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With the development of computed tomography (CT), the contrast-enhanced CT scan is widely used in the diagnosis of thyroid
nodules. However, due to the artifacts and high complexity of thyroid CT images, traditional machine learning has difficulty in
detecting thyroid nodules in contrast-enhanced CT. A fully automated detection algorithm for thyroid nodules using contrast-
enhanced CT images is developed. A modified U-Net architecture of fully convolutional networks is employed to segment the
thyroid region of interest (ROI), and a fusion of convolutional neural networks (CNN-Fs) is proposed to detect benign and
malignant thyroid nodules from the ROI images and original contrast-enhanced CT images. Experimental results demonstrate
that the proposed cascade and fusion method of multitask convolutional neural networks (CNNs) is efficient in diagnosing
thyroid diseases with contrast-enhanced CT images and has superior performance compared with other CNN methods.

1. Introduction

+yroid nodules are one ormore agglomerates with abnormal
organizational structure in the thyroid gland due to various
causes. +ese nodules are the most common nodular lesions
in the human population, with a total incidence of 19% to 46%
[1]. +e incidence of thyroid cancer has increased 2.4-fold
over the past 30 years [2]. Ultrasound technology is the most
widely employed imaging method for the diagnosis and
follow-up of thyroid disorders such as nodules, tumors, and
cysts [3, 4]. However, with the further improvement of CT
examination and the proposal of multirow spiral CT, con-
trast-enhanced CT scanning is gradually gaining importance
in the diagnosis of thyroid nodules [5–7].

To reduce the influence of subjective factors in physician
diagnosis and improve accuracy of diagnosis, many re-
searchers have recently done a lot of research in the direction
of computer-aided diagnosis. Traditional computer-aided

diagnosis methods usually process various medical images
such as ultrasound images, CT images, MRI images, X-ray
films, and pathological slice staining images and design
algorithms for disease classification or target segmentation.
Singh and Jindal [8] first extracted 13 gray-level cooccur-
rence matrix (GLCM) features and then utilized a support
vector machine (SVM) to classify thyroid nodules with a
maximum classification accuracy of 84.62%. Nugroho et al.
[9] classified thyroid nodules by analyzing the edge features
of nodules in ultrasound images with a final accuracy of
92.30%. Iakovidis et al. [10] used local binary patterns
(LBPs), fuzzy local binary patterns (FLBPs), and fuzzy gray-
level histograms (FGLHs) to train SVMs with polynomial
kernels to detect thyroid nodules. +e area under the re-
ceiver operating characteristic curve (AUC) estimates that
the best performance was 97.5%. Although the above studies
have achieved good results on ultrasound images, they are
not suitable for CT images because of the high complexity of
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thyroid CT images, small thyroid regions, and artifacts. As
shown in the study by Peng et al. [11], the accuracy of the
recognition method based on CT image statistical texture
features was only 88%. Liu et al. [12] used 17 texture features
to train SVM. +e accuracy, AUC, sensitivity, specificity,
positive predictive value, and negative predictive value were
0.8673, 0.9105, 0.9130, 0.8269, 0.8235, and 0.9146, re-
spectively. In addition, the above methods require manual
participation in complex preprocessing steps and feature
extraction, all of which make it difficult to further improve
the algorithms. How to extract features effectively and
choose the right features among all features are difficult
issues.

To solve the above difficulties, we consider deep con-
volutional neural networks (CNNs) in this study. CNN is a
classic deep learning model [13–15], usually composed of
standard convolutional layers, finally terminated by a fully
connected layer. By learning a large amount of image data,
CNN can automatically train a suitable convolution filter to
extract features from the data. As the number of layers is
deepened, CNN can obtain more advanced semantic fea-
tures from the image data. +erefore, CNN can be applied to
various image classification tasks [15–17] and achieve su-
perior performance.

CNN can also be applied to image segmentation tasks.
FCN [18] discards the final classification layer of VggNet-
16 [19], converts the fully connected layer into a con-
volutional layer, and acquires feature maps of the last few
layers to improve the segmentation accuracy. SegNet [20]
replaces the original fully connected layer by constructing a
decoder that is symmetric with the encoder and combines
the encoder’s pooled layer information to obtain the seg-
mentation result of the target. U-Net [21] combines the
encoder’s feature map information to complement the
segmentation details. Recently, CNNs have been explored
in detection and segmentation tasks in the medical domain,
such as classification of diseases on thyroid SPECT images
by CNN [22], lung nodule classification by means of
multiscale CNNs [23], mitosis detection in breast cancer
histology images by means of a supervised CNN [24, 25],
and small organs (e.g., the pancreas) segmentation in
abdominal CT scans [26, 27].

