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SUMMARY

Understanding microbial communities’ roles in human health and disease requires
methods that accurately characterize the microbial composition and their activity
and effects within human biological samples. We present sMETASeq (small RNA
Metagenomics by Sequencing), a novel method that uses sequencing of small
RNAs to jointly measure host small RNA expression and create metagenomic pro-
files and detect small bacterial RNAs. We evaluated the performance of sSsMETA-
Seq on a mock bacterial community and demonstrated its use on different human
samples, including colon cancer, oral leukoplakia, cervix cancer, and a panel of hu-
man biofluids. In all datasets, the detected microbes reflected the biology of the
different sample types.

INTRODUCTION

Small RNA sequencing (sRNA-seq) has traditionally been a sequencing method for quantifying microRNAs
(miRNAs), but increased understanding of small RNAs and improved databases have enabled identifica-
tion of other small RNA classes such as transfer RNAs (tRNAs), small nucleolar RNAs (snoRNAs), small
nuclear RNAs (snRNAs), and other small RNAs. Current sRNA-seq protocols require 3’ hydroxyl- and 5’
phosphate groups on the RNA for adapter ligation, whereas subsequent size selection usually enriches
for RNAs approximately 22 nucleotides (nts) in length (Pritchard et al., 2012). Several classes of RNA
meet these criteria and will therefore be part of the final sequencing library.

Detection and quantification of microbes currently rely on either 16S rDNA-seq, utilizing variable regions
within the 16S ribosomal RNA (rRNA) gene (Hamady and Knight, 2009), or shotgun DNA-seq in which the
DNA is randomly fragmented and sequenced (Venter et al., 2004). The 16S rDNA-seq method has been the
gold-standard for metagenomics owing to its good sensitivity and specificity and relatively low cost. How-
ever, 165 rDNA-seq has some limitations including underrepresentation of species owing to primer mis-
matches (Schulz et al., 2017) and low phylogenetic power due to high DNA sequence similarity of the
16S rRNA genes (Janda and Abbott, 2007). Fungi are usually detected by sequencing the Internal Tran-
scribed Spacer (ITS) (Pankaj, 2013; Schoch et al.,, 2012) and require a separate primer set than that for
16S rDNA-seq. Viruses are commonly detected using customized oligonucleotide capture probes (O'Flah-
erty et al., 2018) or ribo-depleted total RNA-seq (Visser et al., 2016), but they can also be detected using
small RNA-seq (Massart et al., 2019). Shotgun DNA-seq has the advantage over 16S rDNA-seq in that it
can detect other microbes than bacteria, has a higher species specificity than 16S rDNA-seq, and can
assemble whole genes and infer gene function (Quince et al., 2017).

Small RNAs have been identified in bacteria and shown to play regulatory roles (Majdalani et al., 2005). Bac-
terial SRNAs are between 50 and 500 nts long and can be detected using total RNA-seq protocols, which
have a bias against RNAs shorter than 50 nts. Bacterial sRNAs resemble eukaryotic miRNAs in their ability to
base pair with target RNAs; however, they do not undergo a biogenesis pathway similar to that of miRNAs
(Gottesman and Storz, 2011). Moreover, the base pairing usually occurs at the 5’end of the target RNA. The
number of bacterial sSRNAs varies between species, but the number is likely much smaller than in eukaryotes
(Gottesman and Storz, 2011), although the identification has lagged that of eukaryotes because fewer
sequencing studies have been performed. Some bacteria express tRNA-derived RNA fragments (tRFs) (Ku-
mar et al., 2014) and yRNAs (Chen et al., 2014), two types of sRNAs frequently found in humans.

Here we present a novel metagenomic method, sMETASeq (small RNA Metagenomics by Sequencing),
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We evaluated the performance of the method together with 16S rDNA-seq on a mock bacterial community
and showed that SMETASeq has high sensitivity, specificity, and quantitative performance. We further show
that sSMETASeq detects differentially expressed microbes in colon cancer and oral leukoplakia and charac-
terizes bacteria and other microbes in human biofluids and cervix samples that reflect the sample type of
origin.

RESULTS
Overview of the sSsMETASeq Pipeline

The method sSMETASeq was developed to enable microbiome characterization using sRNA-seq from sam-
ples containing both host small RNAs (e.g., microRNAs) and microbes, for instance, human gut biopsies or
biofluids. The data for sMETASeq are generated using a standard sRNA-seq wet-lab protocol and can
therefore be applied to already generated publicly available sRNA data. First, adapter-trimmed and
collapsed sRNA sequencing reads are mapped to the human genome to identify mapped and unmapped
human reads. The mapped reads are then compared with available database annotations of human
miRNAs, for instance, miRBase (Griffiths-Jones et al., 2006), and used to generate expression profiles for
miRNAs, and potentially other small RNAs, by counting the number of uncollapsed reads that map to
each gene. The unique unmapped reads are further aligned to the kraken microbiome reference database
(Wood and Salzberg, 2014). The microbiome alignment results are then used to generate metagenomics
profiles and estimates of relative and absolute expression of microbes and microbial sRNAs.

Experimental Setup and Sequencing Statistics

To assess the performance of SMETASeq in identifying and quantifying microbes, we applied the method
on a mock microbial community that had undergone serial dilution and compared the results with the
widely used 16S rDNA-seq method. The mock community comprised 20 known bacterial species with a
5% contribution from each species. To better mimic a host-microbe environment, microbial DNA/RNA
from the mock community was mixed with DNA/RNA from the human plasma cell line INA-6 at different
concentrations (Table ST and Figure S1). Since the species of the mock community is known, this approach
allowed us to evaluate the sensitivity, specificity, and quantitative abilities of sSMETASeq across the
different dilutions. The experiment consisted of 15 dilutions for which samples D1-Dé contained increasing
amounts of human DNA/RNA and samples D8-D15 contained decreasing amounts of bacterial DNA/RNA
(Table S1). The amounts of human and bacterial DNA/RNA were fixed for samples D8-D15 and D1-Dé,
respectively; sample D7 contained equal amounts of human and bacterial DNA/RNA.

For sMETASeq, an average of 20 million reads per sample were generated (Figure S2A) of which on average
8 million reads mapped to the human genome and 10.5 million did not map to the human genome (Fig-
ure S2B). For 16S rDNA-seq, 135,980 reads were generated per sample on average, none of which mapped
to the human genome (Figure S2C). About 1% of the reads were remove after quality filtering (see Methods)
(Figures S2D and S2E). As expected, both methods showed a decrease in the number of non-human reads
in samples with decreasing bacterial DNA/RNA (Figures S2B and S2C). The filtered 16S rDNA data were run
through kraken to enable a direct comparison between the two methods. We also ran the 16S rDNA data
through Qiime2 (Bolyen et al., 2019), to evaluate its performance on a well-established microbiome plat-
form using a different reference database.

