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Abstract

Antiviral therapies targeting the pandemic coronavirus disease 2019 (COVID-19) are urgently required. We studied an
already-approved botanical drug cepharanthine (CEP) in a cell culture model of GX_P2V, a severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2)-related virus. RNA-sequencing results showed the virus perturbed the expression of multiple
genes including those associated with cellular stress responses such as endoplasmic reticulum (ER) stress and heat shock
factor 1 (HSF1)-mediated heat shock response, of which heat shock response-related genes and pathways were at the core.
CEP was potent to reverse most dysregulated genes and pathways in infected cells including ER stress/unfolded protein
response and HSF1-mediated heat shock response. Additionally, single-cell transcriptomes also confirmed that genes of
cellular stress responses and autophagy pathways were enriched in several peripheral blood mononuclear cells populations
from COVID-19 patients. In summary, this study uncovered the transcriptome of a SARS-CoV-2-related coronavirus infection
model and anti-viral activities of CEP, providing evidence for CEP as a promising therapeutic option for SARS-CoV-2 infection.
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Introduction
The coronavirus disease 2019 (COVID-19), caused by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is
a global public health problem that is impacting social and
economic damage all over the world. As of 6 November 2020,
48,534,508 confirmed cases with 1,231,017 deaths were reported
worldwide [1]. COVID-19 was characterized as a pandemic by
the World Health Organization; however, there is no approved
specific cure. Several medicines have been evaluated in COVID-
19 patients in clinical trials, including interferon [2], lopinavir–
ritonavir [2, 3], chloroquine [4], hydroxychloroquine [3, 5, 6],
favipiravir [7] and remdesivir [8, 9], but their clinical efficacies
and safety remain controversial. Therefore, additional anti-viral
treatment options are urgently needed.

Cepharanthine (CEP) is naturally occurring alkaloid extracted
from the plant Stephania cepharantha Hayata. It has been used in
Japan since the 1950s to treat a number of acute and chronic
diseases, including leukopenia, xerostomia, alopecia, and snake
bites [10]. Our previous work found that CEP shows significant
anti-viral functions for pangolin coronavirus GX_P2V, a SARS-
CoV-2-related coronavirus, at both entry and post-entry stages
[11]. GX_P2V is a kind of coronavirus isolated from Malayan
pangolins with close genome sequence to SARS-CoV-2 [12]. Shar-
ing 92.2% amino acid identity on spike protein of SARS-CoV-
2 and using ACE2 as the receptor for infection, GX_P2V is an
ideal alternative model for SARS-CoV-2 research [11, 12]. Another
study confirmed that CEP inhibits SARS-CoV-2’s attachment and
entry into cells [13]. However, the underlying mechanisms of the
anti-viral activity of CEP remain unclear.

Cell responds to stress in a variety of ways ranging from
activation of pathways promoting survival to elicitation of pro-
grammed cell death eliminating damaged cells. Many viruses
such as varicella–zoster, SARS-CoV and hepatitis C induce var-
ious cellular stress responses, including heat shock response,
endoplasmic reticulum (ER) stress, unfolded protein response
and autophagy [14–16]. It is reported that Spike protein of SARS-
CoV could modulate the unfolded protein response to facilitate
viral replication [15]. Like other coronaviruses, SARS-CoV-2 is an
enveloped positive-stranded RNA virus that has a large genome
of ∼30 kb [17], and its Spike protein shares 75.96% amino acid
sequence identity with that of SARS-CoV [18]. SARS-CoV-2 was
reported to reshape multiple cellular pathways such as trans-
lation, splicing, carbon metabolism, protein homeostasis and
nucleic acid metabolism in host cells while targeting these path-
ways prevented viral replication [19]. However, cellular stress
response induced by SARS-CoV-2 is not clear.

In the present study, we explored the transcriptome of virus
infection and the transcriptional reprograming of CEP by bulk
RNA-sequencing (RNA-seq) in a GX_P2V cell culture model and
the single-cell RNA-seq of COVID-19 patients. We found cellu-
lar stress responses were in the pathophysiologic mechanism
of GX_P2V infection, and HSF-1-mediated heat shock response
was the core functional elements. CEP was potent to inhibit
the virus by inferring with a majority of virus-perturbed genes
and pathways, such as heat shock response, ER stress/unfolded
protein response and autophagy, adding evidence for possible
application of CEP in treatment of COVID-19. Additionally, we
propose that modulating cellular stress is promising for treating
SARS-CoV-2 infection.

