et al., 2004; Young and Crawford, 2004; Bailey et al., 2013), as well as a feedback between the
two (Ebrahimi and Or, 2016). The coalescence of soil microaggregates (< 250µm) giving rise to
macroaggregates (0.25–2 mm) generates an enclosed patchy habitat landscape (Jastrow et al., 1996)
which serves as a discrete functional unit of the soil microbial ecosystem (Wilpiszeski et al., 2019).

Developing a statistical mechanics characterizing patterns of microbial species abundance and
distribution in such habitat landscapes is a fundamental goal of ecology (Brown et al., 1995; Xu
et al., 2020). One such pattern is Taylor’s Law (TL) which states that the variance in the occupancy
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of a (meta-) population σ 2
φ , is related to the mean 〈φ〉, by a power

law (Taylor, 1961):

σ 2
φ = c〈φ〉α (1)

Often considering population ensembles in space or time,
this statistical emergent property of populations was first shown
empirically by L. R. Taylor when he compiled census data
of several organisms, including macro-zooplankton, worms,
insects, mites, and fish (Taylor, 1961). Since this landmark paper,
TL as a statistical phenomena has been observed far beyond the
scope of ecology, present in cell biology (Azevedo and Leroi,
2001), linguistics (Tanaka-Ishii and Kobayashi, 2018), social
science (Xu and Cohen, 2019), and even number theory (Cohen,
2016) in mathematics (see Eisler et al., 2008 for a review).

The case for TL Universality in ecological populations has
been strengthened, more recently having been confirmed in
metagenomic studies of microbes in the human gut (Ma, 2015),
hot spring (Li and Ma, 2019), and several other microbiomes
(Grilli, 2020).While the phenomena of power law scaling appears
to be a universal property of populations, the slope (α) varies:
In his own words, Taylor considered α to be the “index of
aggregation” ranging from near regular dispersion α → 0, to
random (Poisson) α = 1 to aggregated α = 2 (Gamma) and
beyond α → ∞. Given the cornucopia of slopes these results
produced, Taylor considered α to be a characteristic feature of
the organism in question.

Beyond simply the verification of its existence, TL has
provided insight into aspects of spatial ecology, including a
connection with the Moran effect (Reuman et al., 2017), which
describes the synchronization of dispersed populations within
a landscape that are environmentally correlated (Moran, 1953).
While underlying mechanisms for the origins of differing α’s
are still up for debate (Fronczak and Fronczak, 2010; Kendal
and Jørgensen, 2011; Cohen and Xu, 2015), one thing is certain;
α varies considerably from organism to organism and from
landscape to landscape.

Despite the recognition that landscape structure impacts
metapopulation dynamics (Wiens, 1997), as of yet, no connection
has been made explicitly between the physical properties of
microbial ecological landscapes and their impact on the slope
(α) of the metapopulation. The aforementioned metagenomic
studies, while providing a significant first step toward connecting
TL to microbiome types, lack the capacity to connect to spatial
characteristics of their abiotic surroundings at the scale of micro
and macro soil aggregates. Performing such an investigation
requires precise control of physical properties defining the
landscape in question.

In this work, we show results from microfluidic experiments
(see Materials and Methods) using a single species of bacteria,
Escherichia coli, which is known to form a metapopulation in
such micro-habitat patch landscapes (Figure 1A) and therefore
suitable for studying in the context of TL (Keymer et al., 2006). As
a first step in connecting landscape microbial ecology to Taylor’s

Law, we aim to answer the following questions; (i) does the long-
term metapopulation occupancy structure display a discernible
α? And, if so, (ii) is α landscape structure dependent?

RESULTS

We compared E. coli metapopulation distributions in different
landscape types (Figure 1). In order to achieve this, we studied
the distribution of E. coli occupancy in microfluidic devices
which consist of microscopic chambers (patches) connected by
narrow channels (ecological corridors). Here, the only difference
between landscape types was the within-landscape corridor width
variance (see Figure 1C).

Starting from landscape type 1, which acts as our idealized
patchy habitat landscape, we steadily begin to increase variance
in our landscapes, while maintaining a landscape average
corridor width of 10 µm. From Figure 1B we see a zoom-
in depicting how the fluctuations around 10 µm arise for
each of the landscape types. Higher moments and spatial auto-
correlations were not considered and all experiments (n = 30
replicates) were conducted with the exact landscape structures
depicted in Figure 1C. After a relaxation time of 48 h after
inoculation, images were captured from which patch occupancy
(the percentage of the patch occupied by E. coli) can be deduced
(see Materials and Methods). For the remainder of this work we
discuss this “steady-state” distribution of E. colimetapopulations
in the four varying landscapes.

