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There is unequivocal evidence that altered biodiversity, through changes in

the expression and distribution of functional traits, can have large impacts

on ecosystem properties. However, trait-based summaries of how organisms

affect ecosystem properties often assume that traits show constancy within

and between populations and that species contributions to ecosystem func-

tioning are not overly affected by the presence of other species or variations

in abiotic conditions. Here, we evaluate the validity of these assumptions

using an experiment in which three geographically distinct populations of

intertidal sediment-dwelling invertebrates are reciprocally substituted. We

find that the mediation of macronutrient generation by these species can

vary between different populations and show that changes in biotic and/

or abiotic conditions can further modify functionally important aspects of

the behaviour of individuals within a population. Our results demonstrate

the importance of knowing how, when, and why traits are expressed and

suggest that these dimensions of species functionality are not sufficiently

well-constrained to facilitate the accurate projection of the functional conse-

quences of change. Information regarding the ecological role of key species

and assumptions about the form of species–environment interactions needs

urgent refinement.
1. Introduction
A wealth of empirical studies over the past two decades have provided unequi-

vocal evidence that altering biodiversity leads to concomitant changes in

ecosystem functioning that, ultimately, can affect the benefits that humans

derive from ecological systems [1]. Indeed, recent consensus emphasizes the

functional importance of individual species, rather than species diversity, in

mediating ecosystem processes that are important in maintaining efficient

and productive ecosystems [2–4]. This has revitalized interest in applying

trait-based indices of functional diversity, in both terrestrial [5–7] and marine

ecosystems [7–9], in order to provide a mechanistic understanding of the

biotic control of ecosystem functioning and/or service delivery. While most

of these approaches use non-phylogenetic biological attributes (i.e. physiologi-

cal, morphological, or phenological characteristics [10]) to focus on how species

mediate ecosystem functioning, they typically disregard variation in trait values

(exceptions exist [11,12]) and, instead, focus on mean performance. In doing so,

the contributory roles of species are assumed to show functional constancy in

time and across space and, therefore, do not necessarily reflect the realized

role of species [13]. Further, these perceptions are seldom challenged or interro-

gated and are infrequently explored empirically or objectively validated [14,15].
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Nonetheless, these functional summaries are increasingly

being adopted within predictive tools that incorporate

community dynamics to project ecosystem responses to

environmental change for the purposes of ecosystem

management and planning [7,16,17].

As the allocation of species to a functional group and/or

the assignment of functionally important traits is frequently

based on single mean trait values per species [18,19], assess-

ments of species contributions to functioning often

underestimate the importance of intraspecific trait variation

(but see [20]) and assume that an organism’s functional

effects and responses will be the same within and between

populations [13,21]. However, the expression of functional

traits within species is unlikely to be homogenously

distributed, as individuals behave differently depending on

the biotic and/or environmental conditions they experience

[22–26]. Such context-dependent changes in trait expression,

including, for example, responses to temperature [27], hydro-

dynamic regimes [28,29], resource availability and quality

[30–32], or biotic interactions (e.g. predation [33,34]; compe-

tition [35]), can mean that the functional role of an individual

may fundamentally change over time and across space, with

corresponding transient effects on ecosystem properties

[25,36,37].

Theory, as well as observations in plant communities [38],

suggests that the relative importance of intraspecific variation

in trait expression will decline with increasing scale as more

variation is considered [39]. Here, we test this supposition

in a marine system by exploring variability in sediment

particle reworking activity, burrow ventilation behaviour,

and the associated generation of nutrients for three

distinct populations of three functionally contrasting

sediment-dwelling invertebrate species that are common in

mid-latitude eastern Atlantic and Mediterranean intertidal

mudflats. Our a priori expectation was that undefined differ-

ences in location-specific environmental setting would lead to

inter-population variation in behaviour that reflects differ-

ences in the extent and nature of organism–sediment

coupling. A prominence of these sources of variation would

emphasize the importance of the individual and/or popu-

lation, rather than the species per se, and would highlight

the need to incorporate sources of performance variability

within biodiversity–ecosystem functioning models and

ecosystem management strategies.
2. Methods
(a) Experimental set-up and design
Surficial sediment (less than 3 cm depth, including surficial

