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Abstract: Spider silk is one of the hottest biomaterials researched currently, due to its excellent
mechanical properties. This work reports a novel humidity sensing platform based on a spider
silk-modified quartz tuning fork (SSM-QTF). Since spider silk is a kind of natural moisture-sensitive
material, it does not demand additional sensitization. Quartz-enhanced conductance spectroscopy
(QECS) was combined with the SSM-QTF to access humidity sensing sensitively. The results indicate
that the resonance frequency of the SSM-QTF decreased monotonously with the ambient humidity.
The detection sensitivity of the proposed SSM-QTF sensor was 12.7 ppm at 1 min. The SSM-QTF
sensor showed good linearity of ~0.99. Using this sensor, we successfully measured the humidity
of disposable medical masks for different periods of wearing time. The results showed that even a
20 min wearing time can lead to a >70% humidity in the mask enclosed space. It is suggested that a
disposable medical mask should be changed <2 h.

Keywords: quartz tuning fork; quartz-enhanced photoacoustic spectroscopy; humidity sensor

1. Introduction

Spider silk is well known for its outstanding mechanical properties. One of them
is that spider silk is particularly sensitive to water [1]. When wetted or saturated in a
high relative humidity (RH) atmosphere, spider silk ‘supercontracts’—unrestrained silk
will shrink as much as 50% in length. The restrained silk generates stresses in excess
of 50 MPa, which was discovered by Bell et al. and Guinea et al. [2,3]. The powerful
water-collecting ability of spider silk is attributed to a unique fibrous structure consisting
of periodic spindles and joints. The joints are composed of randomly scrambled, but neatly
arranged nanofibers [4,5]. When the spider silk transitions from dry to wet conditions,
the structure of spider silk will change to a joint to store water [6]. Water infiltrates the
silk, disrupting the hydrogen bonding within the amorphous region of the proteins, which
increases the molecular mobility to rearrange configurations [7–10]. This rearrangement
results in the phenomenon of supercontraction that will change the modulus of the spider
silk [11,12]. The spider silks are widely used in optical systems [13], the synthesis of new
materials [14,15], biomedical applications [16–21] and tensile mechanics [22–26]. Spider silk
also exhibits powerful cyclic contractions, which can be reversible and have reproducible
use [9,27].

Quartz tuning forks (QTFs) have been traditionally used as a timing reference in
wristwatches. The QTF is a bimorph cantilever based on the piezoelectric properties of the
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quartz [28]. The sensor consists of two prongs attached to a base, which is normally clamped
to a holder. In order to make the mechanical movement of the fork tip work, an electrical
field needs to be applied to the tuning fork tips, which is achieved by electroplating
electrodes on the surface of the quartz [29]. Common materials attached to the QTF
to improve the sensitivity include polystyrene (PS) nanofilm, polymethylmethacrylate
(PMMA) nanowire, electrospun nanoporous wire, and a hydrogel conical tip, etc. [30–34].
The QTF’s remarkable advantages attract the attention of researchers, including its stable
oscillation frequency, high quality factor, low power consumption, concise structure, and
resistance to surrounding electromagnetic interference [35,36]. QTFs can be used in a wide
temperature range from −40 ◦C to 85 ◦C and in an ultrahigh humidity environment [37].
Until now, QTFs have been used for micro force sensing, electric field intensity distribution
detecting, charge distribution measurement, trace gas detection, polymer mechanical
analysis, chemical/physical analysis and biosensing applications etc. [38–48]. A QTF
sensor can be used for quantitative measurement of biomolecular interactions [49] or be
used as an immunosensor for phenylketonuria diagnosis [50].