Methods
Cell lines, coronavirus, key reagents and RNA-seq
library preparation

Vero-E6 cells (derived from the kidney of an African green mon-
key kidney, American Type Culture Collection, Manassas, VA,

USA) were plated in T75 culture flasks (1.5 × 107 cells/flask) for
24 h and treated with GX_P2V (MOI = 0.01), CEP (6.25 μM, Aladdin,
China, Shanghai) or CEP and GX_P2V, and then cultured for
another 72 h. Cells were harvested and mRNA was isolated using
TRIzol (Invitrogen). The rRNA was depleted by QIAseq FastSelect-
rRNA HMR Kit (Qiagen). The RNA-seq libraries were constructed
on Vero-E6 cells using the NEBNext Ultra™ RNA Library Prep
Kit for Illumina (NEB) and sequenced on Hiseq 2500 sequencing
system (Illumina).

Western blotting and mass spectrum

Treatment of Vero-E6 cells with CEP was performed as described
previously [11]. Briefly, Vero-E6 cells (5 × 104/well) were plated in
12-well plates and treated with CEP at different stages of viral
infection (full time, entry stage and post-entry stage). The plates
were washed three times with phosphate-buffered saline (PBS)
and lysed with radioimmunoprecipitation (RIPA) buffer in the
presence of a cocktail of proteinase inhibitors (ThermoFisher,
USA). The samples were loaded on a 12% SDS-PAGE gel and
transferred to a polyvinylidene fluoride membrane. Antibodies
against nucleocapsid protein of GX_P2V (GenScript, USA) and
GAPDH (Proteintech, USA) were used at 1:1000 and 1:20,000
dilutions, respectively. The second antibody of HRP-conjugated
AffiniPure goat anti-mouse IgG (H + L) was diluted at 1:10,000.
SuperSignal® West Femto Maximum Sensitivity Chemilumines-
cent Substrate (Thermo Scientific, USA) was used for imaging.
For mass spectrum, equal amount of each protein sample was
enzymatically lysed, mixed with five times of the sample volume
and precipitated with pre-cooled acetone at −20◦C for 2 h. The
protein precipitate was sonicated in buffer containing 200 mM
Triethylammonium bicarbonate. The digestion was then incu-
bated with trypsin at a ratio of 1: 50 (enzyme: protein, m/m)
for overnight. Finally, the samples were desalted according to
the C18 ZipTips instructions, and vacuum freeze-dried for HPLC
analysis.

RNA-seq data analysis

The FastQC (http://www.bioinformatics.babraham.ac.uk/proje
cts/fastqc/) tools and fastx_trimmer wrapped in FASTX toolkit
were used to trim low-quality bases (Q < 20) and adapter
for raw sequences. Cleaned RNA-seq reads were mapped
to the reference chlorocebus sabaeus genome ChlSab1.1
(GCA_000409795.2) by HISAT2 (v2.1.0) [20]. Duplicated reads for
pair-end data were removed by SAMtools (v1.5) [21]. Counts for
each gene were obtained by using HTseq. DESeq2 was used to
identify differentially expressed genes between experimental
groups [22]. False discovery rate (FDR q value) was calculated
by adjusting P values with the Benjamini–Hochberg method.
Genes with FDR q value <0.05 and |Log2 (fold change)| > 1 were
considered as differential expressed genes. The volcano plot was
drawn using the ggplot2 package by R.

Gene set enrichment analysis and selected genes
representation

The gct format files including Vero versus Vero + Virus, Vero
+ Virus versus Vero + Virus + CEP were used as the reference
files. Gene sets including (i) regulation of heat shock factor
1 (HSF1)-mediated heat shock response, regulation of cellular
response to heat, HSF1 dependent transactivation, HYPOXIA,
defense response to virus, response to virus, HIF1 targets, fat cell
differentiation and autophagy were download from the MSigDB,
KEGG and Reactome database and (ii) gene sets of up/downreg-
ulated genes of virus were the differentially expressed genes
of Virus versus Vero RNA-seq group described above with the
threshold of FDR q value <0.05 and |Log2 (fold change)| > 1. Gene

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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set enrichment P values, normalized enrichment score (NES)
values and FDR values reported throughout were calculated with
1000 permutations with GSEA4.0.3 (https://www.gsea-msigdb.o
rg/gsea/index.jsp) [23, 24], ran in Signal2Noise mode.