In Figure 2A, we consider the Rank-Size Distribution (RSD)
for each landscape type; this shows us how occupancy changes
frommost occupied patch (Rank 1) to least occupied patch (Rank
85) for each individual experiment (thin transparent lines) and
for the cumulative average (bold line) over all (n = 30) replicates.
From this figure it is clear that there is a great deal of variation
in how the metapopulation becomes distributed. Surprisingly, if
we consider the frequency of occupancy values for all patches
(Figure 2B) we see that, unlike landscape types 1–3 which exhibit
the expected decay in frequency from low-to-high occupancy,
landscape type 4 seems to render a relatively invariant frequency
for occupancy values.

Guided by these results we take a novel approach to
computing Taylor’s Law using the RSD data to generate means
and variances which we will compare to a more traditional spatial
TL. Our concern is with understanding whether distribution
differs between landscape types. Contrary to the spatial TL, where
mean and variance is computed using the same patch number
for all replicates (n = 30), RSD TL mean and variance is
computed using the same patch rank. For RSD TL only mean
patch occupancy rankings < 50% are used to compute power-
law slopes (see Materials and Methods). The RSD TL approach
allows us to take the spatial mapping of the metapopulation out
of the equation which is in focus using the spatial TL, and instead
spotlight the distributional response to the varying landscape
types by E. coli reflected in the RSD results.

In Figure 3A, we see that for landscape types 1–3, α values fall
between 1.1 and 1.4 which is within the range commonly found
in the literature (Eisler et al., 2008). Strikingly, landscape type
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FIGURE 1 | Microfluidics device. (A) A sketch of the microfluidics device with single inlets on each side leading into four parallel habitat landscapes. (B) Zoom-in view

of patch-corridor structure in each of the four parallel landscapes. For type 1 corridor width is kept constant at 10µm. Types 2–4 the average width is also 10 µm with

variance around the mean increasing from type 1 to 4 as σ 2 = 0, 4, 9, 16 µm2. This can be appreciated in (C) where we show the pattern of corridor widths used for

each landscape type. Grey shading indicates location of zoom-in.

4 does not follow suit, instead registering a value of α4 ≈ 0.34
(Figure 3). These results suggest that beyond some critical level
of corridor variance, in this case (9µm2 < σ 2

crit < 16µm2), a
qualitative change occurs in the long-term distribution of E. coli
metapopulations.

When interpreting these results, it is useful to consider two
regimes of the metapopulation occupancy: For relatively
low density sub-populations occupying patches in the
metapopulation, where landscape occupancy 〈φ〉 << 50%,
type 4 patches have a significantly higher fluctuation around
the mean than equivalent occupancy patches in landscape types
1–3 (Figure 3A). To this effect, the normalization constant (c)
would be characterized as follows: c4 > c1−3. However, given the
scaling behavior observed (α4 < α1−3), this disparity diminishes
as we consider more concentrated patches in the metapopulation
〈φ〉 → 50% where the mean occupancy of concentrated patches
in all landscape types tends to fluctuate similarly.

A key takeaway from our results is that we see the fluctuation
scaling of bacterial metapopulations change with landscape
modifications. For landscape 4 (which has the largest amount

of corridor variance) we see that, when considering the power-
law scaling of Rank-Size Distributions ({flreffig3Figure 3A), the
less occupied patches tend to have much higher variance than
their counterparts in landscapes 1–3. On the contrary, higher
occupancy averages behave similar to the other landscapes, thus
rendering a shallower power-law slope and lower value for
α4. This uniform distribution is reflected well in the lowest
panel of Figure 2B which does not display as pronounced a
decay in occupancy frequency. These results suggest a qualitative
transition in the spatial distribution of E. coli when establishing
metapopulations in landscapes with large variance in ecological
corridors.

Particularly, we observe an abrupt transition in the Taylor’s
Law slope for landscape 4, as we see a relatively consistent value
for α below σ 2

crit , i.e., landscape types 1–3. This “basal” α value
while differing quantitatively between the three landscape types
remains qualitatively the same, lying between a random/Poisson
distribution (α = 1) and aggregated/gamma distribution
(α = 2). Counter-intuitively, landscape randomness (above
σ 2
crit) induces a qualitative change driving the overall scaling of
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FIGURE 2 | (A) Semi-log plot of Rank-Size Distribution for all landscape

replicates (n = 30) in light color and the ensemble average in bold. Occupancy

ranges from 0 to 100%. (B) Occupancy frequency histogram for individual

patches (n = 2,550).

variance in the metapopulation to be more uniformly distributed
(α < 1). However, when considering only fluctuations for low
occupancy ensembles, we see a dramatic increase in randomness
in metapopulation distribution.