In this work, a sensitive and cost-effective humidity sensor was developed by using
quartz-enhanced conductance spectroscopy (QECS) [51]. Compared with the spider silks as
optical fibers for sensing applications, the QECS does not need to use optical instruments
such as an optical spectrum analyzer for detection [25,26,52–55]. There is no requirement
on the optical transmission of spider silk. The QECS has a quite remarkable advantage
in self-sensing, since the results can be directly read out by means of electrical conduc-
tance spectroscopy and processed by a computer [51]. Compared to cantilevers or string
resonators, there are no optics required for the QECS. Therefore, it will not introduce the
thermoelastic noise and additional noise caused by the instability of the laser [56–59]. Due
to the supercontraction ability of spider silk, the QTF was modified by natural spider silks
to improve its humidity transducing ability. The developed humidity sensor was evaluated
in different humid conditions, achieving a sensitivity of 12.7 ppm at 1 min. As proof of
concept, the SSM-QTF sensor was used to measure the air humidity inside a medical mask
to provide suggestions for mask wearing tips.

2. Experimental Setup for the Humidity Sensing System

QTFs were purchased from the Shenzhen XinChuangYue Electronic components
Factory, with a resonance frequency of ~32.7 kHz and a Q factor of >60,000 in a sealed
vacuum metallic package and ~10,000 in the air after removal of the metallic housing. The
geometrical parameters were measured by an optical stereomicroscope. The prong length,
prong width, and prong spacing of a QTF were 3.8 mm, 0.6 mm, and 0.3 mm, respectively.
The effective spring constant of the QTF is ~20 kPa [48]. The effective elastic modulus of wet
spider silk is ~17 GPa [60]. The detailed analysis of the structure and chemistry of spider
silk can be found in references [61,62]. To attach spider silk onto a QTF, the metallic housing
of a 3 × 8 mm QTF crystal was removed with two parallel prongs exposed. We obtained
the spider silk from a Pterinochilus Murinus spider, which was fed in the laboratory. The
spider silk was selected from the ampullate silk glands of a Pterinochilus Murinus spider.
The spider silks are composed of tubiliform fibers, which are more sensitive to ambient
humidity [47]. Without any sample pretreatment, the spider silk was bridged across the
prongs of a QTF, forming a spider silk-modified QTF (SSM-QTF), as shown in Figure 1. A
small amount of epoxy resin glue was used to glue the spider silk across the QTF prongs.
The whole process was monitored by means of an optical microscope. The diameter of the
microwire across the QTF prongs in Figure 1 was measured to be ~6µm. Photographs of
an SSM-QTF were taken with a Zeiss optical microscope.



Molecules 2022, 27, 4320 3 of 11Molecules 2022, 27, x FOR PEER REVIEW 3 of 11 
 

 

 
Figure 1. Photographs of an SSM-QTF taken with a Zeiss optical microscope. (b) is the enlarged 
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ard cubic centimeters per minute (SCCM) by the mass flow controller (Alicat, Tucson, AZ, 
USA) to avoid gas flow noise. A pressure controller, pump, and valves were used to keep 
the pressure constant. The humidity in the chamber was controlled by a humidifier 
(Perma Pure, Lakewood, NJ, USA). In the gas stream, a commercial humidity sensor 
(Benetech GM1363B, Shenzhen, China) was also included for reference. The function gen-
erator (Tektronix AFG3102, Beverton, Oregon, USA) was used to produce sine waves with 
frequencies ranging from 32,500 Hz to 32,560 Hz with a fixed peak-to-peak amplitude of 
400 mV. The SSM-QTF output electrical signals passed to a custom-made transimpedance 
preamplifier with a feedback resistance of 10 MΩ and were finally demodulated by a lock-
in amplifier (SR830, Sunnyvale, CA, USA). The filter slope and time constant of the lock-
in amplifier were set to 12 dB/Oct and 1 s, respectively. The demodulated signal was used 
to analyze the resonance QTF frequency, which varies with humidity. All experiments in 
this work were carried out at room temperature and atmospheric pressure. A LabVIEW 
program (Community Edition, National Instrument, Austin, TX, USA) was used to con-
trol the system, and all the measurements were performed automatically. 

 
Figure 2. Experimental setup for humidity sensing. SSM-QTF: spider silk-modified QTF; TA: tran-
simpedance amplifier; PC: personal computer; Lock-in: lock-in amplifier, MFC: mass flow control-
ler. 