Effect of Bacterial RNA on miRNA Expression

We investigated the effect on miRNA expression of having bacterial RNA in the sample. As expected, the
number of human miRNA reads increased as the amount of input human RNA increased (Figure S3A).
Similarly, the detected number of unique miRNAs increased with increased input human RNA, from 86
unique miRNAs in sample D2 to 535 in sample D14 (Figure S3B). A principal component analysis of
the miRNA showed clear separation between the samples with high and low bacterial biomass (Fig-
ure S3C). Interestingly, small amounts of bacterial RNA (<10%, sample D8-D15) did not alter the miRNA
distribution significantly, indicating the sRNA-seq protocol is robust to low levels of non-human contam-
inants. Indeed, the miRNA expression profiles of the samples with low bacterial biomass (D8-D15) were
highly correlated (r > 0.99; Figure S3D). In contrast, the samples with high bacterial biomass showed
more variation in their miRNA expression profiles and this variation was mainly related to the number
of detected miRNAs.
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Evaluation of Specificity, Sensitivity, and Quantitative Abilities of SMETASeq on a Mock
Bacterial Community

We evaluated the ability of sSMETASeq to correctly identify the expected species in a mock community of 20
bacteria. First, we investigated how many of the mock species sSMETASeq and 16S rDNA-seq were able to
identify. We found that sSMETASeq identified 19 of the 20 species, whereas 16S rDNA-seq identified 18 of
the 20 species (Figures 1A and 1B). Neither sMETASeq nor 16S rDNA-seq was able to identify Actinomyces
odontolyticus and, additionally, 16S rDNA-seq failed to identify Lactobacillus gasseri. For both methods,
the abundance of the bacteria decreased with decreasing input bacteria material (Figures 1A and 1B). For
sMETASeq, the gram-negative Rhodobacter sphaeroides was the most abundant bacteria, and we also
observed high expression of the gram-positive Deinococcus radiodurans.

Potential contaminant operational taxonomic units (OTUs) were identified using the decontam package in
R (Davis et al., 2018). Consistent with the decreasing amounts of bacterial relative to human DNA/RNA,
reads from the domain Eukaryota and the kingdom Metazoa were identified as the main contaminants
in 16S rDNA-seq and sMETASeq, respectively, and the levels correlated well with the dilution series (Fig-
ures 1A and 1B). Contaminants from other OTUs were generally lowly expressed and likely represent cross-
mapping of the sequencing reads or sequencing errors (Table S2). Importantly, none of the mock species
were identified as a contaminant in either of the methods using the default decontam threshold parameter
of 0.1.

To investigate the ability of sSMETASeq to quantify the mock species we compared the normalized number
of reads within and between the species. First, when grouping all the dilutions into one average estimate of
species abundance we observed high correlation (r = 0.7) between sMETASeq and 16S rDNA-seq, indi-
cating that SMETASeq is able to quantify the mock species with good accuracy (Figure 1C). Second, the
within-species correlation across the dilutions was also high, indicating that sSMETASeq can quantify bac-
teria at different biomass levels (Figure S4A). When the 16S rDNA data were analyzed using Qiime2 and the
GTDB database (Parks et al., 2018), we also observed high correlation between the two methods, although
four species were not detected by Qiime2 (Figure S5A). Next, we correlated the abundance of the 20 mock
OTUs against the amount of input DNA/RNA to evaluate the ability of sSMETASeq to directly quantify bac-
teria with respect to input bacterial biomass. When performing linear regression against all 15 dilutions,
sMETASeq showed higher correlation than 16S rDNA-seq (p = 0.0001, Wilcoxon rank-sum test; Figure S4B).
However, when limiting the correlation analysis to the most diluted samples (D8-D15), 16S rDNA-seq
correlated better with input bacterial biomass than did sSMETASeq (p = 0.0003, Wilcoxon rank-sum test)
(Figure S4C). This indicated that sSMETASeq has higher sensitivity at high bacterial biomass, whereas 16S
rDNA-seq has higher sensitivity at low bacterial biomass.

The specificity of sSMETASeq was investigated by measuring how many of the mock species were correctly
assigned. A mock species was defined as correctly assigned if the species had the highest number of as-
signed reads within its corresponding genus. The correct predictions for sMETASeq ranged between 16
and 19 for the different dilutions, and for 16S rDNA-seq the correct predictions ranged between 13 and
15 (Figure 1D; p = 6 X 107°, sign test). sSMETASeq was particularly good at predicting the correct species
for samples with high bacterial biomass. When performing the same analysis using Qiime2 and the GTDB
database, we observed on average 13 correct predictions for the highest expressed species (Figure S5B).
This slightly reduced performance by Qiime2 is partly due to the fact that four species were not detected by
Qiime2. Together, these results indicate that sSMETASeq is good at discriminating between species in
diverse bacterial communities and that 16S rDNA-seq is more comparable with sMETASeq at low bacterial
biomass and that sMETASeq is superior at high bacterial biomass.

Diversity Metrics of SMETASeq

Next, we measured the alpha and beta diversity of SMETASeq across the dilutions. We observed a distinct
difference in diversity between the non-diluted and the diluted samples. For samples with high bacterial
biomass (D1-D6), 16S rDNA-seq generally overestimate diversity (Shannon and Simpson index) and spe-
cies richness (p = 0.007, p = 0.01, and p = 0.03, comparing “Simpson,” “Shannon,” and “Species richness,”
respectively for D1-Dé; paired Wilcoxon rank-sum test) (Figure 1E). When bacterial biomass decreased, the
estimated diversity tended to increase more rapidly for sMETASeq followed by and increase for 16S rDNA-
seq, but the estimated diversity was comparable for the two most diluted samples with lowest bacterial
biomass (D14-D15; “Simpson,” “Shannon,” and “Species richness”). When comparing the diversity for
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Figure 1. Bacterial Composition in Mock Community

(A) Relative abundance of the 20 mock bacteria across the dilutions as identified by sMETASeq. Contaminants are

indicated in light and dark gray.
(B) Similar as in (A) for 16S rDNA-seq.

(C) Correlation of mock bacteria abundance between sMETASeq and 16S rDNA-seq for pooled samples. The Pearson'’s
correlation values for each individual bacterium across dilutions are indicated with color. p = 0.00057. See also Table S2.
(D) Number of correctly assigned mock species for sMETASeq (light blue) and 16S rDNA-seq (dark blue) across dilutions.
Dilutions D1-D8 have the same number of correct assignments and are therefore pooled.