Heatmap visualization was performed by an R package of
GENE-E. Genes selected to presented in the Heatmap as pathway
mode were also obtained from MSigDB, KEGG and Reactome
database.

Gene ontology and network analysis

Gene ontology analysis was performed with a web-based tool
of Metascape (https://metascape.org) [25] with differentially
expressed genes obtained as described above. Pathway with
P value <0.05 was considered as significantly enriched pathway.
Top enriched pathways were shown in bubble plot created by R
package ggplot2. The interaction network for each significant
enriched pathway and the protein–protein interaction (PPI)
network were drawn by Cytoscape [26], which is also wrapped
in Metascape website. In detail, for each given gene list, PPI
enrichment analysis has been carried out with the following
databases: BioGrid [27] and OmniPath [28]. To further capture
the relationships between the terms, a subset of enriched terms
has been selected and rendered as a network plot, where terms
with a similarity >0.3 are connected by edges. We select the
terms with the best P values from each of the 20 clusters, with
the constraint that there are no more than 15 terms per cluster
and no more than 250 terms in total. The network is visualized
using Cytoscape, where each node represents an enriched term
and is colored first by its cluster ID. Nodes that share the same
cluster ID are typically close to each other. The resultant network
contains the subset of proteins that form physical interactions
with at least one other member in the differentially expressed
gene list. If the network contains between 3 and 500 proteins,
the molecular complex detection (MCODE) algorithm has been
applied to identify densely connected network components.
Pathway and process enrichment analysis has been applied to
each MCODE component independently, and the three best-
scoring terms by P value have been retained as the functional
description of the corresponding components, as shown in
Figure 2G.

Real-time polymerase chain reaction

Total RNA of Vero-E6 cells was extracted using TRIzol (Invitrogen,
USA). Reverse transcription was performed with a Hifair II 1st
Strand cDNA synthesis kit with gDNA digester (Yeasen Biotech,
Cat:11121ES60, Shanghai, China), and real-time polymerase
chain reaction (RT-qPCR) was performed using QuantStudio
1 quantitative RT-PCR detection system (Applied Biosystems,
Foster City, CA, USA) with Hieff qPCR SYBR Green Master Mix
(Yeasen Biotech, Cat:11202ES08, Shanghai, China). The sequence
information of primers (Tsingke Biotech, Shanghai, China) is
listed in Supplementary Table 1. RT-qPCR amplification of SYBR
Green method was performed as follows: 95◦C for 5 min followed
by 40 cycles consisting of 95◦C for 10 s, 55◦C for 20 s and 72◦C for
31 s.

Single-cell transcriptome analysis

In total, two single-cell datasets (both generated by Seq-Well
platform) were used. Peripheral blood mononuclear cells (PBMC)
from COVID-19 patients were downloaded from Gene Expression
Omnibus (GEO) with the accession number of GSE150728 [29]. In

detail, 44,721 cells, eight peripheral blood samples from seven
hospitalized patients with COVID-19 (four of which had acute
respiratory distress syndrome (ARDS) and need ventilation) and
six healthy controls were extracted. Single cell transcriptome
datasets were read and further integrated using Seurat v3.0.2.
Briefly, Seurat Object of each dataset was generated by the
Seurat function of ‘CreateSeuratObject’. Cells that expressed
less than 500 genes were considered outliers and discarded.
Raw unique molecular identifier counts were normalized to
unique molecular identifier count per million total counts and
log-transformed with the Seurat global-scaling normalization
function of ‘NormalizedData’. In total, 2000 most variable genes
were identified based on average expression and dispersion with
the selection method of ‘vst’ by the Seurat function of ‘FindVari-
ableFeatures’. FindIntegrationAnchors function was then used to
find correspondences across the different studied datasets (ie.,
healthy, nonvent, ARDS) with the parameters of dimensional-
ity = 1:20. IntegrateData function was used to generate the inte-
grated Seurat object with the result output from the FindIntegra-
tionAnchors. Next, we applied a linear transformation function
called ScaleData of Seurat to shift the expression of each gene to
the mean expression across cells to 0, and scales the expression
of each gene to make the variance across cells to 1, this step
gives equal weight in downstream analyses. Finally, the standard
workflow from Seurat was used to find the relevant compo-
nents with principal component analysis (PCA) (npcs = 30) and to
visualize the results with uniform manifold approximation and
projection (UMAP) (reduction = ‘pca’, dims = 1:20).