The resonance frequency f of the QTF can be expressed as [44,51]: 
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Figure 1. Photographs of an SSM-QTF taken with a Zeiss optical microscope. (b) is the enlarged view
of (a).

To evaluate the humidity sensing performance of the SSM-QTF, we employed the ex-
perimental setup shown in Figure 2. The gas flow rate in the system was set to 20 standard
cubic centimeters per minute (SCCM) by the mass flow controller (Alicat, Tucson, AZ, USA)
to avoid gas flow noise. A pressure controller, pump, and valves were used to keep the
pressure constant. The humidity in the chamber was controlled by a humidifier (Perma
Pure, Lakewood, NJ, USA). In the gas stream, a commercial humidity sensor (Benetech
GM1363B, Shenzhen, China) was also included for reference. The function generator (Tek-
tronix AFG3102, Beverton, Oregon, USA) was used to produce sine waves with frequencies
ranging from 32,500 Hz to 32,560 Hz with a fixed peak-to-peak amplitude of 400 mV. The
SSM-QTF output electrical signals passed to a custom-made transimpedance preamplifier
with a feedback resistance of 10 MΩ and were finally demodulated by a lock-in amplifier
(SR830, Sunnyvale, CA, USA). The filter slope and time constant of the lock-in amplifier
were set to 12 dB/Oct and 1 s, respectively. The demodulated signal was used to analyze
the resonance QTF frequency, which varies with humidity. All experiments in this work
were carried out at room temperature and atmospheric pressure. A LabVIEW program
(Community Edition, National Instrument, Austin, TX, USA) was used to control the
system, and all the measurements were performed automatically.
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Figure 2. Experimental setup for humidity sensing. SSM-QTF: spider silk-modified QTF; TA: tran-
simpedance amplifier; PC: personal computer; Lock-in: lock-in amplifier, MFC: mass flow controller.

The resonance frequency f of the QTF can be expressed as [44,51]:

fQTF =
1

2π
×

√
kQTF

mQTF
, kQTF = EQTF

wt3

4l3 (1)

where the kQTF, mQTF, and EQTF are the spring constant, effective mass, and Young’s
modulus, respectively. The t, l, and w are the QTF prong thickness, QTF prong length,
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and QTF prong width, respectively. We considered that the mass of the spider silk was
negligible, i.e., dmQTF � mQTF. The resonance frequency shift, after modification by the
spider silk, can be expressed as:

d fQTF =
fQTF

2
dkQTF

kQTF
(2)

The resonance frequency shift can be attributed to the dkQTF value, which results from
the spider silk spring constant ksilk. Due to the fact that the QTF and the spider silk were
connected in parallel, the effective spring constant keff of the SSM-QTF can be expressed as:

Ee f f ∝ ke f f = kQTF + ksilk (3)

The electrical parameters of the SSM-QTF were measured by the abovementioned
system in Figure 2, which is the same system as described in our previous publication [63].
The output of the conductance spectra was 1 spectrum/min, which was limited by the
frequency scanning rate. The resonance frequency and Q factor of the SSM-QTF were
calculated from a Lorenz curve fitting to the square of the amplitude associated with the
conductance spectra [64].

3. Characterization of the Spider Silk-Modified Quartz Tuning Fork

A bare QTF without modification was also evaluated, under the same experimental
conditions. The frequencies of the sine signals were scanned from 32,500 Hz to 32,560 Hz
and from 32,725 Hz to 32,805 Hz with a step of 0.3 Hz for SSM-QTF and standard QTF,
respectively. The resonance curves of the bare QTF and SSM-QTF are shown in Figure 3. In
this work, we normalized the amplitude and focused on the frequency shift in the experi-
ment. In the normalization, the amplitude of the highest signal was set as 1. Compared
with a bare QTF, the resonance frequency peak of the SSM-QTF decreased from 32,764.9 Hz
to 32,527.6 Hz, yielding a frequency shift of ∆f = 241.3 Hz. This can be attributed to the
mass increase caused by the spider silk and the glue.
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Figure 3. Conductance spectrum of a bare QTF without modification (red rounds) and after (black
squares) modification by the spider silk.

