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Abstract: There are three subfamilies of patatin-related phospholipase A (pPLA) group of genes:
pPLAI, pPLAII, and pPLAIII. Among the four members of pPLAIIIs (α, β, γ, δ), the overexpression of
three isoforms (α, β, and δ) displayed distinct morphological growth patterns, in which the anisotropic
cell expansion was disrupted. Here, the least studied pPLAIIIγ was characterized, and it was found
that the overexpression of pPLAIIIγ in Arabidopsis resulted in longitudinally reduced cell expansion
patterns, which are consistent with the general phenotype induced by pPLAIIIs overexpression. The
microtubule-associated protein MAP18 was found to be enriched in a pPLAIIIδ overexpressing line
in a previous study. This indicates that factors, such as microtubules and ethylene biosynthesis, are
involved in determining the radial cell expansion patterns. Microtubules have long been recognized
to possess functional key roles in the processes of plant cells, including cell division, growth, and
development, whereas ethylene treatment was reported to induce the reorientation of microtubules.
Thus, the possible links between the altered anisotropic cell expansion and microtubules were studied.
Our analysis revealed changes in the transcriptional levels of microtubule-associated genes, as well
as phospholipase D (PLD) genes, upon the overexpression of pPLAIIIγ. Overall, our results suggest
that the longitudinally reduced cell expansion observed in pPLAIIIγ overexpression is driven by
microtubules via transcriptional modulation of the PLD and MAP genes. The altered transcripts of
the genes involved in ethylene-biosynthesis in pPLAIIIγOE further support the conclusion that the
typical phenotype is derived from the link with microtubules.

Keywords: arabidopsis; phospholipase; anisotropic; longitudinal; microtubule-associated protein

1. Introduction

The whole architecture of plant growth and development depends on anisotropic cell
expansion [1]. The driving force of this cell expansion is provided by turgor pressure, while
cell wall components direct cell expansion. Cellulose microfibrils in the cell wall and cortical
microtubules have long been considered as the important factors for the anisotropic growth
of plant cells [1]. However, it is also noticeable that, although the disruption of transverse
microtubule arrays patterns in elongating cells leads to isotropic plant cell expansion, this
is not always necessarily accompanied by the disruption of transverse microfibrils [2].
These reports suggest that other cell wall components could also be involved in directing
cell expansion. Phospholipase acts on the plasma membrane, where links between the
microtubules and microfibrils have been suggested to be one of the possible key players
for the communication between the two structural components [2].

Phospholipases A (PLAs) are a multigene family of enzymes in plants. PLAs are
subdivided into PLA1s, secretory PLA2s (sPLA2s), and patatin-related PLAs (pPLAs) [3–5].
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pPLAs have been shown to induce altered anisotropic cell expansion when overexpressed
in Arabidopsis [5–10], rice [11,12], camelina [13], and poplar [14,15]. Although isotropic
cell expansion patterns and occasional reduced longitudinal growth have been observed in
previous studies, the underlying mechanism was first reported in the study of pPLAIIIβ
overexpression (pPLAIIIβOE) in Arabidopsis [7]; pPLAIIIβOE resulted in decreased cellu-
lose deposition and lipid remodeling, which led to a reduced longitudinal cell elongation [7].
As cellulose deposition is tightly linked with microtubule arrays, it was proposed that
pPLAIIIβOE-mediated cell expansion patterns might be linked to microtubule dynamics.
This proposition was substantiated by another pPLAIIIδ overexpression study that also
displayed inhibited longitudinal growth but promoted transverse growth in Arabidop-
sis and Brassica napus [9]. Proteomic analysis of pPLAIIIδOE plants revealed enriched
microtubule-associated protein MAP18 that modulates directional cell expansion [16].
Overexpression of other closely related isoforms, pPLAIIIα with 72% identity to pPLAIIIβ,
and PgpPLAIIIβ (pPLAIIIβ homolog isolated from ginseng) with an average 61% identity
to pPLAIIIα and pPLAIIIβ, isolated from Arabidopsis [10,14], also resulted in defective
anisotropic cell expansion. However, only the content and deposition of lignin, not cel-
lulose, were reduced [10,14,15]. We hypothesized that the changes in the composition
and content of lignin caused by phospholipase enzymes could also alter the arrays of
microtubule structure by directly or indirectly altering cellulose structure.