However, deep convolutional neural network requires a
myriad number of training data to prevent overfitting,
which are not usually readily available for most routine
medical imaging applications. When it is difficult to obtain
enough training data, disassembling a task into a few small
tasks based on prior knowledge will help to achieve better
results. Xie et al. [28] transferred the image representation
abilities of three ResNet50 models to characterize the
overall appearance, heterogeneity of voxel values, and
heterogeneity of shape of lung nodules, respectively, and
jointly utilized them to classify lung nodules, and they
achieved a lung nodule classification accuracy of 93.40%,
which is markedly higher than the accuracy of the single
network method. Zhang et al. [29] proposed a combined
deep and handcrafted visual feature (CDHVF) based al-
gorithm that uses features learned by three finetuned and
pretrained deep convolutional neural networks (DCNNs)

and two handcrafted descriptors in a joint approach. +e
CDHVF algorithm achieved an accuracy of 85.47% on the
ImageCLEF 2016 Subfigure Classification dataset, which is
higher than the best performance of other purely visual or
deep approaches.

+e method for detecting benign and malignant thyroid
nodules proposed in this study consists of two parts, as
shown in Figure 1. In the first part, the region of interest in
the thyroid CT image is automatically segmented by a
modified U-Net (DenseU-Net).+e second part is the fusion
of two different CNN network structures (CNN-F). CNN-1
uses the original CT image for training, and CNN-2 uses the
CT image processed by segmentation mask for training.
Finally, we merge the two networks into CNN-F and
combine various feature levels to identify benign and ma-
lignant thyroid nodules.

+e main contributions of this study are the following:

(1) An innovative network named DenseU-Net, which
is based on improved U-Net, is proposed for
segmentation of thyroid contrast-enhanced CT
images

(2) A new method is developed to detect benign and
malignant thyroid nodules, which applies transfer
learning and fuses multiple levels of features by
fusing two different CNN structures

(3) No complex preprocessing of thyroid contrast-en-
hanced CT images is required in the study, and
objective and encouraging performance is achieved
without any user intervention

2. Materials and Methods

2.1. Datasets and Materials. +e thyroid contrast-enhanced
CT images used in this study were provided by a local
hospital. Nonionic contrast media were used for radiogra-
phy; the concentration was 300mgl/ml, the flow rate was
3ml/s, the dose was 1ml/kg, the forearm was injected in-
travenously, the injection rate was 2.5∼3ml/s, and the ar-
terial phase was scanned with a delay of 25∼30 s. +ere are
2012 CT images from 398 patients: 73 patients were di-
agnosed with malignant thyroid nodules, for a total of 591
CT images, and 325 patients had benign thyroid nodules, for
a total of 1421 images. +e final diagnosis of these images
was based on fine-needle aspiration (FNA) biopsy, and
unless the patient underwent surgery, the FNA results were
used as a basis for the facts, so the data can be considered
accurate. In addition, the above CT images were adjusted by
a professional physician to the proper window width and
window level so that the thyroid nodule can be clearly
observed. +e Digital Imaging and Communications in
Medicine (DICOM) data were normalized to a grayscale
image with a grayscale value of 0–255 according to the
appropriate window width and window level. +e grayscale
image format is jpg. +e outline of the thyroid region in the
CT image was manually drawn by a doctor. A total of 500 CT
images were drawn, and each CT image corresponds to a
mask.
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2.2. DenseU-Net Architecture

2.2.1. U-Net as the Basic Architecture. +e DenseU-Net
(shown in Figure 2) designed in this study uses the standard
U-Net as the basic framework of the network, including the
encoder and decoder. +e encoder portion is composed of a
multilayer convolution layer in which the transferred feature
map size is reduced layer by layer, and the number of
channels is increased layer by layer. +e encoder is repre-
sented by the following formula:

xℓ � fℓ xℓ− 1( , (1)

where fℓ represents a series of convolution operations for
each layer. xℓ represents the output of layer ℓ. +e specific fℓ
formula is as follows:

Xℓ � ReLU Wℓ ⊗Xℓ− 1 + Bℓ( , (2)

where Wℓ is the convolution kernel weight, Bℓ is the offset
value, and ⊗ is the convolution operation. And ReLU is the
linear rectification functions, the formula is as follows:

f(x) � max(0, x). (3)

Each layer of the decoder portion is composed of an
upsampling layer and a convolutional layer, wherein the
transmitted feature map size is increased layer by layer, and
the number of channels is reduced layer by layer.+e feature
map generated by each layer in the encoder is connected
with the corresponding layer in the decoder. +e decoder
obtains the edge feature of the segmented object, layer by
layer, in a rough to fine manner by acquiring decoder feature
maps of different scales. +us, different layering features of
the encoder can be incorporated into the decoder, making
the network more accurate and scalable. +e decoder part is
expressed in the following formula:

xl+n � fl+n xl− n, xl+n ( . (4)

2.2.2. Dense Learning Mechanism. In deep convolutional
neural networks, the depth of the network is a very im-
portant parameter. In general, as the network deepens, the
learning performance of the network becomes better and
better. However, what follows is the problem of gradient
disappearance, resulting in worse network training results.

