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Abstract

Zebrafish (Danio rerio) share a considerable amount of biological similarity with mammals,

including identical or homologous gene expression pathways, neurotransmitters, hormones,

and cellular receptors. Zebrafish also display complex social behaviors like shoaling and

schooling, making them an attractive model for investigating normal social behavior as well

as exploring impaired social function conditions such as autism spectrum disorders. Newly-

formed and established shoals exhibit distinct behavior patterns and inter-member interac-

tions that can convey the group’s social stability. We used a three-chamber open-swim pref-

erence test to determine whether individual zebrafish show a preference for an established

shoal over a newly-formed shoal. Results indicated that both sexes maintained greater prox-

imity to arena zones nearest to the established shoal stimulus. In addition, we report the

novel application of Shannon entropy to discover sex differences in systematicity of

responses not revealed by unit-based measurements; male subjects spent more time inves-

tigating between the two shoals than female subjects. This novel technique using estab-

lished versus newly-formed shoals can be used in future studies testing transgenics and

pharmacological treatments that mimic autism spectrum disorder and other disorders that

affect social interaction.

Introduction

Zebrafish share many relevant genes with mammals, promoting the species as a useful model

for neuroscience, biomedical and human behavioral disorder research [1, 2]. Zebrafish have

been used as an animal model for disorders of the nervous system including anxiety [1, 3],

addiction [4], epilepsy [5], and several neurodegenerative diseases [6, 7]. Zebrafish also dem-

onstrate sociability and many aspects of grouping behaviors [8–10] and are therefore a viable

model for investigating social behavior as well.

Zebrafish display a strong preference towards joining a shoal with live conspecifics versus

remaining socially isolated [11–14]. Group living enhances survival through multiple anti-
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predatory defense mechanisms. Due to the many eyes hypothesis, the predation risk of shoal-

ing can be minimized by the benefits of aggregation, as a large group is better equipped than

an isolated animal to detect predation compared [15, 16]. Heightened shoaling behavior could

also be an indicator of positive affect as it can be spontaneous and involves fewer antagonistic

interactions [17]. However, group living can also provide adverse circumstances, as parasites

are more easily spread in large groups, and large groups can be more prone to targeting by

predators [18]. In addition, intra-group competition for food and resource limitation grows as

shelter size increases [19]. It is necessary to determine affinity for specific shoal characteristics

to completely understand the nuances of this complex behavior and apply it to human disease

models.

While many studies have addressed zebrafish preference based on visual characteristics

such as fish size [20], shoal size, male-to-female ratio, stripe pattern, etc. [21], less data exists

regarding the role of intragroup familiarity in zebrafish social preference. Our results indicate

that a single test subject can differentiate between an established shoal and a newly-formed

shoal, and both male and female subjects prefer to spend more time in proximity with the

established shoal. Female test fish explore more within the vertical column nearest the estab-

lished shoal while male test fish make more cross-tank transitions.

Zebrafish exhibit preferences in social choice

Previous studies indicate characteristics driving fish shoal preference such as shoal size [22],

shape [23], and parasite load [24]. Visual cues specific to individual fish within shoals is also an

important determinant of shoaling behavior. Zebrafish are able to identify phenotypic differ-

ences in stripe pattern and exhibit shoaling preference dependent on early exposure to specific

patterns that do not depend on their own phenotype [25, 26]. European minnows prefer to

interact with shoals that are known to them [27] even if the familiar shoal is the smaller shoal;

however, no research has presented subjects with a choice between novel shoals that have dif-

ferent levels of inter-member familiarity. Social preferences based on visual cues suggest that

shoal features may also influence preference of a lone fish [28].

Sex differences for shoaling preference. Certain aspects of shoaling behavior differ

between males and females [29]. Interestingly, male zebrafish display bolder responses than

females in both the open-field test and the novel object test [30], and male zebrafish are more

exploratory of novel environments than females [31]. Shoal sex and size represent two qualities

that may influence the affinity a subject has for a particular shoal. Previous studies have sup-

ported the presence of sex differences in zebrafish involving choice between joining a shoal or

remaining segregated [32]. In one study, a single subject chose to spend time in proximity

with a singular same-sex fish than with a conspecific of the opposite sex [13, 33]. However,

another study that observed subject partiality between shoals demonstrated that males pre-

ferred to shoal with females, though females demonstrated no clear preference to shoal with

one sex over the other [13]. Though male zebrafish have demonstrated a lack of significant

preference for a particular shoal size, females display a clear preference for larger shoals com-

pared to smaller ones [12, 13]. Because females may seek shoaling for protection purposes, pri-