Microtubules play a crucial role in directional cell expansion [17,18] via interaction
with microfibrils and other unidentified cell wall components. Thus, identifying the
regulatory factors of the cortical microtubule cytoskeleton is crucial in understanding the
anisotropic cell growth patterns. Overall, in the floral organs and leaves, anisotropic cell
expansion is accompanied by overexpression of pPLAIIIγ, which is the least characterized
among all pPLAIIIs. Quantification analysis were carried out for the transcripts of genes
encoding phospholipase Ds (PLDs) [19], microtubule-associated proteins [20], and those
involved in ethylene biosynthesis [21,22], which are known to regulate microtubules.
Altogether, results suggest that the transversely expanded cell elongation is caused by
changes in the PLD-mediated expression of microtubule-associated genes.

2. Results
2.1. Overexpression of pPLAIIIγ Affects Anisotropic Cell Elongation

Overall, stunted growth patterns with reduced plant height and altered anisotropic
cell expansion observed in stem, root, leaf, and floral organs are general phenotypes in three
independent overexpression lines of pPLAIIIα [5], pPLAIIIβ [7], and pPLAIIIδ [9], among
four isoforms of pPLAIII genes (pPLAIIIα, -β, -γ, -δ) identified in Arabidopsis [23,24]. Only
the phenotypic characteristics of the pPLAIIIγ (pPLAIIIγOE) in each part of organs have not
yet been characterized in Arabidopsis. A T-DNA insertional mutant (SALK_088404) has
been reported by the same group to have a negligible level of transcripts as determined via
quantitative real-time polymerase chain reaction (qRT-PCR) [25,26]. However, in our study,
the transcripts were not significantly reduced in the SALK line (Supplementary Figure S1),
and an additionally analyzed line (SAIL_832_E01) showed only 35% reduced transcripts
compared to the wild type (Supplementary Figure S1). Due to the lack of knock-out mutant,
only the overexpression line was characterized in this study.

To evaluate whether the pPLAIIIγOE also displays similar dwarf plant growth pat-
terns, the full-length (1690 bp; upstream 6 bp was added from the start) genomic DNA
sequence of Arabidopsis pPLAIIIγ was overexpressed under 35S promoter with yellow
fluorescence protein (YFP) tagging at the C-terminal end. Three independent transgenic
lines that showed ectopic overexpression of pPLAIIIγ (Figure 1A) were chosen for further
characterization, following Mendelian genetic segregation. Stunted dwarf plant height of
pPLAIIIγOE focused on stem elongation and xylem lignification is reported separately [27].
This study focuses on cell elongation phenotypes in floral organs and leaves. Floral or-
gans were shorter and more rounded in the OE lines than in the Col-0 control (Figure 1B).
Scanning electron microscopy (SEM) image further confirmed the radially expanded and



Plants 2021, 10, 2615 3 of 14

longitudinal reduction of cell elongation patterns in the whole flower, including ovary, fila-
ment, and petal (Figure 1C). A longitudinally inhibited growth pattern was also observed
in pPLAIIIγOE pollen (Figure 1C). Overall, the observed phenotypes are very similar to
those of pPLAIIIαOE [5], pPLAIIIβOE [7], and pPLAIIIδOE [9]. However, it is noticeable
that the pollen displayed a more severely altered morphological structure compared with
that of pPLAIIIαOE [5]. Thus, pollen tube growth was further measured and showed that
the pollen tube length was much reduced (Figure 1D,E).
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Figure 1. Overexpression of pPLAIIIγ altered cell elongation patterns in floral organs. (A) The
expression level of pPLAIIIγ in the 2-week-old seedling. Data represent the average ± standard
error (SE) from three independent replicates at p < 0.01 (**). (B) Flower phenotypes of Col-0 and
pPLAIIIγOEs. (C) Scanning electron microscopy (SEM) image of floral organs from Col-0 and
pPLAIIIγOEs. Scale bars = 1 mm (B), 200 µm (C—flower), 100 µm (C—petal), 50 µm (C—style and
filament), and 10 µm (C—pollen). (D) Pollen tube morphology of controls and OEs after in vitro
pollen incubation for 6 h. Scale bar = 100 µm. (E) Pollen tube length of controls and OEs. Data
represent the average ± SE from independent replicates at p < 0.05 (*) and p < 0.01 (**). n = 232
(Col-0), 236 (vector cont.), 195 (OE#1), and 222 (OE#14).
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2.2. YFP-Tagged pPLAIIIγ Is Localized to the Plasma Membrane