To overcome this problem, Huang et al. [30] proposed the
dense convolutional network (DenseNet). Inspired by
DenseNet, this study replaces the convolutional network
layer of the encoder part with the Dense block. +e Dense
block is represented in the following formula:

xℓ � fℓ x0, x1, . . . , xℓ− 1 ( , (5)

where fℓ represents a series of convolution operations at
layer ℓ. [x0, x1, . . . , xℓ− 1] indicates the parallel connection
of the output of the first ℓ − 1 layer in the Dense block. In a
Dense block, the input for each layer comes from the
output of all the layers above (shown in Figure 3). Because
of this design, the DenseU-Net encoder is narrower and
has fewer parameters. +e number of output feature maps
per convolution layer in the dense block is very small, and
this connection method makes the transmission of features
and gradients more efficient, and the DenseU-Net is easier
to train. At the same time, because the parameter quantity
is much less than the general U-Net, it has a certain in-
hibitory effect on overfitting and has a certain regulari-
zation effect.

+e DenseU-Net encoder part modified by the Dense
block is expressed in the following formula:

xℓ � gℓ x0, x1, . . . , xℓ− 1 ( . (6)

Specifically, the algorithm gℓ is a design of BN-ReLU-Conv
((1× 1)× (4∗ growth rate))-BN-ReLU-Conv ((3× 3)× (growth
rate)). In this paper, three different Dense blocks are used
according to theU-Net network structure, and the growth rates
are 32, 64, and 128 respectively.+is is designed to improve the
overall performance of the network when the depth of the
encoder is too deep. When the growth rate is set to 32, the
encoder block on the fifth layer of the encoder will have 16
layers, which is much larger than the number of layers in the
decoder part, and the encoder and decoder layers are seriously
unbalanced, affecting the overall performance of the network.

2.2.3. Residual Block as Skip Connection. +e context in-
formation is directly connected to the decoder in standard
U-Net although this connection preserves the most primi-
tive context information to help the decoder reconstruct the
contour and detail of the segmentation target. On the other
hand, these unprocessed feature maps also contain a large
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Figure 1: Flowchart of the proposed method for detection of thyroid nodules.
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number of interference features, such as segmentation in-
formation outside the target area, which will reduce the
performance of the network. To solve this problem, we used
the Residual block in ResNet [31] to replace the original
connection. +e Residual block is represented by the fol-
lowing formula:

xℓ � fℓ xℓ− 1(  + xℓ− 1, (7)

where fℓ represents the convolution operation in the Re-
sidual block and xℓ− 1 represents the output of the previous
layer. In the Residual block, an input branch is processed by
fℓ and added to the original input. +is preserves the
necessary information of the original feature map and can
filter out the useless interference features under the pro-
cessing of fℓ. +e DenseU-net decoder portion modified by
the Residual block is expressed in the following formula:

xℓ+n � fℓ+n fℓ− n xℓ− n(  + xℓ− n, xℓ+n ( . (8)

2.3. CNN-F Architecture. By learning a large amount of
image data, CNN can train a suitable convolution filter to
extract various features of the image. +erefore, for different
types of images, training the corresponding convolution
filter can extract the features of the image more effectively. In
addition, different CNN architectures can learn different
characteristics: shallow networks are suitable for learning
low-level features and deep networks can learn advanced
features after being fully trained. Moreover, as the number of
network layers increases, CNN can learn more complex
functions. +erefore, in this paper, CNN-F (shown in Fig-
ure 4) is proposed for the fusion of shallow and deep net-
works. CNN-F consists of CNN-1 and CNN-2 in parallel.
Both image data are simultaneously input to CNN-1 and
CNN-2 from the input. +e image features extracted by the
two networks are fused by the concatenate layer, and the
result is finally output by the fully connected layer whose
activation function is softmax. +is structure can capture all
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Figure 3: Architecture of Dense block.
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Figure 2: Overall architecture of DenseU-Net.
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features of thyroid nodules and the complex high-level
features of the surrounding tissue with CNN-1 and use
CNN-2 to capture the subtle low-level texture features inside
the thyroid gland so that multiple feature levels can be
learned from contrast-enhanced thyroid CT images.