oxidized and subsurface reduced sediment) and fauna were

collected in August 2014 from three sites from the northern

(Ythan Estuary, 57820009.100 N, 2800020.600 W), central (Humber

Estuary, 53838031.200 N, 0804008.000 E), and southern (Hamble

Estuary, 50852023.100 N, 1818049.300 W) regions of the UK. We col-

lected individuals of the gastropod Hydrobia ulvae and the mud

shrimp Corophium volutator by sieving (.500 mm), and individ-

uals of the polychaete Hediste diversicolor by hand. Sediment

from each location was independently sieved (500 mm mesh) in

a seawater bath to remove macrofauna, allowed to settle for

48 h (to retain the fine fraction, ,63 mm) and thoroughly

mixed. Sediment grain size parameters were measured using

laser diffraction (Malvern Mastersizer 2000) and calculated

using standard logarithmic graphical measures [40]. Total
organic carbon (TOC) was determined by loss on ignition

(electronic supplementary material, figure S1 and table S1).

Aquaria consisted of transparent square acrylic cores

(internal dimensions, LWH, 12 � 12 � 35 cm), filled to approxi-

mately 10 cm with sediment overlain by approximately 20 cm

of seawater (UV sterilized, 10 mm filtered, salinity 33) and main-

tained in a temperature-controlled water bath (14+18C, a value

within the annual temperature range of all study site locations).

After 24 h, the overlying water was exchanged to remove

excess nutrients associated with assembly. We assembled repli-

cate aquaria (n ¼ 3) of each species in monoculture, and in a

three species mixture (1 : 1 : 1), for each population (hereafter,

Ythan, Humber, or Hamble). The species mixture allows deter-

mination of whether any observed variability that relates to

environmental setting and/or population is conserved when

biotic context is altered. To distinguish the effects of species inter-

actions in the species mixture from the effects of density, we fixed

biomass at 2 g wet weight aquarium21 across all species treat-

ment levels. To account for the effects of site-specific

differences in environmental setting (mean+ s.d.) including

differences in grain size distribution (Mz, sorting), organic

carbon content (TCorg) (Ythan, Mz ¼ 49.4+2 mm, sorting ¼

1.4+0.08, TCorg ¼ 9.3+2.6%; Humber, Mz ¼ 33.6+1.1 mm,

sorting¼ 1.9+ 0.04, TCorg ¼ 10.2+2.2%; Hamble, Mz ¼ 27.5+
0.9 mm, sorting¼ 2.4+0.04, TCorg ¼ 6.8+0.1%; see electronic

supplementary material, figure S1 and table S1) and any unchar-

acterized correlates, each species treatment was incubated in each

sediment type. This allows us to distinguish the role of sediment

conditions from that of species population effects (i.e. for each

species treatment (4�): 3 populations � 3 environmental set-

tings, in triplicate ¼ 108 aquaria, figure 1). In addition, we

included aquaria (n ¼ 27) without macro-invertebrates to dis-

tinguish the contribution of macrofauna from that of the

meiofauna and microbial processes. All aquaria were continually

aerated and maintained under a 12 h light:dark regime for

12 days.
(b) Quantification of ecosystem process and functioning
Faunal-mediated sediment particle reworking was estimated

non-invasively using a sediment profile imaging camera

(Canon 400D, set to 10 s exposure, aperture f5 and speed equiv-

alent to ISO 400; 3 888 � 2 592 pixels, effective resolution ¼

63.1 mm pixel21), modified to enable the preferential imaging

of fluorescent-labelled particulate tracers (luminophores, pink

colour, size class less than 125 mm; Brianclegg Ltd., UK) under

UV light (f-SPI [41]). We analysed stitched composite images

(RGB colour, JPEG compression, GMU Image Manipulation

Program, v. 2.8.4, www.gimp.org/, Kimball S, Mattis P, GIMP

(1995), date of access 01/10/2014), compiled from images of all

four sides of each aquarium in a UV illuminated imaging box

[42] after 12 days, using a custom-made semi-automated macro

that runs within ImageJ (v. 1.47), a java-based public domain

program developed at the US National Institutes of Health

(http://rsb.info.nih.gov/ij/index.html, Rasband W, ImageJ (1997),

date of access 01/10/2014). From these data, following [15], the

mean (f-SPILmean,) and maximum (f-SPILmax) depth of particle

reworking was calculated. In addition, an estimate of surficial

activity was determined using the maximum vertical deviation

of the sediment–water interface (upper–lower limit; surface

boundary roughness, SBR).