In order to create feature plots and violin plots for gene
set with multiple genes (HSF1-mediated heat shock response,
HSF1 dependent transactivation and autophagy signature), the
average normalized expression of those genes was used. Score of
each signature was obtained from the average expression level
of each gene set by using the ‘apply’ function of R. Next, standard
FeaturePlot and VlnPlot function of Seurat was used to generate
the feature plots or violin plots by replacing the original single
gene with gene set signature score.

For correlation analysis between gene signatures of HSF1-
mediated heat shock response and HSF1 dependent transactiva-
tion with autophagy gene signature, another single-cell RNA-seq
dataset with angiotensin-coverting enzyme 2 (ACE2+) cells from
human lung and Macaca mulatta lung under accession number
of GSE148829 were used [30]. Next, score of each signature was
obtained from the average expression level of each gene set by
using the ‘apply’ function of R. Then, Pearson correlation and
scatterplot were performed by GraphPad version 7.0.

Results
The SARS-CoV-2-related coronavirus disturbs
homeostasis in cells

To determine the transcriptional response of SARS-CoV-2-
related coronavirus, we first compared the transcriptional
difference between virus treated Vero-E6 cells and Vero-
E6 cells. To this end, we collected poly(A) RNA from virus-
infected Vero-E6 cells and Vero-E6 cells and performed RNA-
seq to estimate the differentially expressed genes. A total
of 1081 genes were reserved with P value <0.05 and |Log2
(Fold change) | > 1, including 619 upregulated genes and 462
downregulated genes (Figure 1A and B). Inflammation-related
genes (TRAF1, TNFRSF14, DNAH3, TOX3, BAG3 and CXCL10)
and heat shock response genes (HSPA4, HSPA8, HSPA5, HSPH1
and DNAJB1) were upregulated, while genes in alternative

https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
https://metascape.org
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complement pathway such as C3, and genes in pathways
affecting insulin-like growth factor (IGF1)-Akt signaling such as
IGFBP3 were downregulated by the virus (Figure 1B). Specifically,
we observed that genes associated with defense response to
virus, ER stress and HSF1-mediated heat shock response were
significantly upregulated along with virus infection (Figure 1C).
Gene ontology pathway enrichment analysis showed that, with
the coronavirus GX_P2V infection, virus-upregulated genes
were predominantly enriched in tumor necrosis factor-alpha
(TNF-α) signaling via NF-κB, unfolded protein responses, ER
stress, heat shock response-related pathways such as regulation
of HSF1-mediated heat shock response and HSF1-dependent
transactivation, cell response to stress and apoptosis (Figure 1D),
whereas virus-downregulated genes were mainly enriched in
host cell basic functional pathways like extracellular matrix
organization and post-translational protein phosphorylation
(Supplementary Figure 1). Gene set enrichment analysis (GSEA)
further confirmed differentially expressed genes were sig-
nificantly enriched in multiple signaling pathways including
regulation of HSF1-mediated heat shock response, regulation
of cellular response to heat, HSF1 dependent transactivation,
unfolded protein response, ER stress, hypoxia, defense response
to virus and response to virus (Figure 1E). To further decipher
functionally grouped gene ontology and the crosstalk of those
signaling pathways, network analyses were performed with
ClueGO, a Cytoscape plug-in [31]. Interestingly, among all the
enriched pathways, HSF1-dependent transactivation pathway is
at the core, extensively interacting with other pathways such as
cellular response to stress, ER stress, TNF-α signaling, hypoxia
and autophagy (Figure 1F). In addition, PPI network analysis
with the MCODE algorithm has been applied to identify densely
connected network component genes. Results showed that
genes such as HSPA8, HSPH1, HSPA5, DNAJA4, DNAJB1, DNAJC3,
AP1G1 and BAG3 were widely linked to other genes, and these
genes were typically associated with heat shock response and ER
stress, again indicating cellular stress response is critical in the
pathogenesis of the SARS-CoV2-related coronavirus infection
(Figure 1G, Supplementary Figure 2).