+e detailed structure of the deep network CNN-1 in
Figure 4 is shown in Figure 5. +is network uses the
DenseNet structure to extract features from the input image
and finally classifies it by a layer of fully connected layers and
softmax functions.

Specifically, CNN-1 has five Dense blocks with a growth
rate of 32 and a total of 63 convolutional layers. +e acti-
vation functions used by all convolutional layers are linear
rectification functions (ReLU). In addition, other types of
layers are used in CNN-1. After each Dense block, the
maximum pooling layer with a window size of 2× 2 and a
stride of 2 is processed and the size of the feature map is
reduced by half after processing. Also, CNN-1 applies batch
normalization [32] after all convolutional layers, which
renormalizes the activation value of the previous layer on
each batch so that the mean of its output data is close to zero
and the standard deviation is close to 1. Batch normalization
works to accelerate convergence, control overfitting, reduce
the sensitivity of the network to initialization weights, and
allow for larger learning rates. +ere is a layer of average
pooling behind all convolutional layers to reduce the feature
size of each channel to 1, followed by the Flatten layer, which
“flattens” the input feature map to one dimension for
transition from the convolutional layer to the fully con-
nected layer. At the end of CNN-1 is a layer of fully con-
nected layers with two nodes, using the softmax function to
generate predicted labels.

+e overall structure of CNN-2 and CNN-1 is the same,
and the two are different in the total number of layers. CNN-
2 has 31 convolutional layers. +e 3rd to 5th Dense blocks in
CNN-2 are two-layer structures. Its growth rate is 32.

2.4. Training Method. Because the training sample has only
500 original images and 500 mask tags, this will easily lead to
network overfitting. +erefore, to reduce the impact of less
data, real-time data enhancement was used in training to
increase data diversity, such as randomness, horizontal flip,
random shear stretch, and random rotation. When training
DenseU-Net, we first initialized DenseU-Net with random
parameters. Second, a 256× 256 contrast-enhanced CT

image of the thyroid was used as the input of DenseU-Net,
and the same size mask was used as a label to supervise the
network.

+e loss function used by DenseU-Net is Dice loss,
which is the Loss function proposed byMilletari et al. [33] in
V-net. +e dice coefficient is derived from the Sørensen–
Dice coefficient and is a statistical indicator developed by
+orvald Sørensen and Dice [34] in 1945. It is a set similarity
measure function that describes the similarity of two con-
tour regions, equivalent to the F1 score, and its formula is

DSC(A, B) � 2
|A∩B|

|A| +|B|
�

2TP
2TP + FN + FP

, (9)

where A and B represent the set of points contained in the
two contours. +en, Dice loss can be expressed as

DL � 1 − 2


N
n�1pntn + ϵ


N
n�1 pn + tn(  + ϵ

, (10)

where pn and tn are the values of each pixel of the prediction
mask and the real mask, respectively, and the value is be-
tween 0 and 1. ϵ is the smoothing coefficient, which reduces
the loss value and is used to reduce overfitting of the
network.

When training CNN-F, the positive and negative sam-
ples in the dataset are not balanced, which will lead to slow
convergence and performance degradation during the
training process. +erefore, this paper oversamples fewer
positive samples to match or approximate the number of
negative samples. At the same time, to reduce the overfitting
effect caused by the small amount of data, this paper pre-
trained CNN-1 with a set of 25,000 natural images in the
ImageNet dataset. +e weight of CNN-1 was initialized
using 30 iterations. +en CNN-1 was trained with the
original contrast-enhanced CT images. Similarly, these CT
images were enhanced in real time before entering the
network.

For CNN-2, its weight was initialized with random
parameters. CNN-2 was then trained with image data
containing only the thyroid ROI processed by the mask. In
addition, the above networks were all optimized using the
Adam algorithm [35]. +e loss function used by CNN-1 and
CNN-2 is multiclass cross entropy, and the formula is

loss � − 
n

i�1
yi1logyi1 + yi2logyi2 + · · · + yimlogyim, (11)
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Figure 4: Architecture of CNN-F. +e CNN-1 and CNN-2 classification layers in CNN-F were abandoned.
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where n is the number of samples and m is the number of
classifications.

After training CNN-1 and CNN-2, the two were com-
bined in CNN-F. In detail, we first locked all convolutional
layers of CNN-1 and CNN-2 and then trained the weights of
the fully connected layers in CNN-F. Finally, the convolu-
tional layers of CNN-1 and CNN-2 were unlocked in a back-
to-front manner, and we finetuned the unlocked convolu-
tional layer. +e purpose is to slowly adjust the trained
weights without destroying the weights.