(E) Comparison of diversity measurements between sMETASeq and 16S rDNA-seq across the dilutions.
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Figure 2. Relative Abundance of RNA Types in Mock Community

Shown are the relative abundances of the different gene classes for the reads assigned to the species (bottom) and genus
(top) of the bacteria in the mock community. The dilutions are ordered along the x axis, and the annotation “D8" illustrates
the shift from high bacterial biomass samples to low bacterial biomass samples.

all diluted samples where bacteria RNA/DNA was higher than human RNA/DNA (D8-D15), there was a sig-
nificant difference in Shannon diversity and species richness between sMETASeq and 16S rDNA-seq but
notin Simpson diversity (p = 0.04, p = 0.55, and p = 0.04 for “Shannon,” “Simpson,” and “Species richness,"”
respectively, paired Wilcoxon rank-sum test).

Reads from Protein Coding Genes Are Enriched at Species Level

Having shown that sRNAs can be used to measure bacteria in a mock community we wanted to investigate
the genomic origins of the bacterial sSRNAs. All sequencing reads assigned to the bacterial strains in the
mock community or to their genus were therefore further mapped to the corresponding strain-specific
genomes of the 20 mock species. The bacterial sSRNAs overlapped different classes of RNAs, the most com-
mon being protein-coding RNAs, followed by rRNAs and tRNAs (Figure 2). Reads assigned to the strains
were enriched for protein-coding genes, whereas reads assigned at the genus level were enriched for
rRNAs and tRNAs. This difference is consistent with rRNA and tRNAs being more evolutionarily conserved
than protein-coding genes. Furthermore, when analyzing the relative abundance of RNA types across di-
lutions at species level, we observed a relative enrichment of rRNAs and tRNAs in samples with low bacte-
rial biomass (D8-D15) compared with samples with high or equal bacterial biomass (D1-D7) and opposite
for protein-coding RNAs (Figure S4D). The relative increase for tRNAs in samples with low bacterial
biomass was also present for reads mapping at the genus level. Together, these findings illustrate that spe-
cies-specific identification of bacteria is a result of reads overlapping the protein coding part of the
genome of the bacteria and can explain some of the differences in specificity between 16S rDNA-seq
and sMETASeq.

Bacterial Identification by SMETASeq in Colon Tissue Reflects the Gut Microbiota

Our group previously performed sRNA-seq on tumor and adjacent normal samples from 48 patients with
colon cancer (96 samples) (Mjelle et al., 2019). Bacteria are known to play important roles in the carcinogen-
esis of colon cancer (Dahmus et al., 2018), and we therefore wanted to investigate if sSMETASeq could be
used to detect bacteria in these samples. We detected high amounts of bacteria from the genus Bacter-
oides in most samples, and the most abundant species was Bacteroides fragilis and Bacteroides vulgatus,
both naturally occurring in the colon microbiota (Figure 3A). We observed consistent abundance of other
gut-associated bacteria, including the orders Clostridiales and Enterobacteriales, the species
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Figure 3. OTUs in Colon Tissue as Identified by sSMETASeq and 16S rDNA-seq

(A) Detected OTUs by sMETASeq in 96 colon tissue samples. The samples are ordered from left to right with respect to the
number of bacteria reads identified. OTUs within the same taxonomic lineage are indicated with different saturation of
the same color. The taxonomic level for each OTU is indicated as “d,” domain; “p,” phylum; “c,” class; “o,” order; “g,”
genus; "s,” species, and bacteria are indicated as “Bac” and virus as "Vir.” Reads aligned to other OTUs than those listed
are indicated as "“other.” Samples are indicated with patient number and “T" and “N" for tumor and normal, respectively.
(B) Detected OTUs by 165 rDNA-seq in 48 colon tissue samples. See (A) for a description of the plot.

(C) Correlation plot showing the mean expression of OTUs across samples as identified by sMETASeq (y axis) and 16S
rDNA-seq (x axis). The color of the points indicates the correlation coefficient (Pearson’s) and the axis shows the
expression. p < 2.2e-16.

Enterococcus faecium and Faecalibacterium prausnitzii, as well as the colon-cancer-associated Fusobacte-
rium (Figure 3A).

Bacterial Identification by SMETASeq Correlates with that of 16S rDNA-Seq

Having identified bacteria using sSMETASeq, we performed 16S rDNA-seq on a subset of the same samples
(48 samples, owing to lack of DNA from all 96) and compared the abundance of the OTUs detected by the
two methods. The 16S data also showed high amounts of bacteria from Bacteroides, Clostridiales, and En-
terobacteriales, similar to that identified by sMETASeq (Figure 3B). We compared the abundance of the
bacterial species that were identified by both 16S rDNA-seq and sMETASeq and observed a high
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correlation between the two methods (r = 0.82) (Figure 3C). When focusing on the individual species, most
species were positively correlated at the sample level between the two methods and more than 60% of the
species had a correlation value greater than 0.5. The species B. ovatus and F. prausnitzii showed the highest
correlations between the two methods (Figure S6). When analyzing the 16S rDNA data using Qiime2 and
the GTDB database, we observed good correlation between genera that were detected by both methods
(Figure S5C).

Bacteria are shown to play important roles in colon cancer, and we therefore wanted to analyze differences
in bacterial composition between tumor and normal samples and compare the differences across the two
methods. We observed differential expression of several bacteria in tumor and normal samples, the clear-
est being Fusobacteria, Bacteroidetes, and Proteobacteria (Figure S7A). The differential expression
observed by sMETASeq was highly reproducible in the 16S data, although to a lesser extent and partly
at different taxonomic levels (Figure S7A, right panel). Furthermore, comparing the logFC values between
tumor and normal samples for the two methods showed that most OTUs were changing in the same
direction (Figure S7B and Table S3).

sMETASeq Detects Microorganisms in Human Biofluids, Cervicovaginal Self-Samples, and
Oral Leukoplakia

Having established that sMETASeq is comparable with 16S rDNA-seq in identifying and quantifying bac-
teria, we went on applying sSMETASeq on panels of different sample types. First, we analyzed a publicly
available dataset comprising sRNA-seq data from nine different human body fluids (Seashols-Williams
et al., 2016). The highest relative amounts of bacterial reads were found in vaginal secretion, menstrual
secretion, feces, and saliva, whereas urine showed low amounts of bacterial reads (Figure S8A). The de-
tected bacteria were representative of the respective biofluids, with Lactobacillus being enriched in vaginal
and semen samples, Bacteroides in feces, Cutibacterium acnes in perspiration, and Prevotella in saliva
(Figure 4A). Samples were generally consistent within the biological replicates but also indicated individual
differences, such as Gardnerella vaginalis infections in two of the samples (Figure 4A). Next, we analyzed a
second publicly available dataset comprising samples from human saliva, urine, serum, plasma, blood, and
lymphocytes (EI-Mogy et al., 2018). Similar as in the dataset of Seashols-Williams et al., saliva had the high-
est number of bacterial reads (Figure S8B) and were enriched with Prevotella and Fusobacterium, both
common bacteria of the oral microbiota (Figure 4B).