To determine the subcellular localization of pPLAIIIγ, stable transformants of C-
terminal yellow fluorescence protein (YFP)-tagged pPLAIIIγ were imaged using root
cells of 4-days grown seedlings. All transgenic plants showed plasma membrane (PM)
localization perfectly merged with FM4-64 (Figure 2A). To verify that the PM localization
is not associated with the cell walls, plasmolysis by treating seedlings with 0.2 M NaCl
was induced. After plasmolysis, the YFP signal was separated from the cell wall with the
protoplast, indicating that pPLAIIIγ is not cell wall-associated (Figure 2B).
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Figure 2. Subcellular localization of pPLAIIIγ-YFP in the plasma membrane. (A) Fluorescence image from the primary root
of 4-day-old pPLAIIIγ-YFP seedling merged with FM4-64. (B) Plasmolysis of root epidermal cells of the pPLAIIIγ-YFP
treated with 0.2 M of NaCl for 1 min. Scale bars = 100 µm.

2.3. pPLAIIIγOE Displayed Altered Anisotropic Cell Expansion in the Leaf and Trichome

Leaf surface areas were reduced by 46% and 95% in the intermediately overexpressing
line #5 and strongly expressing line #14 (Figure 3A,B), respectively. Corresponding to the
surface area, leaf fresh weight was also reduced. However, the water content and thickness
of leaves were increased in the OE lines (Figure 3B). The reduced leaf surface area and fresh
weight were derived from radially expanding cell growth patterns rather than longitudinal
growth in a rosette and cauline leaf. SEM images further showed round-shaped cell growth
patterns in the adaxial and abaxial sides of leaves (Figure 3C). To clearly illustrate the
radial rather than longitudinal expansion pattern of epidermis cells, exact cell boundaries
were highlighted (Figure 3D), and the ratio of longitudinal to transverse axes on adaxial
epidermis of rosette leaves (Figure 3E) was estimated. The ratio was 2.9 in Col-0, whereas
it was 1.4 in the OE line, which indicated a 52% reduction in the longitudinal/transverse
axis ratio (Figure 3E). Two or four-branched trichomes were also observed in the OE line
compared to those in the three-branched wild-type.
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Figure 3. Overexpression of pPLAIIIγ alters the size and shape of leaves, including the epidermal cells. (A) The aerial part
of each 4-week-old plant and individual leaves. The leaves are arranged from cotyledons (left) to the youngest leaves
(right). (B) Statistical analysis of leaf surface area, leaf fresh weight, leaf water content, and leaf thickness in 4-week-old
plants. (C) SEM images of adaxial and abaxial sides of epidermal cells of the Col-0 (upper lane) and pPLAIIIγOE#14
(lower lane), respectively. (D) Magnified image of epidermal cells of the Col-0 and pPLAIIIγOE#14. Red lines highlighted
a single epidermal cell. (E) The ration of longitudinal to transverse axes of epidermal cells on adaxial side of rosette leaf.
Scale bars = 1 cm (A) and 100 µm (C,D). Data represent the means ± SE of multiple replicates. n = 3 (B), n = 40 (E). Asterisks
indicate significant difference using Student’s t-test (* p < 0.05 and ** p < 0.01) compared with the Col-0.
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2.4. pPLAIIIγOE Increased Seed Size