2.5. PerformanceMeasurement. In this study, we performed
five-fold cross validation on the thyroid segmentation
dataset and the benign and malignant datasets. Four of them
were used to train the network, one was used to verify the
performance of the evaluation model, and data from the
same patient were prevented from being separated into the
training set and the validation set on the benign and ma-
lignant datasets.

+e evaluation method of DenseU-Net is the Dice co-
efficient, and the value of the Dice coefficient is between 0
and 1. +e closer the value is to 1, the more accurate the
segmentation is.

To evaluate our proposed CNN-F, we used the classi-
fication recall, precision, accuracy, specificity, F1 score, and
the area under the receiver operating characteristic (ROC)
curve (AUC) [36] to evaluate the performance of different
methods.

It can be determined if the classification results of the
CNN are correct and if the sample is positive, true positive
(TP), true negative (TN), false positive (FP), or false negative
(FN) for each class.

Recall, precision, accuracy, and F1 score are defined as
follows:

accuracy �
TP + TN

TP + TN + FN + FP
,

recall �
TP

TP + FN
,

precision �
TP

TP + FP
,

specificity �
TN

TN + FP
,

F1 score �
2TP

2TP + FN + FP
.

(12)

Accuracy is the ratio of correctly predicted observations.
Recall is the ratio of the number of samples that are correctly
predicted for the class to the total number of samples for the
class and is also called the sensitivity or hit rate. Precision
refers to the ratio of the number of category samples cor-
rectly predicted to the total number of samples predicted for
that category. Specificity is the ratio of correctly predicted
negative samples to the total negative samples. F1 score is the
harmonic mean of precision and sensitivity of the classifi-
cation. +e larger these performance values are, the better
the performance of a method is.

3. Experiments and Results

3.1. Implementation Details. During training, the objective
function used by DenseU-Net is the Dice loss function. +e
optimization method is Adam [35], in which the learning
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rate of Adam is set to 0.0001, the exponential decay rate of
first-order moment estimation is set to 0.9, and the expo-
nential decay rate of the second moment estimate is set to
0.999. In addition, the training data are entered into the
network in batches of two.

+e objective function adopted by CNN-1 is multiclass
cross entropy function. In pretraining, the optimization
method is Adam [35], in which the learning rate of Adam is
set to 0.001 and the exponential decay rate of first-order
moment estimation is set to 0.9. +e exponential decay rate
of the second-order moment estimation is set to 0.999.+en,
when finetuning CNN-1, the stochastic gradient descent
optimization algorithm (SGD) is adopted. +e learning rate
of the SGD is set to 0.00001 and the momentum parameter is
0.9. +e objective function adopted by CNN-2 is also a
multiclass cross entropy function, in which the learning rate
of Adam is set to 0.001, the exponential decay rate of first-
order moment estimation is set to 0.9, and the exponential
decay rate of second-order moment estimation is 0.999.
Finally, the CNN-F objective function is also a multiclass
cross entropy function. +e optimization method is the
stochastic gradient descent optimization algorithm (SGD),
and the learning rate is set to 0.00001.

Other CNN methods, including VGG-16 [19], ResNet50
[31], and InceptionV3 [37], were also implemented for
comparison with the methods proposed in this paper. +e
training method details are the same as described above.

All experiments were conducted on a personal com-
puter. +e computer has an Intel Core i5-7400 (3.0GHz)
CPU processor, 8GB RAM, 11GB Nvidia Geforce
GTX1080TI graphics processor, and a 64-bit Windows 10
operating system. +e runtime environment is Python 3.5
and Keras with TensorFlow as the back end.+e time to train
DenseU-Net is about 5 hours. It takes about 4.75 hours to
train CNN-1 and CNN-2. It takes 0.062 seconds to split a
thyroid CT image on the trained DenseU-Net, and it takes
about 0.033 seconds to detect an image on the CNN-F.

3.2. Performance of DenseU-Net. +is paper first studies the
performance of the improved DenseU-Net network. +e
detailed configuration of DenseU-Net is described in Ta-
ble 1. Figure 6 shows the segmentation probability plot
generated by U-Net and DenseU-Net. At the same time, the
research evaluates the performance of DenseU-Net and
U-Net by comparing the Dice coefficients. +e Dice co-
efficient curves of the two are shown in Figure 7.