4. Spider Silk-Based Tuning Fork for Humidity Sensing

Figure 4a shows the conductance spectra changed in the SSM-QTF with humidity. The
Lorentz function was used to fit the resonance curve to obtain the QTF resonance frequency
and Q factor. As shown in Figure 4b, the resonance frequency decreased monotonically
from 32 541.80 Hz at ~25% RH to 32 514.85 Hz at ~80% RH, with a ∆f = 25.95 Hz. This can
be attributed to the modulus of spider silk being inversely proportional to the humidity;
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the effective modulus of the SSM-QTF decreased with the increase in the humidity [6].
The curve of Figure 4b was fitted using linear functions. An R square value of 0.99 was
obtained. We also measured the frequency response of a bare QTF without the spider silk
modification. No significant change was observed. The results are shown in the inset of
Figure 4b, indicating that the large frequency shift ∆f was caused by the spider silk, not the
QTF itself.
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Figure 4. (a) Resonance curves of the SSM-QTF at different humidities. (b) Frequency variations of
an SSM-QTF as a function of humidity. The figure inset shows the resonance frequency variations of
a bare QTF. (c) Q factor variations of an SSM-QTF as a function of humidity. The figure inset shows
the resonance frequency variations of a bare QTF.

Figure 4c shows the Q factors of the SSM-QTF with different humidities. As the
humidity increased, the spider silk absorbs water molecules, increasing the additional mass
attached to the QTF. In addition, as the humidity increased, the damping effect by the water
absorption into spider silk increased; thus, the quality factor of the SSM-QTF decreased [65].
As a result, with the relative humidity increases from ~25% RH to ~80% RH, the Q factor
decreased from 5253 to 2790, by >2400. For comparison, the Q factor change of a bare QTF
without spider silk modification was <200, shown in the inset of Figure 4c. The quality
factor of SSM-QTF decreased monotonically but nonlinearly. Therefore, in this work, we
used the frequency as the function of humidity to develop the sensor. Since the resonance
frequencies and quality factors were obtained after the QTF reaches a saturated steady
state, no estimation was necessary for the saturation of the SSM-QTF surface. This implies
that the effect of water adsorption in the modified spider silk area dominates that in the
quartz surface.

The relative humidity (RH) was converted into absolute humidity by the Vaisala
humidity calculator. With an absolute humidity change from 8042 ppm to 24,056 ppm,
the detection sensitivity of the SSM-QTF was calculated to be ~12.7 ppm. This humidity
dynamic range was limited by our gas stream system, which can be improved by a better
humidifier. The comparison of the SSM-QTF with current technology such as optical fibers,
cantilever, and string resonators are summarized in Table 1. Although the sensitivity of the
SSM-QTF sensor was not the highest, there are no optics required in the developed sensor.
Compared to current technologies, this work is cost-effective with a high performance.
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Table 1. Comparison of the SSM-QTF with optical fibers, cantilever, and string resonators.

Configuration Sensitivity Optics

optical fiber [12] 532 ppm/%RH super-continuum laser
cantilever [26] 924 ppm/%RH laser doppler vibrometer

string resonator [56] 2950 ppm/%RH laser doppler vibrometer
SSM-QTF sensor 617 ppm/%RH none

5. Stability of Spider Silk-Modified QTF Sensor

The resonance frequency of the SSM-QTF was measured with a fixed relative humidity.
The humidity in the gas chamber was well controlled by using a mass flow controller
(Alicat Tucson, AZ, USA) with a relatively low flow rate but higher resolution. With a
relative humidity of 20 ± 0.1% RH, a resonance frequency of 32,542.88 Hz was obtained.
Since the relative humidity is sensitive to temperature, the ambient temperature condition
has to be properly maintained throughout the experiment. For the tested humidity range,
the temperature in the humidity chamber has been monitored to be ~24 ◦C. It can be seen
from Figure 5 that the SSM-QTF sensor has good stability over long-term running. Allan
deviation was performed to evaluate the long-term stability of the developed sensor. The
minimum deviation of the SSM-QTF resonance frequency was found to be 1.316 × 10−3 Hz
at the optimum time of ∼30 min. With the optimal integration time, the detection sensitivity
can be improved to ~0.8 ppm.
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6. Humidity Evaluation of Medical Masks