As expected from the flower organ size (Figure 1B,C), silique length was decreased in
pPLAIIIγOE (Figure 4A). The overall seed size was enlarged in two strong OE lines, #1 and
#14 (Figure 4B). The exact measurement of the length and width of OE seeds displayed
that their cross-sectional elongation was increased, with no effect on their longitudinal
elongation pattern (Figure 4C). Accordingly, the seeds were more rounded and enlarged.
Regardless of the seed size change, the germination rate was not altered (Figure 4D)
compared to that with pPLAIIIαOE [5].
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Figure 4. Seed width was increased in pPLAIIIγOE. (A–C) Siliques (A), mature seeds (B), and seed size (C) of controls, and
pPLAIIIγOE lines. (D) Germination rates of control and OE lines after 20-h germination under continuous light conditions.
Scale bars = 5 mm (A) and 1 mm (B). Data represent the average ± SE from independent replicates at p < 0.01 (**). n = 50 (C)
and 140 (D).

2.5. PLD Genes Are Downregulated by pPLAIIIγOE

Transcriptional modulation of PLD genes were observed in previous study of pPLAIIIαOE [5].
To verify the links between a plasma membrane-localized pPLAIIIγ with PLD genes, a
quantitative gene expression study was performed. Four major isoforms of PLD genes,
including PLDα1, PLDδ, PLDζ1, and PLDζ2, were significantly downregulated in 3-week-
grown rosette leaves of pPLAIIIγOE lines (Figure 5A). The modulation of PLDα1 and
PLDζ1 transcripts was less significant in the stem of pPLAIIIγOE lines, but the mRNA
levels of PLDδ and PLDζ2 were still downregulated (Figure 5B). PLDζ2 was shown to
be implicated in the trafficking of the PIN-FORMED2 (PIN2) auxin-transporting plasma
membrane (PM) protein [28]. Thus, it is also an intriguing part to explore whether the
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overexpression of pPLAIIIγ has a function in the regulation of the auxin transporters as
reported previously in related work [3]. For anisotropic cell expansion, downregulated
PLDδ gene expression in both leaf and stem is more intriguing since PLDδ is reported to
bind to microtubules [19]. Thus, pPLAIII-mediated anisotropic cell expansion seems to
result from the modulation of microtubule-binding PLDδ.
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PLDζ2) in (A) 3-week-old rosette leaf and (B) 7-week-old stem. Data represent the average ± SE from three independent
replicates at p < 0.01 (**).

2.6. Genes Encoding Microtubule-Associated Proteins Are Modulated by pPLAIIIγOE

Microtubules influence plant organ morphology. The proteins that interact with
microtubules mediate their functional and structural interaction with other cell structures
that ultimately modulate microtubule dynamics and organization [29]. The pPLAIIIγ-
mediated reduced expression of PLD genes led us to evaluate the possible modulation of
several reported microtubule-associated genes encoding MAP proteins, including MAP18,
identified by proteomic analysis as being enriched in pPLAIIIδOE transgenic plants [16].
In this study, we observed that MAP18 and MAP20 were significantly downregulated,
while MAP65-1 and MAP70-1 were significantly upregulated in 3-weeks grown leaves
(Figure 6A). The mRNA level changes were less significant in the stem (Figure 6B), where
only MAP20 and MAP70-5 were up- and downregulated, respectively. The rest of the MAP
genes were not altered (Figure 6B).

2.7. Ethylene Biosynthesis Genes Are Modulated by pPLAIIIγOE

Our previous study showed that the overexpression of pPLAIIIα altered gene ex-
pression involved in ethylene biosynthesis during seed germination [5] and the seedling
stage [15]. To evaluate whether the altered gene expression involved in ethylene-biosynthesis
is a general feature of pPLAIIIs overexpression, a quantitative gene expression study was
performed with three ACC (1-aminocyclopropane-1-carboxylic acid) synthase (ACS) and
ACC oxidase (ACO) genes (Figure 7). Except for the mRNA level of ACS11, which was
downregulated, all of the tested genes were upregulated upon pPLAIIIγOE (Figure 7). In
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the ethylene biosynthesis pathway, the ethylene precursor ACC is synthesized by the ACS
gene and, finally, oxidized by ACO genes to produce ethylene. Thus, the increased tran-
scripts of all the three major ACO genes, ACO1, ACO2, and ACO4, indicate that pPLAIIIγOE
also affects ethylene biosynthesis in leaves.
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3. Discussion