3.3. Performance of CNN-F and Comparison with Other
Methods. In this study, we used unprocessed raw CT images
as training data for CNN-1. To verify that CNN-1 learned the
features of the thyroid nodules from the thyroid region, not
the rest of the organ tissue in training, we constructed a
cover-contrast test. As shown in Figure 8, the training set
was composed of original CT images. Validation set 1 was
composed of ROI images processed by DenseU-Net, and
validation set 2 was composed of CT images from which the
thyroid region was removed. +e accuracy of the perfor-
mance with different iteration numbers is shown in Figure 9.

To evaluate our CNN-F, we implemented several other
classic CNN methods, including VGG-16 [19], ResNet50
[31], and InceptionV3 [37]. Our CNN-1 and CNN-2 details
are described in Table 2, and the details of VGG-16,
ResNet101, and InceptionV3 are described in [19, 31, 37].
Respectively, to make it easy, these CNN architectures all
performed a 5-fold cross validation. +e accuracy, recall,
precision, specificity, and F1 score of these architectures with
95% confidence intervals and AUC are reported in Table 3,
and P< 0.05 is considered to be statistically significant.
Figure 10 shows the ROC curves for different CNNs used to
detect thyroid nodules.

4. Discussion

Detection of benign and malignant thyroid nodules plays a
crucial role in optimal treatment quality and patient out-
come. However, due to CTartifacts, complex tissues around
the thyroid gland, and blurred edges, traditional machine
learning algorithms have difficulty in coping with the de-
tection of thyroid nodules in contrast-enhanced CT. In
traditional machine learning, inaccurate image pre-
processing will produce potential errors and unreasonable
feature selection when manually extracting feature levels
leads to classification bias. As shown in Table 3, the first-
order texture features, including entropy, uniformity, av-
erage intensity, standard deviation, kurtosis, and skewness,
were calculated from each ROI after reducing photon noise.
Finally, SVM analysis was applied for classification. +e
accuracy, sensitivity, and specificity were 0.880, 0.821, and
0.933, which were not good enough. However, deep learning
method addresses these issues by automatically generating
weights and deviations from the data, which generate data-
driven, task-specific, and dense feature extractors that take
full advantage of the 2D structure in the image. In this study,
we solved the problem of thyroid nodule detection based on
contrast-enhanced CT through a cascade CNN-based
method. At the same time, in order to reduce the overfitting
caused by insufficient training data, we trained two net-
works, respectively, to process the overall appearance of the

Table 1: Architecture of DenseU-Net, where Dense-1/32 represents
a Dense block structure, and its growth rate is 32.

Encoder Output size Skip
connection Decoder Output size

Input 256∧2×1 Conv6 256∧2×1
Dense-1/32 256∧2× 64 Res1 Conv5 256∧2× 2
Pooling 128∧2× 64 Up4 256∧2× 64
Dense-2/32 128∧2×128 Res2 Conv4 128∧2× 64
Pooling 64∧2×128 Up3 128∧2×128
Dense-2/64 64∧2× 256 Res3 Conv3 64∧2×128
Pooling 32∧2× 256 Up2 64∧2× 256
Dense-4/64 32∧2× 512 Res4 Conv2 32∧2× 256
Pooling 16∧2× 512 Up1 32∧2× 512
Dense-4/128 16∧2×1024 Conv1 16∧2× 512
Pooling indicates that the maximum pooling layer has a pooling window of
2∧2 and a step size of 2. Conv represents the convolutional layer. Up in-
dicates the upsampling layer. Res stands for Residual block.
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thyroid gland and the internal texture of the thyroid nodules.
To the best of our knowledge, although there have been
studies based on deep learning thyroid nodule detection,
ours is the first attempt to apply CNN to detection of benign
and malignant thyroid nodules in CT images. In this study,

DenseU-Net and CNN-F can automatically extract valid
features from contrast-enhanced CT images without making
any assumptions about the relevant visual features. Specif-
ically, CNN uses a well-trained convolution filter to extract
features of different edges, different shapes, and different

Figure 6: First row is the original enhanced CT image, the second row is the mask generated by U-Net, the third row is the mask generated
by DenseU-Net, and the fourth row is the ground truth. +e first three columns are benign thyroid nodules images, and the last three
columns are malignant thyroid nodules images.
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Figure 7: Dice coefficient of U-Net and DenseU-Net on the training set curve with the number of iterations. +e U-Net has a Dice
coefficient of 0.978 in the training set and a Dice coefficient of 0.945 in the validation set. +e Dice coefficient of DenseU-Net is 0.987 in the
training set and 0.955 in the validation set.
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multilevel textures and combine and normalize them to
identify the benign and malignant thyroid gland. At the
same time, by learning CT images with artifacts, CNN can
also deal with the common bad conditions in CT systems.