Burrow ventilation was estimated from absolute changes in

the concentration of the inert tracer sodium bromide (D[Br2],

mg l21; negative values indicate increased activity) over a 4 h

period during the daytime on day 12. Bromide concentrations

were determined from pre-filtered (Fisherbrand, QL100, Ø

70 mm) water samples (5 ml, taken centrally, approximately

5 cm above the sediment–water interface) using a flow injection

http://www.gimp.org/
http://rsb.info.nih.gov/ij/index.html
http://rsb.info.nih.gov/ij/index.html
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Figure 1. We adopted a full factorial experimental design consisting of three
geographically distinct populations (Ythan, Humber, and Hamble estuaries) of
invertebrate species (H. ulvae, HU; C. volutator, CV; H. diversicolor, HD) crossed
with three environmental settings (sediment sourced from each geographical
location). Species treatments included monocultures of each species (HD, HU,
or CV) and a three-species mixture (Mix). Each treatment was replicated three
times, giving a total of 108 aquaria. In addition, to distinguish the contri-
bution of microbes and meiofauna from the activities of the macrofauna,
we included additional aquaria that did not contain macrofauna (n ¼ 9
environmental setting21 ¼ 27 aquaria) that were not included in statistical
analyses.
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Figure 2. The effects of environmental setting on SBR (mean+ s.e., n ¼ 3)
for H. ulvae (circles) and C. volutator (squares). Observations without macro-
fauna (dash, n ¼ 9) are shown for comparison.
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auto-analyser and standard protocols (FIAstar 5010 series,

Foss-Tecator).

Nutrient concentrations ([NH4–N], [NOx–N], [PO4–P]) were

quantified from pre-filtered (Fisherbrand, nylon 0.45 mm, Ø

25 mm) water samples (10 ml, taken centrally, approximately

5 cm above the sediment–water interface on day 12) using a

flow injection auto-analyser (FIAstar 5010 series, Foss-Tecator)

with an artificial seawater carrier solution.
(c) Statistical analysis
For each species in monoculture (H. diversicolor, H. ulvae,

C. volutator) and the three species mixture, we developed separ-

ate statistical models for each of the response variables

(ecosystem processes: f-SPILmean, f-SPILmax, SBR, D[Br2]; ecosystem

functioning: [NH4–N], [NOx–N], [PO4–P]) with environmental

setting and population as explanatory variables. As our main

focus is to compare species contributions to functioning, and

not to detect presence versus absence effects of species, aquaria

that contained no invertebrates were not included in our

statistical analyses but are presented for comparative purposes.

Initial linear models were assessed for normality (Q-Q-plot),

heterogeneity of variance (plotted residual versus fitted values),

and influential data points (cook’s distance) [43]. When data

exploration indicated variance heterogeneity, we applied gener-

alized least squares (GLS) estimations that specifically

incorporate variance in the residual spread with the explanatory

variables, using appropriate variance functions (here varIdent for

nominal explanatory variables) [43]. The optimal fixed structure

was obtained by manual backward selection using the likelihood

ratio test under maximum-likelihood (ML) estimation [43]. Coef-

ficient tables are presented (electronic supplementary material,

models S1–S23) without correction for the alpha-error, as Bon-

ferroni correction increases the beta error and tends to obscure

multiple significant results if p-values are moderate and the stat-

istical power is low [44]. All statistical analyses were performed

using the R statistical and programming environment [45] and
the nlme package [46]. All data are provided in the electronic

supplementary material, table S2.
3. Results
Our analyses confirm strong species-specific effects of

environmental setting and/or population on ecosystem

process and functioning across all of our response variables

(for detail see electronic supplementary material, models

S1–S23). Analysis of sediment properties confirm differences

in bulk sediment descriptors (Mz, sl, SKl, KG, particulate

fraction , 63 mm, TOC; electronic supplementary material,

figure S1 and table S1) between the three geographical

locations. Overall, our results provide evidence that both

differences in population and/or environmental setting can

affect the way in which species moderate nutrient generation.