The structural changes in the cell wall and their correlation with anisotropic cell expan-
sion patterns were monitored by overexpression of pPLAIIIβ [7,10,14] and pPLAIIIα [5,15].
Subcellular links of microtubule-associated proteins with pPLAIIIs-associated cell wall
components were examined for further clarification. To reveal the molecular link between
microtubule-associated proteins and patatin-related phospholipase A genes, overexpres-
sion lines of the pPLAIIIγ gene in Arabidopsis were generated, and relevant changes in
transcript levels were quantified. Due to the lack of available knock-out mutant lines
(Supplementary Figure S1) in the stock center, the mutant was not analyzed. As ob-
served in the overexpression lines of other close homologs (pPLAIIIα-, pPLAIIIβ-, and
pPLAIIIδOE) [5–10,12–15], pPLAIIIγOE also showed a longitudinally reduced growth pat-
tern in flower organs and leaves (Figures 1 and 3). pPLAIIIγOE displayed an overall
radially expanded cell growth pattern that was defective in anisotropic cell expansion.
Isotropic cell expansion was more apparent in the seeds of pPLAIIIγOE lines (Figure 4),
with no changes in the seed germination rate. The consistent germination rate observed
in pPLAIIIγOE lines was distinct compared to that in pPLAIIIαOE, which showed an ini-
tially increased germination rate [5]. Subcellular plasma membrane localization using
tagged fluorescent protein was reported for pPLAIIIα, pPLAIIIβ, and pPLAIIIδ [5,7,25].
C-terminal YFP-tagging with pPLAIIIγ also showed apparent localization in the plasma
membrane, indicating its function in the subcellular domain via interaction with other
cellular components for altered anisotropic growth.

Anisotropic cell expansion plays a pivotal role in plant growth and development, and
it can be regulated by cell wall components that interact with the oriented deposition of
cellulose microfibrils [1]. Among several major structural components of cell walls, only
cellulose has been well characterized relative to the cell growth direction within native
tissue. However, lignin molecules have also been reported to be involved in determining
the geometry of the cell walls by showing that the aromatic rings of the phenyl propane
structural units are parallel to the plane of the surface of the cell wall [30]. In pPLAIIIβOE
transgenic lines, cellulose content was decreased [7]. However, only lignin content was
decreased in pPLAIIIαOE lines, and cellulose content remained unaltered [10,14,15,27].
This suggests that lignin molecules are also involved in anisotropic cell expansions.

Phospholipids are the key structural components of plasma membranes and signaling
cascades. They are conserved across in a wide range of species in different proportions,
with conversion processes that involve hydrophilic enzymes, such as phospholipase-C
(PLC), phospholipase-D (PLD), and phospholipase-A (PLA). Phospholipase Dδ (PLDδ) was
identified by screening an Arabidopsis cDNA expression library with monoclonal antibody
6G5 against the tobacco 90-kD polypeptide (p90) that was found in microsomal factions and
colocalized with cortical microtubules [19,31]. Cell growth direction usually depends on the
organization of cortical microtubule arrays [32]. This suggests that PLD is involved in re-
laying signals to the microtubule cytoskeleton. Considering the potential crosstalk between
the phosphatidic acid-producing PLD and lysophospholipid-producing PLA pathways in
the plant-bacterial pathogen interaction [33], the PLAIII-mediated regulatory roles of PLDs
are supported strongly. Transcriptional modulation of PLD genes in pPLAIIIαOE [5] further
substantiates this notion. Through the interaction with microtubules, the PM-localized
PLDδ is activated, which leads to the release and reorientation of microtubules [34]. PLDδ