To further investigate the bacterial composition in vaginal samples, and to show that sMETASeq also de-
tects viruses, fungi, and other eukaryotes, we analyzed a dataset containing 56 HPV-positive cervicovaginal
self-samples (Snoek et al., 2018). Twenty-four of the samples were histologically diagnosed with CIN3, char-
acterized by dysplasia in the cervix, and 32 samples were CIN1 and HPV positive. Viral miRNAs can be
detected by sMETASeq using miRBase; however, several viruses do not have miRNAs and PCR-based
methods are used for detection. We analyzed the HPV-infected cervical samples and detected Alphapapil-
lomavirus in 12 of the 24 CIN3 samples and one of the normal samples (p = 2.87 x 107>, Chi-square test for
the difference between CIN3 and normal), indicating that the level of Alphapapillomavirus increases with
increasing dysplasia (Table S4). Next, we searched the literature for known fungi and parasites reported to
be present in the female genital tract and focused on Candida and Trichomonas vaginalis (Bradford and
Ravel, 2017). We detected two Candida species, tropicalis and albicans, of which Candida albicans was
the highest expressed and found in many of the samples (Figure 4C). The protozoan parasite Trichomonas
vaginalis was also detected in several samples.

Finally, we applied sMETASeq on 20 samples of oral leukoplakia, a potentially malignant disorder affecting
the oral mucosa (Philipone et al., 2016). Leukoplakia is clinically important owing to its association with the
development of oral squamous cell carcinoma (OSCC), a disease with high morbidity and mortality (Bewley
and Farwell, 2017). The dataset consisted of 20 subjects divided into two groups; group 1 (n = 10) “progres-
sive group” (patients with leukoplakia that progressed to OSCC within 5 years) and group 2 (n = 10) “non-
progressive group” (patients with leukoplakia that did not progress to OSCC within 5 years). We compared
bacterial expression between the two groups and detected one differentially expressed genus, Neisseria,
which showed significantly higher expression in the progressive group compared with the non-progressive
group (Figure 4D) (p = 0.005, Benjamini Hochberg-corrected). When investigating the most abundant
microbes across all 20 samples, we detected high abundance of several microbes associated with the
oral cavity (Figure S8C). Interestingly, one of the patients in the progressive group showed very high levels
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Figure 4. Microbes in Human Biofluids, Cervix and Oral Leukoplakia Samples

(A) Distribution of bacteria in nine different human biofluids (Seashols-Williams et al., 2016) as identified by sMETASeq. See Figure 3A for a description of the
plot.

(B) Distribution of bacteria from eight different human biofluids (Seashols-Williams et al., 2016) as identified by sSMETASeq. See Figure 3A for a description of
the plot.

(C) Expression of fungi and parasites in cervix samples from persons with CIN1 (normal) cervix samples and persons with CIN3 (severe dysplasia) (Snoek et al.,
2018). The samples are grouped into three quantiles (Q1-3) based on the number of reads aligning to the specific OTUs. The plots marked with Q3 show the
samples with the highest number of reads for the specific OTU, and the plots marked with Q1 show the samples with the lowest number of reads for the
specific OTU.

(D) Differentially expressed bacteria in progressive oral leukoplakia versus non-progressive oral leukoplakia. The x axis shows the logFC between
progressive and non-progressive oral leukoplakia. The y axis shows the inverse (-log10) Benjamini-Hochberg-adjusted p values. Significant bacteria are
indicated in red. The dotted gray lines indicated absolute logFC of 1 and the gray horizontal line indicates the significant threshold of 0.05.

of Epstein-Barr virus (EBV, human gammaherpesvirus 4) (Figure S8C). EBV has been linked to both oral car-
cinomas and oral leukoplakia, although the sample size is too small to draw conclusions from this dataset
(Guidry et al., 2018). Together, these results indicate that bacterial small RNAs can be used to differentiate
progressive and non-progressive oral leukoplakia samples and potentially serve as biomarkers for OSCC
development.

Bacterial Detection in Infected Cell Lines

To further validate that sSMETASeq can indeed detect bacteria known to be present in a sample, we per-
formed sRNA-seq of a mycoplasma-infected JIN-3 myeloma cell line and a matched non-infected cell
line and compared the level of mycoplasma with a luciferase-based mycoplasma test assay. In the
sRNA-seq data, the infected cell line showed between 100 and 200 times more mycoplasma than the
non-infected cell line across replicates (Figure S8D). The same cell lines were tested using the MycoAlert
Mycoplasma Detection Kit (Lonza), which showed no detectable levels of mycoplasma in the non-infected
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cell line (readout of 0.6 and 0.4) and high levels in the infected cell line (readout of 70 and 24) (Figure S8D).
A readout above 1.2 indicates a positive test.

DISCUSSION

In this article, we present sSMETASeq for combined metagenomics and host small RNA profiling. The
method provides high-quality metagenomic profiling, is an alternative to current DNA-based methods,
and can be applied to various sample material from tissue biopsies to biofluids. The method is particularly
suited for research questions where both host small RNAs, for instance, human miRNAs, and the host
microbiome are of interest. The method can, for instance, be used to study associations between human
miRNAs and microbial composition in one single experiment. sSMETASeq displays the versatility of small
RNA-based sequencing and shows that bacterial sSRNAs are more widespread and consistently expressed
than previously anticipated. This could indicate that bacterial SRNAs are protected from degradation in
many sample types, either by binding to proteins or being contained in vesicles. Indeed, studies have
shown that prokaryotic vesicles contain different RNA types that could be delivered and interact with eu-
karyotic cells Dauros-Singorenko et al. (2018). Given the stability of bacterial SRNA, they could also function
as biomarker for disease.