CEP was potent to reverse virus-perturbed gene
expression and pathways

Our previous work showed that CEP has significant anti-viral
power against the SARS-CoV-2-related coronavirus, GX_P2V
[11]. Moreover, the anti-viral effect of CEP mainly takes effect
at post-entry stage (Supplementary Figure 3); however, the
exact mechanisms remain unclear. Therefore, transcriptome
analyses were performed and we found that CEP demonstrates
strong power to reverse virus-perturbed gene expression and
pathways (Figure 2A and B, Supplementary Figure 4). In general,
most viral downregulated genes were upregulated by CEP
(NES = 1.44, P < 0.001, FDR = 0.03), and viral upregulated genes
were downregulated by CEP (NES = −1.5, P < 0.001, FDR = 0.016)
(Figure 2A). Specifically, among 619 upregulated genes by the
virus, 374 genes (60.4%, only significant core enrichment were
included here) were downregulated by CEP, whereas 310 genes
(67%) among 462 downregulated genes were upregulated by
CEP (Figure 2B). Among them, gene signatures of unfolded
protein response and HSF1-mediated heat shock response were
significantly upregulated in virus-infected Vero-E6 cells, but
their expression was comparable in CEP treated virus-infected
Vero-E6 cells and CEP treated Vero-E6 cells compared to the
control (Figure 2C). For example, the expression of HSPH1 gene
and CALR gene were upregulated in virus-infected cells but were

brought down by CEP treatment (Supplementary Figures 4 and
5). In consistent with this, RT-qPCR showed that expression of
HSPA8, HSPH1, CALR, DNAJB1, DNAJA3 and DNAJA4 in virus-
infected Vero-E6 cells were significantly higher than in Vero-E6
cells, Vero-E6 cells with CEP, and infected Vero-E6 cells with
CEP, whereas the expression of these genes was similar in Vero-
E6 cells and Vero-E6 cells with CEP except CALR (Figure 2D).
Furthermore, protein-level of selected genes from related
pathways showed the same trend (Supplementary Figure 6).
The reversed genes by CEP were predominantly enriched in
heat shock response-related pathways (such as response to
heat, HSF1-mediated heat shock response), ER stress/response to
unfolded protein and hypoxia pathways (Figure 2E and F). Inter-
estingly, fat metabolism pathways such as fat cell differentiation,
abnormality of fatty acid metabolism, fatty acids abnormality
were also affected by the virus but were reversed by CEP
(Figure 2E and F). This is consistent with the clinical observation
that statin use is associated with lower risk of mortality in
COVID-19 patients [32], indicating lipid metabolism may take
a part in the pathogenesis of SARS-CoV-2 infection and can
be a therapeutic target. To identify densely connected network
component genes located at the core of the CEP reversed genes,
MCODE were applied. Consistently, we identified four clusters
of genes, which were components of HSF1-mediated heat shock
response and unfolded protein response, cell death, G alpha
signaling events and extracellular matrix organization pathway,
respectively (Figure 2G, Supplementary Figure 7). The former
two pathways were essential for cell response to stress, while
the latter two pathways were essential for cell to execute the
basic biological functions.

Single-cell transcriptome analysis revealed SARS-CoV-2
induces cellular stress responses and autophagy in
PBMC from COVID-19 patients

To confirm the possible mechanism of CEP and the role
of cellular stress responses in COVID-19, we also analyzed
two published single-cell RNA-seq datasets [29, 30]. The first
dataset includes eight peripheral blood samples from seven
hospitalized patients with COVID-19 (four of which had ARDS
and need ventilation) and six healthy controls. With the subject
extracted from the original dataset, a cells-by-genes expression
matrix was created and dimensionality reduction by UMAP
and graph-based clustering were performed, identifying 20
clusters (Figure 3A and B, same with the original paper [29]). To
determine the expression level of HSF1 regulated genes in PBMC,
we performed GSEA on those 20 clusters. Interestingly, we found
gene signatures of regulation of HSF1-mediated heat shock
response, HSF1 dependent transactivation and ER stress were
predominantly enriched in clusters of IgG and IgA plasmablasts
(PB), and proliferative lymphocytes (Figure 3C and D), cell popu-
lations that were specifically increased in COVID-19 patients
(Figure 3A and B). Furthermore, from healthy, nonventilated
patients (NonVent) to ARDS patients need ventilation, cells
with gene signatures of regulation of HSF1-mediated heat shock
response as well as HSF1 dependent transactivation and ER
stress pathways were increasingly enriched, indicating those
gene signatures of cellular stress responses were correlated with
severity of COVID-19 (Figure 3E–G, and Supplementary Figure 8).