(a) Effects on particle reworking and burrow ventilation
SBR and the vertical redistribution of sediment particles

(f-SPILmean and f-SPILmax) are clearly influenced by a combi-

nation of interactive and additive effects of environmental

setting and population that are dependent on species iden-

tity. We find that the faunal mediation of SBR is influenced

by an independent effect of environmental setting

(L-ratio ¼ 14.33, d.f. ¼ 2, p ¼ ,0.001) for H. ulvae
(Humber . Ythan . Hamble, figure 2), or by a combination

of the independent effects of environmental setting

(Hamble . Ythan ¼Humber, L-ratio ¼ 14.18, d.f. ¼ 2, p ,

0.001, figure 2) and population (Humber . Ythan ¼

Hamble, L-ratio ¼ 6.26, d.f. ¼ 2, p ¼ 0.044, electronic sup-

plementary material, figure S2) for C. volutator. In contrast,

we find no evidence that environmental setting or population

affect the mediation of SBR when H. diversicolor is present in

monoculture or when species are in mixture (both intercept

only models; F ¼ 1.44, d.f.¼ 2, p ¼ 0.26 and F ¼ 2.2, d.f. ¼ 2,

p ¼ 0.13, respectively).

The mediation of f-SPILmean (mean particle mixing depth,

figure 3) in the presence of H. diversicolor and H. ulvae is

influenced by the independent effects of environmental

setting (H. diversicolor: F ¼ 27.77, d.f. ¼ 2, p , 0.0001;

H. ulvae, F ¼ 22.46, d.f. ¼ 2, p , 0.0001) and population

(H. diversicolor: F ¼ 20.31, d.f. ¼ 2, p , 0.0001; H. ulvae,
F ¼ 9.14, d.f. ¼ 2, p , 0.001), but by the interactive effects of
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population � environmental setting in the presence of

C. volutator (C. volutator: F ¼ 4.72, d.f. ¼ 4, p ¼ 0.009; species

mixture, L-ratio ¼ 13.06, d.f. ¼ 4, p ¼ 0.01). In general,
f-SPILmean tends to be greatest for populations from the

Humber (Humber . Ythan � Hamble, figure 3a) and/or in

sediments from the Ythan (Ythan . Hamble . Humber,

figure 3b), although these patterns are not universal across

all species treatments (figure 2). For f-SPILmax (figure 4), we

find an effect of environmental setting for H. diversicolor
(L-ratio ¼ 11.89, d.f. ¼ 2, p ¼ 0.003), and independent effects

of environmental setting and population (L-ratio ¼ 31.74,

d.f. ¼ 2, p , 0.0001 and L-ratio ¼ 8.35, d.f. ¼ 2, p , 0.015,

respectively) for H. ulvae (figure 4). f-SPILmax is deepest in

sediment from the Ythan (figure 4a) and/or for the popu-

lations from the Ythan (figure 4b). There is also evidence

for an interactive effect between environmental setting and

population for the species mixture (L-ratio ¼ 9.99, d.f. ¼ 4,

p ¼ 0.041, electronic supplementary material, figure S3). In

contrast, for C. volutator, we find no evidence that environ-

mental setting or population are influential in determining
f-SPILmax (intercept only model; F ¼ 1.14, d.f. ¼ 2, p ¼ 0.34).

We find marginal effects of population on burrow venti-

lation ([DBr2]) for H. diversicolor and C. volutator (Ythan ¼

Humber . Hamble: F ¼ 3.43, d.f. ¼ 2, p ¼ 0.049 and

Ythan . Humber ¼Hamble: F ¼ 3.41, d.f. ¼ 2, p ¼ 0.05,

respectively, electronic supplementary material, figure S4).

There is no effect of environmental setting or population in
the presence of H. ulvae (intercept only model; F ¼ 2.34,

d.f. ¼ 2, p ¼ 0.12) or when species are in mixture (intercept

only model; F ¼ 1.94, d.f. ¼ 2, p ¼ 0.17).
(b) Effects on nutrient concentrations
Consistent effects of environmental setting are present across

all species treatments, irrespective of nutrient identity, but

the influence of population varies with nutrient identity

([NH4–N]: predominantly additive, figure 5; [NOx–N]: no

effect, figure 6; [PO4–P]: no effect or interactive, figure 7).