DISCUSSION

It remains to be seen exactly how these metapopulations
arrive at this alternative statistical equilibrium. It is well-
known that E. coli collectively migrate into such landscapes as
traveling chemotactic waves (Saragosti et al., 2011; Van Vliet
et al., 2014). Therefore, following the range-expansion dynamics

of pioneering population waves is a logical next step in
answering this question. One possible explanation for these sharp
transitions in metapopulation distribution is due to self-driven
jamming by bacterial waves as they traverse the landscape. This
spatial ecology scenario with planktonic, free swimming cell
populations may parallel the dynamics of traffic jams (Nagatani,
2002). While speculative—as this research is ongoing—it would
be an interesting contribution to the current field of “jamming” in
microbial systems which has mainly focused on how mechanical
pressure imposed by cell division in confined spaces effects single
cell physiology (Delarue et al., 2016).

Previous investigations by Van Vliet et al. (2014) using the
same strain and similar microfluidics devices, also designed with
shared inlets leading to multiple landscapes, yet without variance
in ecological corridor width, showed strikingly similar patterns
of colonization and occupancy. In fact, van Vliet et al. found
more similar occupancy patterns for experiments performed with
shared inlets and identical colonies than those performed on
independent inlet devices and different colonies. Taking this
into account and the extensive number of replicate colonies
performed for this investigation suggests that our results are
a property of the spatial biology at play within the habitat
landscapes and not a methodological artifact, nor a stochastic
feature of under-sampling.

Our results reflect the conclusions of Reuman et al. (2017)
suggesting α is not only a trait of a species—originally asserted
by Taylor—but likely a tunable characteristic which responds to
external factors as in the case of the Moran effect, sensu, or in
this case—landscape properties. One question which remains is if
there exists a “basal” α for populations that is only perturbed by
exceptional external disturbances within the landscape or strong
trophic or competitive interactions. That we should see such
shifts in the scaling exponent α driven by external factors does
not diminish the utility of TL, rather it refines our understanding
and in fact marks development and progress as seen in other
ecological scaling laws (Marquet et al., 2005).

In this light, pursuit of these questions will aid in finding
connections between TL and other ecological scaling laws which
is an exciting and ongoing effort (Zaoli et al., 2017). It is clear,
extensions to the microbial world are in order and likely to
provide unexpected results. This is especially the case given
the known disparity of metabolic scaling observed between
prokaryotes and the more commonly studied metazoa (DeLong
et al., 2010). The application of a RSD approach to Taylor’s Law
could be of use when dealing with metagenomic data, since
fine-grained spatial structure is eliminated in sample processing.
Notwithstanding, we believe controlled spatial experiments like
those made accessible through the lab-on-a-chip framework will
play an important role.

MATERIALS AND METHODS

Strains and Growth Conditions
Experiments were performed using E. coli (JEK1036) labeled
with Green Fluorescent Protein (GFP) (Keymer et al., 2006)
which is induced with Isopropyl β-D-1-thiogalactopyranoside
(IPTG). Single colonies were grown from −80◦C glycerol stocks
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FIGURE 3 | Landscape dependency of Taylor’s Law in a bacterial metapopulation. (A) Log-log plot showing the relationship between the average occupancy of a

patch, 〈φ〉, and its variance, σ 2
φ , over (n = 30) replicates and across all patches (85) generating the unique Taylor’s Law (TL) for each landscape type. Inset displays a

box plot of corridor widths around the mean (10 µm). Four variances were used in this study, (σ 2 = 0, 4, 9, 16µm2). (B) The slope of TL, α, is plotted against the

variance of corridor width (randomness) defining landscape types.

on solid LB agar plates (LB Broth EZMix, Sigma-Aldrich + 1.5%
Bacto Agar, MOLAR Chemicals) and subsequently inoculated
in 3 ml Lysogeny Broth medium (LB Broth EZMix, Sigma-
Aldrich) for 16 h ± 30 min (O/N) at 30◦C, 200rpm. Overnight
cultures were back-diluted 1:1,000 in 3ml LB medium with 1mM
IPTG and grown to an optical density at 600nm (OD600) of 0.3.
Cultures were then centrifuged at 350G for 10 min, after which
the supernatant was removed and cells were resuspended in LB
medium containing 1mM IPTG.

Microfluidic Device Fabrication and
Preparation
Microfabricated devices used in this study consist of two inlet
holes (1.2mm) on opposite sides with four parallel landscapes,
each with 1-dimensional arrays of 85 habitat patches (100×100×
5µm3) connected by corridors with constant lengths (50 µm)
and depths (5 µm) but with different widths.