A recent study proposed that the heat shock protein 90 could
be a target to treat COVID-19 by serving as a major compo-
nent that enables viruses to hijack infected cells through the
process of autophagy [33]. Our data showed the autophagy-
associated genes were mainly expressed in the same PBMC
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Figure 1. Host transcriptional response to SARS-CoV-2-related coronavirus in monkey kidney epithelial cells. (A and B) Volcano plot (A) and heatmap (B) of total

1081 differential expression genes with P value <0.05. Red color represented upregulated genes in virus-infected cell with Log2(fold change) > 1 and blue represented

downregulated genes with Log2(fold change) < −1, relative expression in z-score mode was showed in heatmap. Red cells represented upregulated genes; green cells

represented downregulated genes. (C) Heatmap of pathways of defense response to virus, ER stress and HSF1-mediated heat shock response. Red cells represented

upregulated genes; blue cells represented downregulated genes. (D) The bubble plot of top upregulated pathways enriched from 619 upregulated genes in virus-infected

cells. The bubble color scaled the enrichment score. Light color means more significant enrichment. The size of the bubble scaled the count of the enriched genes.

X-axis is equal to gene ratio, which means the percentage of enriched target genes among total 619 genes. Y-axis is the name of the Metascape enriched pathway. (E)

GSEA of expression profile from the virus-infected Vero-E6 cell and uninfected Vero-E6 cells with signatures downloaded from MSigDB, KEGG and Reactome databases.

(F) Network visualization of pathways enriched by 619 upregulated genes in virus-infected cells performed by ClueGO plug-in of Cytoscape, edges width indicates

the number of overlapped genes between individual terms, color indicate different GO term groups. (G) Protein–protein network visualization of gene component

underneath the pathway networks showed in (F) with MCODE algorithm, red nodes indicate the core nodes of the network. Red font indicates genes on ER stress and

HSF-1-mediated heat shock response pathways.

populations in severe COVID-19 patients, together with red blood
cells (Supplementary Figure 9). Indeed, both genes associated
with the regulation of HSF1-mediated heat shock response and
genes associated with HSF1 dependent transactivation were
positively correlated with autophagy gene signatures in cells
where they predominantly located (left panel of Figure 3H and
3I). To confirm this observation, we further analyzed another
single-cell RNA-seq dataset including ACE2 positive lung epithe-
lial cells from both human and M. mulatta lung. Both datasets
showed significant correlation between HSF1 and autophagy-
associated gene signatures (right panel of Figure 3H and 3I). In
our bulk RNA-seq data, CEP also showed the power to reverse
the expression of autophagy-associated genes in infected cells
(Figure 3J). Altogether, cellular stress response and autophagy
may play an important role in the pathogenesis of COVID-19.

Discussion
Here our transcriptome analysis demonstrated the induction
of various cellular responses by GX_P2V infection and CEP was
potent to inhibit the virus and modulate multiple pathways
including cellular stress responses and autophagy, helping cell
recover from the insult. Cellular stress responses were induced
in PBMC, especially IgG/IgA PB and proliferative lymphocytes,
in COVID-19 patients, and were associated with severity of the
disease.

Heat shock proteins (Hsps) have crucial roles in the main-
tenance of the conformation, stability, activation and cellular
localization of several key proteins that are involved in cell sig-
naling, proliferation and survival, protecting cells from stressful
conditions including virus infection. As expected, genes coding
for Hsps was significantly upregulated in cells infected with
GX_P2V (Figure 1). However, Hsps, including Hsp70 and Hsp90,
can be induced by virus which in turn enhances virus repli-
cation [34]. For instance, Hsp90 is important for several virus
replications and Hsp90 specific inhibitor geldanamycin blocks
the replication of the coronavirus in cell culture systems. A
recent drug repositioning based on datasets of SARS family
of coronaviruses proposed that Hsp90 inhibitors, such as gel-
danamycin, could be options for COVID-19 therapy [33]. Inside a
eukaryotic cell, most of the transmembrane and secreted protein
are translated, modified, and folded in the ER. During the replica-
tion of virus, substantial amounts of viral proteins overload the
protein processing machinery, unfolded/misfolded proteins will
evoke ER stress and unfolded protein response, which result in
shutdown of global translation and adjustment of biosynthetic
burden [35]. A proteomics study has also shown that proteins
for unfolded protein processing were increased during SARS-
CoV-2 infection [19]. In consistent with this, our study revealed
that GX_P2V induced significant ER stress and unfolded protein
response in Vero-E6 cells. However, viruses such as SARS-CoV
have evolved the capacity to overcome the protein translation
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Figure 2. CEP reprograms the transcriptional profile of SARS-CoV-2-related coronavirus in monkey kidney epithelial cells. (A) GSEA of expression profiles on virus