For [NH4–N] there are independent effects of both environ-

mental setting and population for H. diversicolor, C. volutator,
and the species mixture (environmental setting: F ¼ 31.38,

d.f. ¼ 2, p , 0.0001; L-ratio ¼ 37.25, d.f. ¼ 2, p , 0.0001;

L-ratio ¼ 26.62, d.f. ¼ 2, p , 0.0001, respectively; population:

F ¼ 4.16, d.f. ¼ 2, p ¼ 0.03; L-ratio ¼ 16.84, d.f. ¼ 2, p ,

0.001; L-ratio ¼ 9.6, d.f. ¼ 2, p ¼ 0.008, respectively). For H.
ulvae, there is some weak evidence that these effects may be

interactive (L-ratio ¼ 9.55, d.f. ¼ 4, p ¼ 0.049, electronic sup-

plementary material, figure S5). In general, [NH4–N] are

higher in treatments with sediments from the Humber

relative to those from the Hamble or the Ythan (figure 5a).

The role of population is less pronounced, but populations

of H. diversicolor and C. volutator from the Hamble and

Humber return higher [NH4–N] relative to populations

from the Ythan (figure 5b). For the species mixture,



Ythan

0

–4

–8

–12

0

–4

–8

–12

Humber
environmental setting

Hamble Ythan Humber Hamble
population

f-
SP

I L
m

ax
(c

m
)

(b)(a)

Figure 4. Effects of environmental setting (a) on the maximum depth of sediment particle reworking (f-SPILmax, cm, mean+ s.e., n ¼ 3) for H. diversicolor
(triangles) and H. ulvae (circles), and the effect of population (b) for H. ulvae (circles). Observations without macrofauna (dash, n ¼ 9) are shown for comparison.
The dotted line indicates the sediment surface and negative values indicate deeper net downward transport of sediment particles.

Ythan Humber
populationenvironmental setting

Hamble Ythan Humber Hamble

15

10

5

N
H

4–
N

(m
g 

l–1
)

0

15

10

5

0

(b)(a)

Figure 5. The effects of environmental setting (a) and population (b) on [NH4 – N] (mg l21, mean+ s.e., n ¼ 3) for H. diversicolor (triangles), C. volutator
(squares), and the species mixture (diamonds). Observations without macrofauna (dash, n ¼ 9) are shown for comparison.

20

15

N
O

X
–

N
(m

g 
l–1

)

10

5

0
Ythan Humber

environmental setting
Hamble

Figure 6. The effects of environmental setting on [NOX – N] (mg l21,
mean+ s.e., n ¼ 3) for H. diversicolor (triangles), H. ulvae (circles), C. volu-
tator (squares), and the species mixture (diamonds). Observations without
macrofauna (dash, n ¼ 9) are shown for comparison.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

284:20162805

5

populations from the Humber return higher [NH4–N] than

populations from the Hamble and Ythan (figure 5b).

We find a consistent effect of environmental setting on

[NOx–N] across all of our species treatments (H. diversicolor:

F ¼ 7.79, d.f. ¼ 2, p ¼ 0.002; H. ulvae: F ¼ 80.41, d.f. ¼ 2,

p , 0.0001; C. volutator: L-ratio ¼ 25.04, d.f. ¼ 2, p , 0.0001;

species mixture: L-ratio ¼ 52.94, d.f. ¼ 2, p , 0.0001). For
H. diversicolor and H. ulvae [NOx–N] are greater in sediments

from the Hamble or Ythan (figure 6) relative to those of the

Humber. In contrast, for C. volutator and the species mixture,

the highest [NOx–N] are in sediments from the Ythan, fol-

lowed by sediments from the Humber and Hamble (figure 6).

For [PO4–P] we find a single independent effect of

environmental setting for H. diversicolor and H. ulvae
(L-ratio ¼ 21.65, d.f. ¼ 2, p , 0.001; L-ratio ¼ 54.01, d.f. ¼ 2,

p , 0.0001, respectively) and an interactive effect of environ-

mental setting and population for C. volutator and the species

mixture (L-ratio ¼ 14.83, d.f. ¼ 4, p ¼ 0.005; L-ratio ¼ 10.78,

d.f. ¼ 4, p ¼ 0.029, respectively). [PO4–P] are higher in treat-

ments containing sediments from the Ythan, followed by

those with sediments from the Humber and Hamble

(figure 7a). This trend is also reflected in the C. volutator
and species mixture treatments, where the interaction is

largely driven by population-specific differences within

environmental settings (figure 7b and c).
4. Discussion
The use of functional traits to inform ecosystem management