To evaluate the proposed DenseU-Net, a 5-fold cross
validation was performed in the experiment by using 500 CT
images and corresponding segmentation masks. Figure 7
shows that DenseU-Net is significantly better than the
original U-Net, both in terms of training speed and final
performance. +e Dice coefficient has increased from 0.945
to 0.955. Different from those studies [26, 27] that have
achieved great results by improving training and optimi-
zation methods, this work focused on the optimization of

network structure design. +e dense connection in DenseU-
Net accelerates the training speed and improves the seg-
mentation accuracy combined with the Residual block.
Figure 6 shows the effect of the U-Net and DenseU-Net
generating masks on CT images. +e results show that the
improved network in this paper performs better in thyroid
region edge processing than U-Net. Although U-Net
completes the task of the thyroid region segmentation well,
in some cases, the edge is incorrectly segmented and the
mask mistakenly appears inside the thyroid region.

To verify that the features extracted by CNN-1 are valid
and are mainly from the thyroid gland, we performed a
cover-contrast experiment. As can be seen in Figure 9, CNN-
1’s weights trained from the original CT image yielded an
accuracy of 85.28% on a validation set consisting of thyroid
region CT images, while CNN-1 performed poorly on the
dataset with the thyroid region removed, with an accuracy
rate of about 62.53%, close to random guess. +e perfor-
mance of the ROI validation set was not very good because
the segmented thyroid images lost most of the edge in-
formation that can provide some useful features for the
diagnosis of thyroid nodules. For example, whether the
thyroid edge is blurred is an important factor in benign and
malignant detection. Also, the validation set 1 loses the other
organ region outside the thyroid gland, which can help
CNN-1 predict correct results in some respects. +e final
accuracy of the validation set 2 (62.38%) is still higher than
50%, and the reason may be that the images in the validation
set 2 have the thyroid shape information and the other organ
region outside the thyroid gland. According to professional
doctors, some malignant nodules can cause the thyroid to
expand to several times the original size (as shown in
Figure 6), and this situation is less when the thyroid nodule is
benign. +erefore, the shape information of the thyroid is
one of the features learned by CNN-1, making the accuracy
of the validation set 2 higher than 50%. It can be seen that the

Training set

Validation set 1

Validation set 2

Figure 8: Dataset used in cover-contrast test.
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Figure 9: Accuracy of different datasets curve with the number of
iterations. In the last twenty rounds, the average accuracy of
validation set 1 was 85.10%, and the average accuracy of validation
set 2 was 62.38%.
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features extracted by CNN-1 after learning the original CT
image mainly come from the thyroid region and small part
features come from the other organ region outside the
thyroid gland and edge of the thyroid. +is can also be seen
in Table 3. +e accuracy of CNN-2 using ROI training data
was 93.14%, which is less than the accuracy of CNN-1 using
the original training data (94.98%). Although the segmented
thyroid CT image loses the edge and the other organ region
outside the thyroid gland information, it can make CNN-2
more focused on learning the internal texture features and
the appearance of the lesion.+erefore, the fusion of CNN-1
and CNN-2 combines the advantages of both to obtain better
detection results.

Finally, to verify that our proposed method can deal well
with the benign and malignant detection of thyroid nodules,

we compared our method with VGG-16, ResNet50, and
InceptionV3. +e results in Table 3 and Figure 10 show that
our cascade and fusion of multitask convolutional neural
networks is superior to other single network in detecting
thyroid nodules. In addition, although CNN-2 did not
perform as well as other methods, it was excellent in its
performance after being fused with CNN-1 because it fo-
cused more on the internal texture of the thyroid gland.

+is study did not determine the CNN hyperparameters
(such as number of layers and units and filter size) ana-
lytically, but mainly empirically. Our proposed DenseU-Net
does not effectively segment the thyroid ROI when the
background is complex and the lesion is integrated with the
surrounding tissue, as shown in Figure 11. Moreover CNN-F
cannot accurately judge CT images at the benign and

Table 2: Architecture of CNN-1 and CNN-2 in this study.