up/downregulated genes from virus-infected-Vero-E6 cell with or without CEP treatment. (B) Venn diagrams showed percentages of virus up/downregulated genes

reversed by CEP treatment. (C) Heatmap showed genes of unfolded protein response pathway and HSF-1-mediated heat shock response pathway in Vero-E6 cells,

virus-infected Vero-E6, virus-infected Vero-E6 treated with CEP and CEP treated Vero-E6 cells. Red cells represented upregulated genes while blue cells represented

downregulated genes. (D) RT-qPCR showed expression of HSPA8, HSPH1, CALR, DNAJB1, DNAJA3 and DNAJA4 genes were significantly higher in virus-infected Vero-E6

cells, compared to Vero-E6 cells, Vero-E6 cells with CEP, virus-infected Vero-E6 cells with CEP treatment. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001. (E) Bar diagram

showed the top CEP-reversed pathways in virus-infected cells. (F) GSEA of expression profile from the CEP treated-virus-infected-Vero-E6 cell and virus-infected-Vero-

E6 cell with signatures downloaded from MSigDB, KEGG and Reactome databases. (G) Gene component underneath the pathway showed in (F) with MCODE algorithm,

colors indicate different core nodes.

shutoff to ensure the production of viral protein [15, 35]. If the
damage to the ER is severe or persistent, cell death including
apoptosis and autophagy will be induced.

Autophagy is often initiated to curtail infection by deliv-
ering viral particles for lysosomal degradation and inducing
interferon-mediated clearance; however, some viruses have
evolved anti-autophagy strategies escaping host immunity and
promoting viral replication [36]. During autophagy, autophago-
somes formed and can be hijacked by some viruses and used
as safe sanctuary [37]. It has been concluded that coronaviruses
induce autophagy but do not require the complete autophagy
pathway [38]. Studies have shown SARS-CoV-2 limits autophagy
flux by interfering lysosomal-autophagosomal fusion [39],
whereas the cytopathic effect of SARS-CoV-2 could be blocked
with autophagy inhibitors [40]. It seems conflicting that virus
inhibits autophagic clearance while autophagy inhibitors
suppress viral infection. Those autophagy inhibitors were
speculated to interrupt early stages of viral life cycle, namely the
fusion of the viral endosomes with the lysosome, reducing viral
replication and protecting cells from viral induced cell death [40].
Our analysis showed that SARS-CoV-2 also induced autophagy-
associated genes expression and the virus-induced heat shock
response was associated with autophagy (Figure 3). Therefore,
cellular stress response and autophagy could play a crucial role
in pathogenesis of COVID-19.

CEP has been used to treat a diverse range of medical
conditions including anemia, leukopenia, thrombocytopenia,
alopecia, sarcoidosis, some cancer and even virus infection (e.g.

Human immunodeficiency virus, hepatitis B virus and Ebola
virus) with rare and modest toxicities [41]. The mechanism
of action of CEP is multifactorial, interfering cell membranes,
metabolic axes (e.g. NF-κB pathway, JAK/STAT pathway),
scavenging free radicals, binding to Hsp90 [10] and inhibit
autophagy/mitophagy through blockage of autophagosome-
lysosome fusion [42]. We and others have shown CEP inhibits
virus at entry and post-entry step [11, 13]; however, the
mechanisms of CEP’s antiviral activity after virus entry into
cell remains unclear. Recent researches have demonstrated CEP
also strongly inhibits nonstructural protein (Nsp) 13 activity and
Nsp12-Nsp8-Nsp7 complex of SARS-CoV-2, which were essential
for viral replication and transcription [43, 44]. We reported
the antiviral mechanism of CEP against GX_P2V appears to
be associated with cell stress response-autophagy cascade,
indicating that CEP exhibits broad-spectrum antiviral activity
targeting multiple molecules and pathways. Moreover, NF-κB-
related signaling pathway also ranked high in this GX_P2V
infection model. As a hallmark of virus infections, activation
of NF-κB was firstly interpreted that the host utilizes NF-κB to
trigger defense mechanisms against the invader [45]. However,
some viruses have evolved strategies to benefit their replication
by hijacking NF-κB-driven cellular functions [45]. Bing a NF-
κB suppressor, CEP was also speculated to inhibit the SARS-
CoV-2-related coronavirus by inhibiting NF-κB-related pathway.
Despite the close relationship of GX_P2V to SARS-CoV-2 [11],
the pathogenicity of GX_P2V is much weaker than SARS-CoV-
2, indicating their pathogenesis may not be exactly the same.
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Figure 3. SARS-CoV-2 induces cellular stress responses in PBMC from COVID-19 patients. (A) Integrated UMAP visualization of 44,721 PBMC determined by Seurat v3.