The COVID-19 pandemic has forced the global population to adopt new ways of
living, including the possible use of masks. Research has been conducted to evaluate the
potential consequences of wearing masks for long periods [66,67]. Among various research,
the high humidity in the mask for a long wearing time can lead to excessive moisture to
the skin, disrupting the skin barrier and causing sensitive skin [68,69]. Part of the moisture
is the condensation of the breathed air. The other part is the sweat that does not evaporate
as quickly. If the skin is exposed to moisture for a long time, the barrier of our keratin
will be undermined [70]. When the skin barrier is broken, the ability to prevent the loss of
water in the skin and the ability to block external stimuli are reduced. [71]. Furthermore,
wearing a mask for a long time will cause high humidity in the air inside the mask, which
will easily cause the breeding of various pathogenic bacteria and increase the risk of skin
diseases [72,73]. For some patients with seborrheic dermatitis, Malassezia can multiply on
the skin surface when wearing a medical mask for a long time [74].

In the measurement, the humidity inside a disposable medical mask made of polypropy-
lene was evaluated. The disposable medical masks were worn by the author Leqing Lin for
different periods; then, they were taken off quickly to cover the SSM-QTF sensor in a sealed
space. The humidity of the covered air inside the medical mask was then measured. For each
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measurement, the medical mask was replaced by a new one. The time clock was restarted.
Except for the wearing time, all the other conditions were the same in the repeated ex-
periments. The enclosed spaces were set up to prevent humidity interference from the
outside atmosphere. Resonance frequencies of the different wearing time of the masks
were recorded by a LabVIEW program. The obtained results were shown in Figure 6. Even
a 20 min wearing time resulted in an air humidity >70% RH in the mask covered space.
The longer the mask was worn, the greater the humidity in the mask. With a 150 min
wearing time, the estimated humidity reached >78%. In fact, the humidity measured in the
mask covered space was lower than the actual humidity surrounding the human mouth.
In consequence, disposable medical masks are not suitable for prolonged wearing. It is
suggested to change the mask within 2 h, when the relative humidity on the surface of the
mask is more than 75%. For professional masks, such as the KN95 medical masks, the case
was estimated to be worse due to their better “protection”.
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7. Conclusions

This work featured a novel humidity sensing platform based on a quartz tuning fork
(QTF) with a section of natural spider silk. The experimental results showed that the higher
the environmental humidity, the lower the resonance frequency of the spider silk-modified
QTF. The variation of the resonance frequency of the QTF modified by spider silk was
closely correlated with the change in the environmental humidity. The evaluation was
conducted in relative humidity from ~25% RH to ~80% RH. The resonance curves were
recorded to obtain the SSM-QTF frequency variations by Lorentz fitting. With a 1 min
working time, the detection sensitivity of ~12.7 ppm was obtained.

As proof of concept, the humidities of disposable medical masks, worn for different
periods, were evaluated. The results suggested that the masks should be changed every 2 h
due to excessive humidity, which may cause potential facial skin discomfort. Currently, the
acquisition time for the resonance frequency and Q factor requires ~1 min. This time can
be shortened by narrowing the frequency scanning time and range. Allan deviation was
measured over a long time with a fixed humidity. With 30 points of integration, the detection
sensitivity can be improved to ~0.8 ppm. Future work will include the development of a
wearable respiration sensor to measure the humidity inside a medical mask. Compared
to the current electrochemistry sensor [75,76], the SSM-QTF sensor has the advantage of
being cost-effective and environmentally friendly. In addition, temperature effects will be
researched. The temperature and humidity may be monitored simultaneously with the
help of a machine learning method.
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