Layer Input size CNN-1 Input size CNN-2
Conv_1 256× 256×1 3× 3, 32 256× 256×1 3× 3, 32

Dense-block_1 256× 256× 32 1 ×

1 × 1, 128
3 × 3, 32
concatenate

⎧⎪⎨

⎪⎩

256× 256× 32 1 ×

1 × 1, 128
3 × 3, 32
concatenate

⎧⎪⎨

⎪⎩

Max-pooling_1 256× 256× 64 2× 2, stride 2 256× 256× 64 2× 2, stride 2

Dense-block_2 128×128× 64 2 ×

1 × 1, 128
3 × 3, 32
concatenate

⎧⎪⎨

⎪⎩

128×128× 64 2 ×

1 × 1, 128
3 × 3, 32
concatenate

⎧⎪⎨

⎪⎩

Max-pooling_2 128×128×128 2× 2, stride 2 128×128×128 2× 2, stride 2

Dense-block_3 64× 64×128 4 ×

1 × 1, 128
3 × 3, 32
concatenate

⎧⎪⎨

⎪⎩

64× 64×128 4 ×

1 × 1, 128
3 × 3, 32
concatenate

⎧⎪⎨

⎪⎩

Max-pooling_3 64× 64× 256 2× 2, stride 2 64× 64× 256 2× 2, stride 2

Dense-block_4 32× 32× 256 8 ×

1 × 1, 128
3 × 3, 32
concatenate

⎧⎪⎨

⎪⎩

32× 32× 256 4 ×

1 × 1, 128
3 × 3, 32
concatenate

⎧⎪⎨

⎪⎩

Max-pooling_4 32× 32× 512 2× 2, stride 2 32× 32× 384 2× 2, stride 2

Dense-block_5 16×16× 512 16 ×

1 × 1, 128
3 × 3, 32
concatenate

⎧⎪⎨

⎪⎩

16×16× 384 4 ×

1 × 1, 128
3 × 3, 32
concatenate

⎧⎪⎨

⎪⎩

Average-pooling 16×16×1024 16×16 16×16× 512 16×16
Fully connected layer 1024 2 512 2
Output 2 2
Here, “conv” denotes convolutional layer. Number formats of CNN-1 and CNN-2 are all: convolution kernel size, number of convolution kernels.

Table 3: Performance comparison of different methods (percent).

Method Accuracy Recall Precision Specificity F1 score AUC CI
CNN-F 95.73 87.14 98.10 99.30 92.30 98.49 (0.0029) [97.91 99.06]
CNN-1 94.98 88.66 93.91 97.61 91.21 97.83 (0.0033) [97.18 98.49]
CNN-2 93.14 84.10 91.87 96.90 87.81 95.63 (0.0052) [94.60 96.66]
ResNet50 93.28 82.20 94.17 97.89 87.78 97.41 (0.003) [97.26 98.28]
InceptionV3 93.78 87.29 91.15 96.48 89.18 97.31 (0.0054) [96.85 98.46]
VGG-16 92.79 83.90 90.83 96.48 87.22 96.82 (0.0046) [96.33 97.31]
Peng et al. [11] 88.80 82.10 91.70 93.30 — 95.30 —
Liu et al. [12] 86.73 91.30 82.35 82.96 — 91.05 —
Number format of AUC: mean (standard deviation).
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Figure 11: Some ROI examples that are not accurately segmented.
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Figure 10: ROC curves for the different models used in this study.
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malignant junctions.+erefore, in the future, after obtaining
more data, further research on higher performance levels is
needed.

5. Conclusion

+e method of detecting benign and malignant thyroid
nodules based on contrast-enhanced CT images plays an
important role in assisting doctors in making accurate and
correct diagnoses. To solve the problem of benign and
malignant identification of thyroid CT images, this paper
proposes a method of using the DenseU-Net network for
automatic segmentation and then using CNN-F which
combines two deep neural network structures and feature
selection to perform benign and malignant nodule de-
tection. +e DenseU-Net based on U-Net is improved in
this paper and is superior to the original network in all
aspects. +e addition of the Dense block reduces the overall
parameter of the network and reduces the overfitting
phenomenon to some extent. At the same time, due to the
mechanism of Dense Connection, the descending gradient
can be effectively transmitted to the deep network layer
during the training process so that the convergence speed is
better than the original network. In the end, DenseU-Net is
able to complete the thyroid region segmentation task. In
the task of judging benign and malignant thyroid nodules,
this paper proposes a CNN-based detection method, which
is composed of two separately trained CNNs, CNN-1 and
CNN-2. By letting CNN-1 train on the original CT image
and letting CNN-2 learn on the segmented thyroid CT
image, CNN-F, which combines the advantages of both,
can make better judgments on benign andmalignant nodules
from multiple feature levels. +e results show that the CNN-
based method can solve the problem of benign and malignant
detection of thyroid nodules and proves its potential clinical
application. +is research method can provide doctors with
an objective second opinion to reducemisdiagnoses caused by
excessive fatigue. We recognize that our datasets are not
sufficient to learn advanced features and achieve greater
accuracy through deep CNN. +erefore, in future research, it
is necessary to further test the actual performance level and
robustness of the scheme. In addition, we will explore other
CNN-basedmodels for more accurate automated detection of
thyroid nodules.
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