In addition to describing sMETASeq, this is the first study to perform a comprehensive analysis of small
RNA metagenomics and to compare it with the widely used 16S rDNA method. It was recently shown
that a modified sRNA-seq protocol focusing on bacterial tRNAs (tRNA-seq) can be used to characterize
the microbiome (Schwartz et al., 2018). In contrast to sMETASeq, tRNA-seq will not provide information
on other RNA types, for instance, miRNAs, and is a more specific protocol to study tRNA modifications.
The strengths of SMETASeq lie in its ability to investigate multiple types of sSRNAs and that the data can
be used to study both metagenomics and other biological questions. As shown in this paper, sSMETASeq
tends to perform better at higher bacterial concentration and to some degree lack the sensitivity of 16S
rDNA-seq at very low bacterial concentrations. For instance, sSMETASeq tended to slightly overestimate
sample diversity at low concentrations, and fewer reads mapped to microbes when bacteria concentration
decreased. Our results show that, for sample types with high microbial biomass such as fecal, colon, oral,
and vaginal samples, SMETASeq would be a good method for identification and quantification of the mi-
crobiome. However, in samples with low microbial biomass, such as blood or different human tissues, sSME-
TASeq would likely lack the sensitivity to detect lowly expressed microbes. However, future developments
of sSMETASeq, with, for instance, a microbial enrichment step, would make the method more sensitive to-
ward microbes; however, this has to be optimized not to compromise the host sRNA profiles.

RNA is generally more prone to degradation compared with DNA, which makes sMETASeq more sensitive
to samples with degraded RNA. However, since sSMETASeq aims at small RNAs, even degraded RNA mol-
ecules contain valuable information that can be used to identify microbes in the sample. Using a k-mer-
based analysis method as applied by sSMETASeq in the kraken pipeline, short fragments will be suited
for taxonomic classification even if they are degradation products.

To compare the sensitivity and the specificity of sSMETASeq and 16S rDNA-seq we chose to perform an
RNA- and DNA-based sequencing experiment of a mock bacterial community comprising 20 known bac-
terial species. In terms of specificity, sMETASeq showed good performance, both in samples with high and
low bacterial biomass, although the specificity was slightly compromised in samples with low bacterial
biomass. These differences in specificity between sMETASeq and 16S rDNA-seq could be attributed to
the fact that sSMETASeq is not limited to the 16S region for bacteria identification but utilizes reads map-
ping to the whole bacterial genome. For species with highly similar genomes, sMETASeq is likely to
improve the discrimination. Indeed, when investigating the abundance of reads mapping to different
RNA types for sMETASeq, we observed that species-specific identification is a result of reads mapping
to protein-coding RNAs. The enrichment of protein-coding RNAs for reads that map to the specific bacte-
rial strains shows that the protein-coding region contains valuable strain-specific information that can be
utilized when discriminating between closely related species within the same genus. The reduced speci-
ficity and increased diversity measures in samples with low bacterial biomass could be explained by the
reduction in detected protein-coding RNAs for these samples. Regarding sensitivity and quantitative abil-
ities, the two methods correlated well with each other in measuring the abundance of the mock species
across the dilution. All correlation values were above 0.9, and several correlation values were close to 1.
When focusing on the samples with low bacterial biomass, 16S rDNA-seq correlated better with input
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bacterial biomass than did sMETASeq. In contrast, when including the high bacterial biomass samples,
sMETASeq correlated better with biomass than did 16S rDNA-seq.

We applied sMETASeq on a previously published in-house sRNA-seq dataset from colon tissue and pub-
licly available data from human biofluids and showed that the bacteria identified largely reflected the
sample of origin, supporting that the findings are biologically relevant and not a result of sample contam-
ination. Analyzing the colon dataset, we observed high levels of bacteria commonly found as part of the gut
microbiota, including Faecalibacterium, Enterobacteriaceae, Bacteroides, and Fusobacterium (Garrett
etal., 2010; Miquel et al., 2013). The latter has been identified as a potential player in colon cancer (Shang
and Liu, 2018). Two patients showed high levels of the genus Brachyspira, both in the normal and tumor
samples. Brachyspira has been associated with diarrhea and colitis in several animals and is the cause of
spirochetosis in human, an infection of the colonic mucosa (Amat Villegas et al., 2004).

Human biofluids were analyzed using two publicly available datasets and were shown to contain a wide
range of bacteria down to genus and species level. The bacteria identified largely reflected the known mi-
crobiota of the different biofluids. The saliva samples showed high levels of the oral bacterium Fusobacte-
rium. Fusobacterium can also be isolated from the vaginal microbiome (Hillier et al., 1993) and one of the
vaginal secretion sample showed very high levels of Fusobacterium, indicating potential vaginosis. The
saliva and vaginal secretion samples also showed high levels of the bacteria Prevotella, which have previ-
ously been associated to the oral, vaginal, and gut microbiota (Gholizadeh et al., 2016; Ley, 2016; Si et al.,
2017). Prevotella was highly expressed in the saliva samples in both datasets. The oral bacterium Veillonella
parvula was detected in the saliva samples in the dataset of EI-Mogy et al., and in the dataset of Seashols-
Williams et al. we detected the phylum Firmicutes to which Veillonella parvula belongs. Stool samples are
known to express high levels of bacteria, and sSMETASeq showed that the feces samples had the highest
proportion of bacterial reads. We found that these bacteria are mainly within the order Bacteroides, as ex-
pected from previous 16S studies (Eggerth and Gagnon, 1933). The perspiration samples showed high
amounts of the skin-specific bacterium C. acnes and Moraxella osloensis, which is also frequently found
in skin (Alkhatib et al., 2017; Dreno et al., 2018). In one of the vaginal secretion samples high amounts of
the bacterium Gardernella vaginalis was detected. This bacterium is involved in bacterial vaginosis, a
vaginal condition caused by abnormal bacterial composition in the vagina (Schwebke et al., 2014). In the
cervix samples we detected many highly expressed bacteria at the species levels, all previously associated
with the female genital tract. Interestingly, these samples also contained high levels of other eukaryotes, in
particular two fungi species within the Candida genus, Candida albicans and tropicalis, and overgrowth of
these fungi is shown to cause vaginal candidiasis, an infection in the vagina. Another interesting finding is
the parasite Trichomonas vaginalis, which was detected in a subset of the samples. T. vaginalis has been
isolated from samples of the vagina and has been associated with bacterial vaginosis (Franklin and Monif,
2000; Moodley et al., 2002). In the same dataset, we detected viral RNA fragments from the HPV virus Al-
phapapillomavirus 9. This HPV species has several subtypes, including HPV-16, which is one of the subtypes
that can lead to cervix cancer (Holl et al., 2015).