is, thus, considered a target protein potentially integrating multiple structures into a func-
tional complex in plants [29]. Overall, significantly downregulated transcripts of PLDδ
due to overexpression of pPLAIIIγ in the leaf and stem (Figure 5) strongly suggest that
there are PLD-mediated modulations, wherein genes encoding microtubule-associated
protein might be regulated. Complementary to this theory, the expression of three major
isoforms of PLD genes, namely PLDα1, PLDζ1, and PLDζ2, was also significantly decreased
upon the overexpression of pPLAIIIα [5]. Therefore, transcriptional changes in several
genes encoding microtubule-associated proteins [20] could offer positive clues. MAP18
and MAP70-5 destabilize and stabilize microtubules, respectively [35,36]. MAP65-1 is a
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microtubule crosslinker, and MAP70-1 functions in microtubule assembly [36,37]. Overex-
pression of MAP70-5 induces right-handed helical growth [36] and that of MAP20 results in
helical cell twisting [38]. Upon constitutive overexpression of pPLAIIIγ, the mRNA levels
of all the tested MAP genes, except those of MAP70-5, were altered in the leaf; MAP70-5
was found to be slightly downregulated in the stem (Figure 6). Interestingly, the expression
of gene encoding MAP18 that was enriched by the overexpression of pPLAIIIδ [16] was
reduced by 41% (Figure 5). Considering the synergistic or antagonistic modulations among
pPLAIII genes [5], further studies focusing on the crosstalk of pPLAIIIγ and pPLAIIIδ would
seem worth undertaking.

The altered transcripts involved in ethylene biosynthesis are also important factors
regulating the anisotropic growth pattern. Not only ACO2, but also ACO1 and ACO4 that
are known to exhibit ACC oxidase activity in vitro [39], were all upregulated (Figure 7).
Although these results are similar to a those of a previous study [5], the underlying mech-
anism focused on the longitudinally reduced and transversely expanded cell elongation
patterns still remains elusive. Nevertheless, ethylene treatment induced the reorientation
of both microtubules and newly deposited microfibrils from transverse to the longitudinal
direction [40]. Thus, microtubules regulated via the modulation of PLD genes are possibly
crucial for the anisotropic expansion in pPLAIIIγOE plants (Figure 8). The microtubule-
nucleating protein tubulin could be a link in this interaction via its hydrophobic domain or
an indirect interaction with an integral membrane protein [41]. Plasma-membrane-located
phospholipase could be the link for the interaction with microtubules. Altogether, these
results suggest that isotropic cell expansion is associated with the PLD-mediated alteration
of MAP genes (Figure 8).
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Figure 8. A hypothetical diagram of pPLAIIIγ-PLD-MAP-mediated regulation in an anisotropic cell elongation pattern,
based on transcripts modulation by overexpression of pPLAIIIγ. (A) Overexpression of pPLAIIIγ reduces the mRNA
levels of PLD genes. Reduced expression of PLD genes caused transcriptional regulation of MAPs. Plasma membrane-
associated PLDδ connects to the microtubules and is involved in the release and organization of microtubules [19,34].
MAPs play important roles in microtubule polymerization, stabilization, and bundling. The reported functions of MAP
genes modulated by pPLAIIIγ-PLD regulation are listed: MAP18 and MAP70-5 are involved in the destabilization and
stabilization of microtubules, respectively [35,36]. MAP65-1 is a microtubule crosslinking protein, and MAP70-1 plays
a role in microtubule assembly [36,37]. MAP20 is involved in the regulation of plant helical growth [38]. (B) Normal
anisotropic cell expansion patterns are observed in Col-0 (left panel). This study suggests that the defective anisotropic
cell expansion (longitudinally reduced and radially expanded pattern, right panel) by pPLAIIIγOE seems to be affected by
pPLAIIIγ-PLD-MAP co-regulation. PLD: phospholipase D, MAP: microtubule-associated protein.
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4. Materials and Methods
4.1. Plant Materials and Growth Conditions

Columbia ecotype (Col-0) of Arabidopsis thaliana was used as the background for all
wild-type, knockout mutants, and overexpression lines in this study. The pplaIIIγ knockout
mutants (pplaIIIγ#1: SALK_088404 and pplaIIIγ#2: SAIL_832_E01) were purchased from
the Arabidopsis stock center (http://www.arabidopsis.org/, (accessed on 25 June 2021)).
Arabidopsis seeds were sown on half-strength MS medium (Duchefa Biochemie, Haarlem,
The Netherlands) containing 1% sucrose, 0.5 g/L of 2-[N-morpholino] ethanesulfonic acid
(MES), and 0.8% phytoagar; the pH was adjusted to 5.7. After 2 days of vernalization in dark
at 4 ◦C, imbibed seeds were grown under long-day light conditions (16 h light/8 h dark)
at 23 ◦C. Germinated seedlings were transferred to an autoclaved soil mixture containing
soil, vermiculite, and pearlite (3:2:1 v/v/v).