Devices were fabricated using soft lithography techniques
(Qin et al., 2010): A silicon wafer was coated with a thin film
(5 µm, height of the device) of the negative photoresist SU-
8 (SU-8 2005, MicroChem) and the design of the device was
written into the resist with a laser pattern generator (µPG 101,
Heidelberg Instruments) to fabricate a master mold on which
Polydimethylsiloxane (10:1 PDMS:curing agent, Sylgard 184,
Dow Corning) was deposited to yield an elastomeric stamp that
was covalently bonded to a glass cover slip by oxygen plasma
activation (29.6 W, 400 mTorr, 45 s; PDC-002, Harrick Plasma)
of both the PDMS and glass parts.

Microfluidic Experiments
Prior to inoculation, the devices were wettened with LB +
1mM IPTG. Then, 1µl culture was pipetted into one inlet hole.
Once inoculated on one side, the device was sealed with fast

curing PDMS (Kwik-Sil Silicone Elastomer, World Precision
Instruments). A water tight wall is made around the perimeter
of the sealed device on the glass slide using four 24 × 60mm
coverslips which were previously “painted” up-right onto the
glass-slide using fast curing PDMS. The sealed device was then
submerged inMilli-Q water and placed into an incubator at 30◦C
for 48 h. This was performed in order to insure no drying of
devices over the 48 h incubation time.

Image Acquisition and Data Analysis
After 48 h of incubation, devices were imaged using a Nikon
Eclipse Ti-E microscope equipped with 10X Nikon Plan Fluor
objective, GFP fluorescence filter set (49002 Chroma Inc.), Andor
Neo sCMOS camera (Andor Technology plc.), LUMEN 200 Pro
metal arc lamp (Prior Scientific Ltd.) and a Prior Proscan II
motorized stage (Prior Scientific Ltd.) was used for scanning.
The NIS Elements Ar software (Nikon Inc.) was used for image
acquisition and data processing and image analysis was carried
out using ImageJ and Python. Fluorescence intensity is a poor
estimation for biomass due to differences in expression among
cells. To avoid this problem we use a custom script in ImageJ to
convert all images to occupancy data.

Local Occupancy Within Patches (MHPs)
After background correction is performed on each image a
threshold pixel value is calculated based off the auto-fluorescence
for the green color channel used. When the value is above this
threshold, the pixel (0.803µm2) is considered occupied (value of
1), otherwise it is vacant (value of 0). Using the ROImanager in
ImageJ (Abràmoff et al., 2004), a custom mask was fitted at each
patch for each experiment allowing us to consider occupancy
values at the patch level.
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RSD and Spatial Taylor’s Law
Occupancy for a MHP spatially indexed by i is denoted as φi,
thus 0 ≤ φi ≤ 100% occupancy. Running n = 30 replicates,
and ranking patches with rank index k from highest k = 1 to
lowest k = 85 an ensemble average 〈φ〉k generated from all
n = 30 replicates can be computed for each rank k (bold line in
Figure 3A). Next, a variance is computed for each rank k, finally,
∀ 〈φ〉k ≤ 50% we generate a best fit linear regression for our
data in log-log form. This can be written as σ 2

φk
= c〈φ〉α

k
with the

condition ∀ 〈φ〉k ≤ 50%.
For values 〈φ〉k > 50% variance begins to decrease. There

are reasons related to the binary entropy function. First consider
pixel occupancy as our random variable X that can only take
two mutually exclusive values; vacant (0) or occupied (1). If a
patch is 50% occupied it’s entropy [H(X)] is at its maximum
value; assuming a unbiased coin flip determines the outcome
of individual pixel values, probability p = 0.5 uncertainty
is maximized. Likewise, mean patch values of 50% occupancy
maximizes variance. Since in the RSD TL we are averaging over
"like" patch types, that is, all patches in the 30 replicates with rank
85,...,1. For all patches rank 1 we can expect higher values than
rank 2,...,85. In doing so we have narrowed the range of expected
values and thus decreased variance. To illustrate this, all data is
shown in Supplementary Figure 1.

Next we considered the spatial TL. For this, an average, 〈φ〉,
and variance, σ 2

φ , is calculated for each patch i within each of

the four landscape types, rendering 85x[〈φ〉, σ 2
φ ] data points.

The best fit linear regression of log 〈φ〉 and log σ 2
φ is shown in

Supplementary Figure 2. This version of TL can be written as
σ 2

φi = c〈φ〉
αs
i where i = 1, ..., 85 patch indices.

Finally, we compared slopes obtained from the RSD TL to
those using the spatial TL for each of the four landscapes in
Supplementary Figure 3.We find qualitative agreement between
the two techniques, and particularly, for landscape type 4 which
exhibits sub-Poisson distribution regardless and in contrast to the
other three landscape types.
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