Oral leukoplakia are white patches on the oral mucosa and has malignant potential as these patches can be
precursor lesions of OSCC. The likelihood of malignant transformation of oral leukoplakia is observed to lie
between 0.2% and 3% and varies between studies and population groups (Bewley and Farwell, 2017). Early
detection of OSCC increases the survival rate from 20% to 30% to approximately 80%, which highlights the
importance of developing new good diagnostic biomarkers (Noone et al., 2018). Different microorganisms
have been linked to oral cancer; however, there are still discussions regarding the role and importance of
these microorganisms (Gholizadeh et al., 2016; Healy and Moran, 2019; Pushalkar et al., 2011). Using sME-
TASeq we were able to find high abundance of Neisseria, a genus of gram-negative species belonging to
the phylum Proteobacteria. Most Neisseria species are non-pathogenic; however, at least two species are
regarded as pathogenic, Neisseria meningitidis and Neisseria gonorrhoeae. Neisseria species are highly
abundantin the human oral cavity and have been detected in, for instance, saliva, plaque, mucosal surfaces
in the mouth, and teeth, and Neisseria has been regarded as part of the “core microbiome” of the healthy
human oral cavity (Keijser et al., 2008; Zaura et al., 2009). It has previously been shown that Neisseria is able
to produce the carcinogenic organic compound acetaldehyde; however, it is not clear if in vivo production
of acetaldehyde by Neisseria is related to carcinogenesis (Muto et al., 2000; Yokoyama et al., 2018). The
other microorganisms detected by sMETASeq in the oral leukoplakia samples generally reflected the
oral sample type. For instance, Capnocytophaga, Fusobacterium, Pasteurellaceae, Rothia, Gemella, and
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gammaherpesvirus are all related to the oral cavity, and some are implicated in oral cancer or oral
leukoplakia.

In summary, applying sSMETASeq to different human biofluids, cervical self-samples, and oral leukoplakia,
we showed that bacteria, fungi, parasites, and viruses can be identified and quantified between groups. We
show that the identification is comparable for similar sample types across datasets and that the microor-
ganisms reflect the biology of the sample in which they are detected.

The establishment of SMETASeq for bacterial identification enables researchers to analyze publicly avail-
able datasets and to plan new experiments in which both human small RNAs and other organisms can
be identified. SMETASeq also identifies viruses, independent of whether they encode viral miRNAs or
not, as well as fungi and other eukaryotes and parasites, and is therefore one of the most versatile protocols
for metagenomics. Moreover, by adjusting the gel-purification step during sRNA library preparation the
ratio between long or short fragments can be changed to favor different RNA species. Another advantage
of using sRNAs in metagenomics is that sSRNAs provide information about transcription. If bacterial sSRNAs
are detected in the samples, it is possible that the bacterium has active transcription since sRNAs from
latent or dead bacteria would be rapidly degraded; however, RNA from latent or dead bacteria could
also be present in samples if the RNA is protected by proteins, such as for Hfg-associated sRNAs (De
Lay et al., 2013). 16S DNA, on the other hand, would be stable for a longer period of time and using 16S
metagenomics would be better in case of dormant cells and non-dividing bacteria.

Thousands of sSRNA-seq datasets have been submitted to the NCBI sequence read archive. These datasets
might contain valuable information on sample microbiomes that researchers could access and analyze
through sMETASeq. Several large consortium projects include sRNA as part of the pipeline. For instance,
the FANTOM consortium (de Rie et al., 2017) contains sSRNA-seq from every major human organ as well as
primary cell lines, and The Cancer Genome Atlas project (TCGA) (Chu et al., 2016) contains sSRNA-seq from
the most common human cancers and includes both cancer and normal samples. We expect that re-
searchers with an interest in metagenomics and microbes will apply sMETASeq to gain new insights into
the role of microorganisms in human health.

Limitations of the Study

We here present a method for metagenomics profiling using small RNAs. Although the method performs
well at characterizing and quantifying microbes in samples with high bacterial biomass, the sensitivity
might be a limiting factor in samples with low bacterial microbes. Furthermore, in samples with low
sequencing depth, the number of bacterial reads will often be low, compromising both the sensitivity
and the specificity of the method. Further developments of sSMETASeq addressing both the library prep-
aration and the data analysis could potentially improve the method.

Resource Availability
Lead Contact

Further information and requests for resources, code, and scripts should be directed to and will be fulfilled
by the Lead Contact, Robin Mjelle (robin.mjelle@ntnu.no).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability
sMETASeq is available through github (https://github.com/MjelleLab/sMETASeq).

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Figure S6
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Figure S8
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Supplemental information

Figure S1: Bioanalyzer trace of the isolated DNA and RNA from the mock community.
Related to Figure 1. The length of the fragments is shown on the x-axis and the fluorescence
unit (FU) are shown on the y-axis. For the RNA, the ribosomal genes are depicted if they are
detected.

Figure S2: Sequencing statistics for the mock community. Related to Figure 1. A)
Number of raw reads identified by SMETASeq. B) Number of unique non-human reads
identified by SMETASeq after first aligning to the human genome. C) Number of raw reads
identified by 16S rDNA-Seq. D) Quality profiles for the 16S rDNA-Seq data. Shown is the
frequency of each quality score at each base position for the forward reads. The median
quality score at each position is shown by the green line, and the quartiles of the quality score
distribution by the orange lines. The red line shows the scaled proportion of reads that extend
to at least that position (since we filtered the same number of bases for all samples, the line is
flat for all samples). The x-axis shows the length of the reads. The number of reads post-

filtering is shown in red within each sample. E) Same is in D for the reverse-reads.

Figure S3: Overview of miRNA data from the mock community. Related to Figure 1. A)
Shown is the number of miRNA-reads detected by sSMETASeq across all dilutions. B) Shown
is the number of unique miRNAs detected across all dilutions. C) Principal component
analysis plot of normalized (cpm, log2) miRNA count. The samples are colored based on the
dilution for which samples with high bacterial biomass (D1-D6) are in green, samples with
equal human/bacteria (D7) are in red, and low samples with low bacterial biomass (D8-D15)
are in blue. The percentage variation explained by the two first components are indicated on
the corresponding axes. D) Pearson correlation of miRNA expression between samples. We
calculated the correlation of the log2-normalized miRNA count matrix which was first filtered
to contain only miRNAs that was expressed with at least 1 cpm in all samples. The correlation

values were calculated in R using the function cor.

Figure S4: Correlation between SMETASeq and 16S DNA-seq in mock community.
Related to Figure 1. A) Comparison of expression values for the 20 mock species across all

dilutions between SMETASeq and 16S DNA-seq. The correlation values are Pearson’s



correlation. B) Density plot of the correlation values (Spearman’s) between the 20 mock
species and the input bacterial biomass (ng) for sSMETASeq and 16S DNA-seq across all 15
dilutions. The correlations are calculated by the linear model Im() in R. The p-value indicated
the difference in correlation values for sSMETASeq and 16S DNA-seq and is calculated using
Wilcoxon rank sum test in R. C) Similar as in B) for samples D8-D15. D) Shown is the
relative abundance of protein coding RNAs, rRNAs and tRNAs across dilution for reads
assigning to specific species strains and for reads assigning to the genus level. The boxplots

comprise the reads for the mock species (red) and the genera for the mock species (blue).