Each dot represents a single cell. Cells from different samples are color-coded (ARDS patients: green, Nonventilated patients: pink, healthy donors: light blue). (B) UMAP

visualization of integrated projection PBMC that were assigned to 20 clusters and color-coded based on the clusters. (C) Enrichment of the gene signatures of regulation

of HSF1-mediated heat shock response, HSF1 dependent transactivation, ER stress in PBMC from patients with COVID-19 and healthy controls, determined by multiple

feature analysis of Seurat v3. Single-cell average expression levels of each gene signature were illustrated in the UMAP plots and violin plots (D). Expression levels are

color-coded by gray (not expressed) and blue (expressed). Each dot corresponds to one individual cell, and the violin represents the probability density at each value.

Those three gene signatures were significantly enriched in IgG/IgA PB and proliferative lymphocytes, highlighted in black circles of the UMAP (C) and red box on violins

(D). (E–G) Enrichment of the individual gene signature in PBMC split by samples from healthy donors (left), Non-Vent (middle) and ARDS (right) patients were illustrated

by UMAP plots. (H–I) Correlation analysis between gene signatures in regulation of HSF1-mediated heat shock response (H, X-axis), HSF1 dependent transactivation

(I, X-axis) and autophagy (Y-axis) in PBMC from COVID-19 patients (left), Human lung ACE2 positive cells (middle) and M. mulatta lung ACE2 positive cells (right). (J)
Heatmap showed genes of autophagy pathway in virus infected Vero-E6 cells with or without CEP treatment. Red cells represented upregulated genes while blue cells

represented downregulated genes.

Another limitation is that our study only used in vitro cell culture
data without confirmation using in vivo infection models.
Therefore, the test of efficacy of CEP in SARS-CoV-2 infection
models of human cells and COVID-19 patients are urgently
required.

SARS-CoV-2 infection can lead to lymphopenia [46–48], low
blood lymphocyte percentage predicts severe disease of COVID-
19 [48]. However, the mechanisms of lymphopenia in COVID-
19 remain incompletely understood. Lymphopenia can augment
T cell activation and proliferation [49]. Impressive numbers of
IgG/IgA PB [29, 50] and proliferative lymphocytes [29] appeared in
the peripheral blood of COVID-19 patients, especially severe indi-
viduals, which is a self-protection. During acute viral infections,
abundant PB, probably derived from memory B cells, appear
in the circulation transiently [51]. Rapid activation of mem-
ory B cells and their differentiation into antibody-secreting PB
might provide antibodies, which can partially neutralize the
virus and stop further dissemination in the host [51]. Our anal-
yses demonstrated that both PB and proliferative lymphocytes
were in apparent cell stress state, and autophagy was induced. A
possible explanation is that these cells were infected by the virus
directly or affected by the virus-induced hyperinflammation,
resulting in cell death if the stress persists. CEP, by inhibiting
viral infection and modulating cellular stress responses and
autophagy, may protect lymphocytes from these insults. How-
ever, the role of activated cellular stress responses in IgG/IgA PB,

and proliferative lymphocytes in SARS-CoV-2 infection warrants
further study.

In summary, our study provided a transcriptome of an infec-
tion model of the SARS-CoV-2-related virus GX_P2V, and uncov-
ered the cellular responses to the virus and anti-viral activities
of CEP, providing evidence for CEP as a promising therapeutic
option for COVID-19. Furthermore, the cellular stress response-
stress-induced death cascade is a potential therapeutic target for
SARS-CoV-2 infection.

Key Points
• GX_P2V, a SARS-CoV-2-related coronavirus, disturbs

homeostasis in cells.
• CEP was potent to reverse most of viral-perturbed gene

expression and pathways.
• Single-cell transcriptome analysis revealed SARS-CoV-

2 induces cellular stress responses and autophagy in
PBMC from COVID-19 patients.
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