4.2. Transgenic Construct and Arabidopsis Transformation

To overexpress pPLAIIIγ, the full-length genomic sequence of pPLAIIIγ was obtained
by PCR using Arabidopsis wild-type (Col-0) genomic DNA as a template and primers
listed in Table S1. The pPLAIIIγ was cloned into the modified pCAMBIA1390 vector
under the control of the 35S cauliflower mosaic virus promoter with yellow fluorescence
protein (YFP) C-terminal tagging. The recombinant construct was confirmed by sequencing
and introduced into Agrobacterium tumefaciens C58C1 (pMP90). Arabidopsis plants were
transformed using the floral dipping method. Transformants were selected on a half-
strength MS medium with hygromycin (50 µg/mL) and confirmed by PCR. Finally, three
independent homozygous lines were used for further experiments.

4.3. qRT-PCR

Total RNA was extracted from different organs of Arabidopsis using Pure link™
RNA Mini Kit (Invitrogen, Carlsbad, CA, USA) with on-column DNase I treatment to
remove residual genomic DNA. Extracted total RNA was verified for quality and quantity
using a Nano-MD UV-Vis spectrophotometer (Scinco, Seoul, Korea). The complementary
DNA (cDNA) was synthesized in a total 20 µL reaction volume using RevertAid Reverse
transcriptase (Thermo, Waltham, MA, USA). qRT-PCR was performed using TB Green™
Premix Ex Taq™ (Takara, Shiga, Japan) and Thermal Cycle Dice real-time PCR system
(Takara, Shiga, Japan), as previously reported [10]. Target gene-specific primers for the
qRT-PCR analysis are listed in Table S1.

4.4. Pollen Germination and Pollen Tube Length Measurement

Pollen grains were incubated in the pollen germination medium (PGM). A modified
PGM based on that of Reference [42] was used. In brief, it contained 0.01% H3BO3,
1 mM CaNO3, 1 mM MgSO4, 1 mM CaCl2, 500 mg/L MES (Duchefa Biochemie, The
Netherlands), 10 mg/L Myo-inositol (DAEJUNG, Korea), 1.8% sucrose (Duchefa Biochemie,
The Netherlands), and 0.75% agarose. The PGM was adjusted to pH 7.3 with crystal Tris
(Affymetrix, Santa Clara, CA, USA). Following incubation at 23 ◦C for 6 h in the dark,
germinating pollen grains were observed and photographed using a microscope (DM3000
LED, Leica, Wetzlar, Germany). The pollen tube length was measured using ImageJ
software (imagej.nih.gov/ij/index.html, Wisconsin, USA) at 1st of September 2021.

4.5. Observation of Reporter Gene Expression

The fluorescence signal from the reporter protein and the FM4-64 dye (70021, Biotium,
Fremont, CA, USA) was observed using confocal laser scanning microscopy (TCS SP5
AOBS Tandem, Leica, Germany). Four-day-old seedlings were stained with 2 µM FM4-64
for 5 min, washed with distilled water for 5 min, and plasmolyzed by 0.2 M NaCl treatment
for 1 min. YFP and RFP signals were detected using 514/>530 and 543/560–615 nm
excitation/emission filter sets, respectively. Fluorescence images were digitized using

http://www.arabidopsis.org/
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the Leica LAS X program. The images were acquired at the Korea Basic Science Institute,
Gwangju, Korea.

4.6. SEM Analysis

Rosette leaves, cauline leaves, and flowers were used for SEM analysis to compare the
surface tissue phenotypes of Col-0 and pPLAIIIγOE#14. All surface images were obtained
using a low-vacuum scanning electron microscope (model no. JSM-IT300; JEOL, Korea) at
a 10.8-mm working distance and 20.0 kV.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10122615/s1, Table S1: List of DNA primers used in this study for confirmation of
gene insertion and polymerase chain reaction; Figure S1: Analysis of T-DNA insertion lines in
pPLAIIIγ gene.
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