Figure S5: Correlation between SMETASeq and 16S rDNA-seq using Qiime2. Related to
Figure 1. A) Comparison of expression values across all dilutions for the species detected by
both sSMETASeq and Qiime2 using the GTDB database. The correlation values are Pearson’s
correlation. Some OTUs were not detected at the species level using Qiime2 (Pseudomonas
aeruginosa; Staphylococcus epidermidis; Bacillus cereus, Rhodobacter sphaeroides) or
SMETASeq (Actinomyces odontolyticus), and are therefore not shown. B) Number of
correctly assigned mock species across dilutions for sSMETASeq and 16S rDNA-seq run
through kraken and Qiime2 using the GTDB database. Dilutions D1-D8 have the same
number of correct assignments and are therefore pooled. C) Shown is the most highly
correlated bacteria genera in colon tissue between SMETASeq and 16S rDNA-seq run through

Qiime2 using the GTDB database.

Figure S6: Correlation of bacteria species in colon tissue between sSMETASeq and 16S
rDNA-seq. Related to Figure 3. Shown is the most highly correlated bacteria species
(R>0.6, Pearson’s correlation) between SMETASeq and 16S DNA-seq in colon tissue.

Figure S7: Comparison of SMETASeq and 16S DNA-seq in colon tissue. Related to
Figure 3. A) Heatmap showing expression of OTUs as identified by SMETASeq (left panel)
and 16S DNA-seq (right panel) in tumor and normal colon tissue. The y-axis shows OTUs at
different levels and the x-axis shows samples indicated with “T” for tumor samples and “N”
for normal samples. The comparison is tumor vs normal such that red indicates higher levels
of bacteria in tumor compared to normal and blue indicates lower levels in tumor compared to
normal. Asterisk indicate that the OUT is significantly differentially expressed between tumor

and normal samples. B) Comparison of logFC values for the difference between tumor and



normal samples between SMETASeq and 16S DNA-seq as determined by /imma. Shown is
OTUs with absolute logFC values above 0.5. Shown is OTUs at species, genus and family
level. The correlation values are Pearson’s correlation calculated in R. See supplementary

tables for complete list of differentially expressed OTUs.

Figure S8: Alignment results for human biofluids. Related to Figure 4. A) Shown is the
relative abundance of reads aligning to the three domains of life in addition to viruses in the
dataset of Seashols-Williams et al. B) Similar as in A) for the dataset of E1-Mogy et al. C)
Distribution of bacteria in samples from oral leukoplakia (Philipone et al.) as identified by
sSMETASeq. See Figure 4A for a description of the plot. D) Quantification of Mycoplasma
bacterium in SMETASeq and MycoAlert Mycoplasma Detection Kit (Lonza). “Positive Ctrl”
and “Negative Ctrl” are the controls in the Lonza kit; “Infected” is a mycoplasma-infected
cell-line; “Non-infected” is a non-infected cell line. The y-axis for the mycoplasma assay is
the readout from the MycoAlert test. Mycoplasma contamination is indicated if the readout
has a value > 1.2. The sequencing reads are shown as raw reads and the p-value was
calculated using a one-tailed Student’s t-test on cpm-log2-normalized values. The standard

deviation is calculated from two biological replicates.



Transparent Methods

Analysis pipeline for 16S data using Qiime2

A detailed procedure on how Qiime2 was run can be found below. In short, the data were
filtered using dada2 with the parameters --p-trunc-len-f 290 and --p-trunc-len-r 290. Next, we
used the “bac_120” fasta file from GTDB to generate a feature classifier using the primers
CCTACGGGNGGCWGCAG and GACTACHVGGGTATCTAATCC, which corresponds to
the region amplified for our data. Using this classifier, the data was analyzed using the
function feature-classifier classify-sklearn with parameter --p-confidence 0.1, otherwise
default parameters. The 16S data were analyzed by Qiime?2 using the following scripts and

parameters:

qiime tools import

--type 'SampleData[PairedEndSequencesWithQuality]'
--input-format PairedEndFastqManifestPhred33V2
--input-path ./manifestPE2.tsv

--output-path ./demux_seqsPE.qza

qiime dada2 denoise-paired \
--i-demultiplexed-seqs ./demux_seqsPE.qza \
--p-trunc-len-f 290 \
--p-trunc-len-r 290 \
--p-n-threads 20 \
--o-table ./dada2 tablePE.qza \
--o-representative-sequences ./dada2 rep set PE.qza\
--o-denoising-stats ./dada2_stats PE.qza

qiime tools import \

--input-path ./bac120 ssu.fna \
--output-path ./bac120 ssu.qza \
--type 'FeatureData[ Sequence]'

qiime tools import \

--input-path bac120 taxonomy.tsv \
--output-path ./bac120 taxonomy.tsv.qza \
--type 'FeatureData[ Taxonomy]' \

--input-format HeaderlessTSVTaxonomyFormat



qiime feature-classifier extract-reads \
--i-sequences ./bac120 ssu.qza \

--p-f-primer CCTACGGGNGGCWGCAG \
--p-r-primer GACTACHVGGGTATCTAATCC \
--p-trunc-len 450 \

--p-min-length 100 \

--p-max-length 600 \

--o-reads ./bac120 ssu 341 805.qza

qiime feature-classifier fit-classifier-naive-bayes \
--i-reference-reads ./bac120 ssu 341 805.qza\
--i-reference-taxonomy ./bac120_taxonomy.tsv.qza \
--o-classifier ./bac120 ssu 341 805 classifer.qza

qiime feature-classifier classify-sklearn \
--i-classifier bac120 ssu 341 805 classifer.qza \
--i-reads dada2 rep set PE.qza\
--p-confidence 0.1 \
--o-classification bac120 ssu 341 805 confidence(0.1 PE.qza

qiime metadata tabulate \
--m-input-file bac120 ssu 341 805 confidence0.1 PE.qza\
--o-visualization bac120 ssu_ 341 805 confidence0.1 PE.qzv

qiime feature-table filter-samples \
--i-table ./dada2 tablePE.qza \
--p-min-frequency 100 \
--o-filtered-table ./table 2k PE.qza
qiime taxa barplot \
--i-table ./table 2k PE.qza\
--i-taxonomy ./bac120 ssu 341 805 confidence0.1 PE.qza\

--m-metadata-file ./metadata.tsv \
--o-visualization ./barplot_bac120 ssu 341 805 confidence0.1 PE.qzv

Overview of public datasets

The sRNA-seq dataset from colon cancer tissue is described in (Mjelle et al., 2019). The
human biofluid datasets are described in (EI-Mogy et al., 2018; Seashols-Williams et al.,
2016). The cervix dataset is described in (Snoek et al., 2018). The oral leukoplakia dataset is

described in (Philipone et al., 2016).