and policy relies on relating species functional effect traits,

or functional diversity metrics, to ecosystem processes.
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However, concerns have been expressed about how impor-

tant intraspecific variation is in defining functional trait

structure [47–49] and how transferable functional designa-

tions may be across regions and with changing context,

particularly in human-dominated landscapes [50,51]. Here,

our experiments with intertidal sediment communities

reveal that the presence of specific traits does not necessarily

predetermine either the degree of species–environment inter-

action, or the way in which species mediate biogeochemical

cycling; these can vary between populations and can be

further moderated by dynamic shifts in abiotic and/or

biotic circumstance [52]. Indeed, our findings indicate that

the combined effects of abiotic/biotic conditions and histori-

cal precedent that are encapsulated in a specific location have

the potential to determine the basal level of species–environ-

mental interaction [53–55]. Individuals within a population

may further regulate their own functional performance

through additional morphological, physiological, or behav-

ioural responses to transient changes in circumstance

[25,31,34,36,56]. Hence, the net functional contributions of

species to ecosystem properties will reflect the relative impor-

tance and interdependency of both short- and long-term

processes that have altered, are altering, or are yet to fully

alter the nature of species–environment coupling [26].

It is important to consider our findings in light of current

practices that adopt single mean trait values to characterize

how species mediate ecosystem properties [57]. Inherent in

most functional metrics is the assumption that intraspecific
trait variability is likely to be negligible relative to inter-

specific differences in species performance. Yet, with few

exceptions [58], it is unlikely that functional effects will be

synonymous with species taxonomy or be capable of being

applied generically [14,59] because functional equivalence

tends not to occur across local and regional scales, as well

as across annual cycles [60]; a problem that will be com-

pounded when multiple and/or more comprehensive trait

descriptors are considered [15,61]. Although trait variation

can be identified at local scales [62], scaling up will need to

accommodate the long-term adjustment of species to local

conditions and the history of environmental variation

[63,64]. For example, one of our study species (H. diversicolor)

is known to adapt its feeding strategy to local resource

supply leading to morphological and behavioural differen-

tiation [65] that, in turn, is likely to affect bioturbation

activities of local populations. More widely, such adaptations

can involve adjustments of morphological [65–67], behav-

ioural [66–68], or physiological [69,70] traits in response to

certain biotic and abiotic conditions. Indeed, as observed

here, the functional role of species is not necessarily

expressed to the same extent when species are in mixture,

relative to when they are in monoculture. This is because

the presence of interspecific interactions can positively or

negatively affect the trait expression of individual species,

altering per capita contributions to ecosystem functioning

[71]. While the specific abiotic and/or biotic factors that

lead to variation in trait expression are not easy to predict
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[22,72], the relationship between functional diversity and

ecosystem properties has a strong theoretical base [73] and

species responses to specific circumstances are well known.

For example, the effects of timing [74,75] and environmental

context [52] can moderate species–environment interactions

and, albeit documented less frequently, the expression of

functionally relevant traits [30,31] and/or behaviours

[25,37,76]. Importantly, when the response of individuals to

changing circumstances link to the effect traits that determine

the functional contribution of an organism, the summed

response of the assemblage can be sufficient to affect ecologi-

cal patterns and processes at larger scales [16,77]. Conversely,

when species–environment interactions decouple [78–80] or

do not balance (abiotic . biotic control [81]), the underlying

reciprocal relationship between species and the environment

is minimized and the relative importance of biotic control

may be diminished or masked [53].

While the intrinsic variability within species and the

importance of local population adaptation have been recog-

nized and are informing evolutionary thinking [82,83],

equivalent information is yet to be fully incorporated into

predictive models that explore the functional contribution

of populations to ecosystem properties [49]. Our findings

lend support to the growing consensus that community-

level dynamics and intraspecific variability [13,39,84] need

to be incorporated into ecological models when predicting

the ecosystem consequences of altered biodiversity over

large scales or extended time periods [7,16,17], especially

when the risk of altered trait expression covaries with

environmental forcing [85]. This means that more must be

done to generate basic information on the hierarchical

scaling of trait variance [86,87] and less reliance should be
placed on macroecological and meta-analytical approaches