oritizing shoal size over shoal sex is anticipated in female shoaling behavior; larger shoals

provide greater protection from predators through enhancing the confusion effect [22, 32] and

increasing the dilution effect [33, 34], thus affording greater protection for each member of the

shoal [12]. Previous research indicates that predation risk is a likely reason for female sexual

segregation [31]. The dynamics and safety of shoal stability may also impact a female’s shoal

preference when shoal size is modulated [12]. However, both male and female zebrafish prefer

to affiliate with shoals rather than remain socially isolated, emphasizing innate social
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tendencies commonly observed among the species [12, 13]. Because both females and males

show preferences for different shoal characteristics such as size and collective group shape,

additional factors likely influence zebrafish shoaling behavior; other criteria may include para-

sitism [35], distance from predators [36], and presence of poor competitors [37].

Novel vs. established shoals. A newly formed shoal generates immediate competition

between members, resulting in the formation of dominant and subordinate roles within the

shoal [38]. A previous study examined the activity of both dominant and subordinate male

zebrafish immediately after grouping and again after five days of acclimation to conspecifics.

Behavioral observations on the fifth day suggest that the formation of a stable social hierarchy

occurs within the first five days following initial group formation [39]. These visible alterations

in behavioral tendencies after shoal formation suggest that an established shoal may appear as

a less threatening environment, while a newly-formed shoal may present as a more harmful

environment due to the lack of established hierarchical roles. In addition to known sexually

dimorphic behavioral characteristics in zebrafish [40, 41], dominance and aggression behavior

patterns within shoals might differ between males and females. For instance, dominant males

are more aggressive with their submissive conspecifics than dominant females [42], and males

demonstrate stronger lateralization during aggressive responding than females [43].

Behavioral markers of previously established shoals have been observed and characterized.

The Trinidadian guppy (Poecilia reticulata) and fathead minnow (Pimephales promelas)
exhibit shoaling behaviors similar to those displayed by zebrafish and are also used as models

for sociality and social behavior [44, 45]. Findings from investigations on Trinidadian guppy

shoal fusion indicate a gradual decrease in the mean difference in shoal member size after two

shoals were introduced. Nearly all previously established shoals reformed new groups due to

fish size preference [46]; the shoal fusion that took place illustrates the capacity of fish to

choose a shoal based on member characteristics. Previous explorations of fathead minnows

have revealed variations in behavioral responses under conditions that are indicative of a pred-

atory threat [47]. Through observing behaviors of familiarity, or lack thereof, one can deter-

mine whether a newly-formed or established shoal is more stable when presented with a

potential predator. Established shoals with intergroup familiarity demonstrated more tight

shoaling behavior, less freezing, and more dashing behavior. Additionally, these members per-

formed more inspection visits compared to subjects in the newly-formed shoal [47]. These

findings support the notion that a previously established shoal provides heightened security

during potential threats of predation. Based on the increased likelihood of survival, it is possi-

ble that zebrafish and minnows may choose to join a shoal that presents as established. In addi-

tion, previous research suggests that intragroup familiarity is accompanied by more efficient

communication between members, providing a less dangerous social living space [48, 49].

Shoal cohesion is characterized by interactions between conspecifics in response to their

changing environment [50]; therefore, observing intermember communications may help

determine the capacity for different shoals to attract isolated fish. Recently, investigators exam-

ined the preference of both male and female wildtype zebrafish upon providing subjects with

the choice between a familiar fish and a novel fish. Both male and female subjects exhibited a

preference for a novel conspecific rather than a familiar one [11]. The implications from this

study strengthen the conjecture that zebrafish possess social memory. It is therefore likely that

swimming pattern and tank localization can serve as dependent variables to identify affinity

toward shoals of varying levels of establishment.

We suggest that, in conjunction with the ability to differentiate between shoals, zebrafish

are capable of detecting the degree of polarization of a particular shoal by observing swimming

patterns of the shoal members. Previous investigations have observed longitudinal patterns of

shoaling and schooling of zebrafish to identify characteristic differences of the two behaviors
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[51]. Polarization represents the tendency of a group to swim in the same direction. Based on

differential characteristic swimming patterns, shoals are seen as a low-polarized group, while a

school is considered a high-polarized group [16, 52]. When relative location and average

movement velocity of subjects were analyzed over a five-day period, polarization decreased

after this interval, possibly due to a higher level of perceived comfort or safety [53]. These find-

ings raise the question of whether acclimatizing to an established shoal appears more attractive

to a single test fish rather than acclimatizing to a newly formed, and possibly more polarized,

shoal. Namely, will a new zebrafish “fit in” better with an established shoal because it is seeking

comfort and safety?