DNA isolation and 16S rDNA-seq on colon tissue

16S rDNA-seq was performed on 48 samples from 24 colon cancer patients all of which were
included in the SRNA-seq. DNA was isolated from frozen tissue samples using the DNeasy
Blood & Tissue Kits from Qiagen (Cat No./ID: 69504). The DNA was normalized to equal
concentration and used as input in the 16S Ribosomal RNA Gene Amplicons and sequenced
on the Illumina MiSeq System using 300bp paired end reads. PCR primers (5ul (1 pM) pr.
sample) was ordered from Invitrogen based on the 16S rDNA-seq protocol from Illumina. We

used the following primers:

"16S Amplicon PCR Forward Primer:

“S'TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG”

16S Amplicon PCR Reverse Primer: 5'

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC

For indexing of the samples, we used the Nextera XT Index Kit v2, set D, FC-131-2004. The
gene specific sequences used in this protocol target the 16S V3 and V4 region. They are

selected from the Klindworth et al. publication (Klindworth et al., 2013).

16S rDNA-seq analysis using kraken

Quality analysis and filtering of the raw reads were performed using DADA?2 (Callahan et al.,
2016). The reads were filtered in DADA?2 using the function filterAndTrim with the
parameters: trimRight=c(0,0),trimLeft=c(25,25), maxN=0, maxEE=Inf, truncQ=1,
rm.phix=TRUE. The DADA2-filtered reads were used as input to kraken1.0 for taxonomic

classification using these two commands: Kraken --db database Sample forward. fastq.gz



Sample reverse.fastq.gz > Sample.kraken.stderr and kraken-mpa-report --db database
Sample.kraken.stderr > Sample.kraken.report. Kraken is previously shown to perform good

on long 168 reads (Valenzuela-Gonzalez et al., 2016).

DNA and RNA isolation from mock community

We used the “20 Strain Even Mix Whole Cell Material (ATCC® MSA-2002™)” from ATCC
as mock community. Bacterial DNA was isolated using the DNeasy Blood & Tissue Kits
from Qiagen, following the protocol of the kit (Cat No./ID: 69504). Bacterial RNA was

isolated using miRVana RNA isolation (Cat No. AM1560).

16S rDNA-seq and sRNA-seq of mock community.

The 16S rDNA-seq of the mock community was performed as for the colon tissue samples
described above. The sSRNA-seq was performed using “NEXTFLEX® Small RNA-Seq Kit v3
for Illumina” using 16 PCR cycles. The input material for the NEXTFLEX protocol was the
output from miRVana without further size selection. The finished libraries were gel-purified
using automated gel purification aiming for RNA fragments of approximately 15-200nts in
length. The sRNA libraries were sequenced on a HiSeq 4000 from Illumina using 75bp single

reads.

Overview of the SMETASeq pipeline
We here describe how sRNA-seq data can be used to identify non-human RNA species.
Sequencing adapters were removed from the raw fastq files by cutadapt (v2.7) (Martin) using

the parameters cutadapt -f fastq -a. The cut reads were collapsed into unique reads using



fastx_collapser (FASTX-Toolkit) and aligned to the human genome (GRCh38) using bowtie2
(Langmead and Salzberg, 2012) with the parameters bowtie2 -p20 -k10 and the file with the
mapped reads was saved as Mapped.sam. Human microRNAs were identified using htseq-
count (v0.11.1) (Anders et al., 2015) with the miRbase (v21) reference GFF file using the
parameters htseq-count -a 0 -s yes -i Name -t miRNA. The reads from bowtie2 that did not
align to the human genome were saved in a separated file called Unmapped.fastq. The files
containing unique unaligned reads (Unmapped.fastq) were used as input in the metagenomic
pipeline Kraken (v1.0) using the 50gb pre-build index using the following two kraken-scripts:
kraken --db database Sample.fasta > Sample.kraken.stderr and kraken-mpa-report --db
database Sample.kraken.stderr > Sample.kraken.report. Each sequence is assigned an
appropriate label based on the lowest common ancestor from the Kraken k-mer database and a
classification tree is generated which can be used as input in a statistical software like R for

statistical analyses.

Mycoplasma testing

Mycoplasma infection was tested using the MycoAlert Mycoplasma Detection Kit (Lonza,
Cat: LT07-218) with three replicates. The MycoAlert ratio was calculated by dividing Read B

by Read A. Cells which are infected with mycoplasma will produce ratios greater than 1.

Cell culturing, RNA isolation and sequencing of mycoplasma infected cells

The JIN-3 myeloma cell line was cultured at 37 C in a humidified atmosphere containing 5 %
CO2, in RPMI 1640 medium (Sigma Aldrich) supplemented with glutamine (100 pg/ml,
Sigma Aldrich), gentamicin/gensumycin (20 pg/mL, Sanofi) and 10% fetal calf serum
(Gibco/Invitrogen). The cells were split twice a week. RNA was isolated using miRVana

(Thermo Fisher, cat: AM1560). Small RNA-seq was performed using the NEXTflex small



RNA library preparation kit (Bio-Scientific, Cat: NOVA-5132-05), following the
manufacturer’s protocol, and sequenced using on a HiSeq 4000 Flowcell from Ilumina using

75bp single reads. The data was processed as described above.

Statistics and diversity measurements

To correlate expression values against bacteria concentrations we used the Im() function in R
and extracted the estimated coefficients from the result summary. The statistical differences in
estimated coefficients was evaluated using Wilcoxon rank sum test in R. Pearson's correlation
coefficients were used when comparing expression values between 16S rDNA-seq and
sMETASeq. Differentially expressed bacteria between tumor and normal samples were
detected using limma-voom in R (v3.6.1), and p-values were adjusted using Benjamini-
Hochberg. For both sMETASeq and 16S rDNA-seq, diversity and richness in the mock
community experiment was calculated using the vegan (v2.5-6) R package using the rrarefy
function using taxonomical counts from the kraken alignments. The following functions were
used: Diversity was calculated using the function diversity with the parameters “simpson” or
“shannon”; Fisher’s alpha was calculated using the function fisher.alpha; Species richness
was calculated using the function specnumber, Pielou's evenness was calculated by H/log(S)
where H' is Shannon diversity and S is the total number of species in a the sample
(specnumber). The kraken output files (.report) containing the taxonomical counts were used
as input for the diversity analyses. Contaminant reads were identified using the decontam

(v1.4.0) package in R with the “frequency” method.
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