that focus on point-based traits. Instead, a shift from

species-based to individual-based ecology is necessary

[13,84,87] and, as multiple trait information for individuals

is not necessarily obtained by combining several trait data-

bases, alternative statistical or modelling approaches that

can fill data gaps and incorporate factors known to influence

trait expression need to be developed [88]. When attempting

to conserve the functional integrity of ecosystems under

global change, a primary challenge for ecosystem manage-

ment will be to account for the circumstances under which

response and effect traits are linked [16], and when and

where intraspecific versus interspecific trait variability are

most influential [89].
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Quantifying the relevance of intraspecific trait
variability for functional diversity. Methods Ecol.
Evol. 2, 163 – 174. (doi:10.1111/j.2041-210X.
2010.00071.x)

20. Laughlin DC, Joshi C, van Bodegom PM, Bastow ZA,
Fule PZ. 2012 A predictive model of community
assembly that incorporates intraspecific trait
variation. Ecol. Lett. 15, 1291 – 1299. (doi:10.1111/j.
1461-0248.2012.01852.x)

21. McCain C, Szewczyk T, Bracy Knight K. 2016
Population variability complicates the accurate
detection of climate change responses. Glob. Chang.
Biol. 22, 2081 – 2093. (doi:10.1111/gcb.13211)

22. Albert CH, Thuiller W, Yoccoz NG, Soudant A,
Boucher F, Saccone P, Lavorel S. 2010 Intraspecific
functional variability: extent, structure and sources
of variation. J. Ecol. 98, 604 – 613. (doi:10.1111/j.
1365-2745.2010.01651.x)

23. Langenheder S, Bulling MT, Prosser JI, Solan M.
2012 Role of functionally dominant species in
varying environmental regimes: evidence for the
performance-enhancing effect of biodiversity. BMC
Ecol.. 12, 14. (doi:10.1186/1472-6785-12-14)

24. Clark JS, Bell DM, Hersh MH, Kwit MC, Moran E, Salk
C, Stine A, Valle D, Zhu K. 2011 Individual-scale
variation, species-scale differences: inference needed
to understand diversity. Ecol. Lett. 14, 1273 – 1287.
(doi:10.1111/j.1461-0248.2011.01685.x)

25. Godbold JA, Bulling MT, Solan M. 2011 Habitat
structure mediates biodiversity effects on ecosystem
properties. Proc. R. Soc. B 278, 2510 – 2518. (doi:10.
1098/rspb.2010.2414)

26. Godbold JA, Solan M. 2013 Long-term effects of
warming and ocean acidification are modified by
seasonal variation in species responses and
environmental conditions. Phil. Trans. R. Soc. B
368, 20130186. (doi:10.1098/rstb.2013.0186)

27. Ouellette D, Desrosiers G, Gagne JP, Gilbert F,
Poggiale JC, Blier PU, Stora G. 2004 Effects of
temperature on in vitro sediment reworking
processes by a gallery biodiffusor, the polychaete
Neanthes virens. Mar. Ecol. Prog. Ser. 266,
185 – 193. (doi:10.3354/meps266185)

28. Törnroos A, Nordström MC, Aarnio K, Bonsdorff E.
2015 Environmental context and trophic trait
plasticity in a key species, the tellinid clam
Macoma balthica L. J. Exp. Mar. Biol. Ecol. 472,
32 – 40. (doi:10.1016/j.jembe.2015.06.015)

29. Mrowicki RJ, O’Connor NE. 2015 Wave action
modifies the effects of consumer diversity and
warming on algal assemblages. Ecology 96,
1020 – 1029. (doi:10.1890/14-0577.1.sm)

30. Hodge A. 2004 The plastic plant: root responses
to heterogeneous supplies of nutrients. New
Phytol. 162, 9 – 24. (doi:10.1111/j.1469-8137.
2004.01015.x)

31. Hawlena D, Hughes KM, Schmitz OJ. 2011 Trophic
trait plasticity in response to changes in resource
availability and predation risk. Funct. Ecol. 25,
1223 – 1231. (doi:10.1111/j.1365-2435.2011.
01891.x)
32. O’Connor NE, Bracken MES, Crowe TP, Donohue I.
2015 Nutrient enrichment alters the consequences
of species loss. J. Ecol. 103, 862 – 870. (doi:10.
1111/1365-2745.12415)

33. Maire O, Merchant JN, Bulling M, Teal LR, Grémare
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