Prior research has not only considered the innate social tendency of zebrafish to shoal [29]

but has also investigated numerous aspects of zebrafish behavior within a shoal [47, 52, 54].

Nonetheless, few studies have examined the role of cohesion and shoal stability in determining

preferences between shoals. Further, though some studies support the conjecture that zebrafish

exhibit evidence of social memory [11, 55], it is still unknown whether a lone fish can perceive

the visual differences of a newly-formed versus an established shoal, and how those differences

might affect social choice. Prior research in our lab demonstrated the experimental efficacy of

a novel open-swim paradigm for studying zebrafish social preference [56]. We used the open-

swim task to test zebrafish preference for an established shoal over a newly-formed shoal. The

test fish was placed in the center compartment of a three-chamber tank system while both an

established and a newly-formed shoal were each displayed in the two flanking tanks. Given the

reduced aggression and increased cohesion found in established shoals, both male and female

zebrafish subjects demonstrated proximal preference for an established shoal over a newly-

forming shoal. Furthermore, notable sex differences were demonstrated with female zebrafish

showing stronger preference for established shoals over newly-formed shoals while also dis-

playing lower behavioral entropy than male zebrafish. The results from the current study

expand the present knowledge on shoaling preference and can be used in future studies of

social preference in wild-type as well as transgenic lines of zebrafish.

Method

Subjects

The experimental subjects (N = 82) were healthy mature male (n = 45) and female (n = 37)

wild-type zebrafish (EKK strain) of approximately 6–12 months of age and 2.5–6.4 cm in

length. Experimental subjects as well as the fish used as stimuli were obtained from Aquatica

Tropicals, Inc. (Ruskin, Florida, USA). Velkey et al [56] used a total of 78 subjects (males and

females with no tests for sex differences) in conditions testing a live-shoal stimulus (vs. either a

video stimulus or a mobile-model stimulus) in their study which revealed significant prefer-

ences for live-shoal stimuli. As such, a similar sample size was used for the current study. All

care and treatment of subjects in the present study were consistent with the recommendations

in the Guide for the Care and use of Laboratory Animals [57]. The research was conducted

under an existing protocol (#2019–8) reviewed and approved by the Christopher Newport

University Institutional Animal Care & Use Committee.

Materials, apparatus, and procedure

Subjects were sexed and housed in eight separate holding tanks (20.3 x 30.5 x 50.8 cm), each

holding 37.8 liters (10 gal) of conditioned water maintained at a temperature of 28.5˚ C. Visual

barriers were placed between holding tanks to avoid further familiarity. Four groups of males

and four groups of females were housed in the eight holding tanks so that each tank consisted

of an equal number of fish. The maximum fish density in the holding tanks was approximately
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1.5 fish per gallon. The water had constant filtration and aeration systems, and all fish were

housed under a 14-hour light/10-hour dark cycle. Fish were fed daily using the Aquaneering

Scientific Hatcheries Diet for Danio rerio. Fifty percent water changes were performed weekly

for all housing and experimental tanks. The present study used newly-formed and established

shoals as stimuli. Novel shoals were grouped in the morning and used the same day of experi-

mentation as a stimulus; to ensure the demonstration of behaviors that characterize a shoal as

novel, each shoal member was randomly selected from one of the four separate holding tanks.

Shoals were held for seven days in groups of four fish in order to establish intra-shoal familiar-

ity [58], and these shoals were subsequently used as the established shoal stimulus.

The objective of the present study was to determine the behavioral responses of test subjects

when they were presented with different shoaling stimuli. Experimental subjects were selected

for each trial and performed an open-tank, free swim task [11, 56]. The testing tank (20.3 x

25.4x 40.6 cm) was one 20.8liter (5.5 gal.) tank positioned between two stimulus tanks of the

same size (Fig 1). Rosco brand Linear Polarizing Filter Sheets (#7300) were obtained from B &

H Photo and Video (New York, NY) and were placed on the outer surface of the center tank

between the side tanks. One of the filters had the grid oriented horizontally and the other grid

was vertically oriented. With the filters in place, the stimulus fish of the tank on one end were

unable to see the stimulus fish on the opposite end, but the subject in the center tank was able

to see the stimuli in each of the flanking tanks. The two stimulus shoals each contained four

zebrafish, all of the same sex as the test subject, but each fish was taken from a different home

tank. A novel shoal was formed using one fish from each of the four same-sex holding tanks.

In seven days, that same shoal was considered established and reused in trials as an established

stimulus shoal. After an established shoal was used in one trial, it was added to a tank for later

use so that each of the fish could be individually utilized as a subject. For each stimulus pairing,

the position of each stimulus type was counterbalanced such that an equivalent number of tri-

als were run with each stimulus on the left side as the number of trials with each stimulus on

the right side. The two stimuli in each flanking compartment consisted of a same-sex newly-

formed shoal on one side and a same-sex established shoal on the opposite side.

Behavior tracking and analysis was conducted using EthoVision XT 15.0. Acquisition of

tracks of the test subject via EthoVision XT 15.0 initiated after a 3-minute habituation period.

Prior to and during the habituation period, the lateral sides and rearmost wall of the experi-

mental tank were opaque in order to reduce the influence of the surrounding area. The lateral

Fig 1. Experimental apparatus. Illustrative example with the subject in the center tank to test preference between an

established shoal on the right and a newly-formed shoal on the left. The apparatus consists of three identical 18.9L (5.5

gal.) glass aquaria (each 20.3 cm wide × 25.4 cm high × 40.6 cm long; total width = 121.8 cm) filled with water to a

depth of 21 cm.

https://doi.org/10.1371/journal.pone.0265703.g001
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sides of the center tank were covered with removable opaque barriers to obstruct the test sub-

jects’ vision into the flanking tanks. After the 3-minute habituation period, the partitions on

either side of the central tank were removed; the rearmost wall remained opaque. During the

subsequent 6-minute period of free swimming, EthoVision XT 15.0 recorded and tracked the

subject’s behavior.

Subject position within the central testing tank was recorded using a digital video camera

mounted on a tripod positioned directly in front of the central testing tank. EthoVision XT

15.0 is a video tracking software program that can detect an animal in a live video feed, distin-

guish it from the background, and track the animal’s movement, behavior, and activity. Etho-

Vision XT 15.0 was programmed to analyze each recording in real-time, thus acquiring

measurements of spatial location and subjects’ proximity to adjacent tanks. Additionally, data

were extracted offline to refine evaluation of swimming patterns and density. The tracking

area within the central testing tank was divided into four quadrants (upper left, lower left,

upper right, and lower right of the tank). Each quadrant of the arena constituted 25% of the

total arena. Zebrafish preferences were characterized by swimming patterns as the program

quantified time spent in each zone as well as zone transitions [56, 59]. Spatiotemporal data for

each subject were captured and processed using EthoVision XT 15.0. Because of our study’s

focus on the subject’s response to the level of intra-shoal familiarity, we ensured equal familiar-

ity among the subjects of both stimulus shoals from the perspective of the subject fish to mini-

mize bias. The method and layout of subject and shoal selection ensured that the subject was

previously housed with only one fish of the novel shoal and only one fish of the established

shoal.

Design, measures, and analyses

This experiment was a 2 (Subject Sex) X 2 (Shoal Type) mixed-factorial design which was

counterbalanced across both levels of presentation side for each shoal type (Novel-Left vs

Established-Right or Established-Left vs Novel-right). Because no significant main effects or

interactions were found for the Side factor, data were collapsed across Side for subsequent fac-

torial analyses. The experimental design allowed for the experimental factors to be crossed

against a flexibly-defined observation zone as an additional factor. As such, the analyses

included four levels of quadrant (top left, bottom left, top right, bottom right) or three levels of

vertical zone (left third, middle third, right third). While most statistical analyses used quad-

rants as the levels for the observational zone factor, certain analyses (e.g. side preference) were

better examined using vertical zones as the levels of the observational zone factor. The follow-

ing measures were obtained during the session with each subject:

• Cumulative duration percent within each quadrant: EthoVision quantified the total time

each subject spent in each quadrant during the entire session, and the subsequent percentage

of time within each quadrant was calculated for each subject’s session.

• Percent of session time moving: EthoVision quantified the total duration of tracks recorded

in each quadrant while the subject was moving at any velocity.

• Percent of session time freezing: EthoVision quantified the total duration of tracks recorded

in each quadrant where the subject had ceased any detectable movement for a minimum of 3

seconds. In addition, swimming patterns were monitored by experimenters to ensure that

no subject remained motionless for one minute or longer, which would necessitate discon-

tinuation of the trial and exclusion of that subject’s data (no subjects were excluded under

this criterion).
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• Average movement velocity during session: EthoVision measured velocity by dividing the

distance the subject moved by the time difference between samples during motion tracking.

EthoVision quantified the movement speed in mm/s for each subject’s movement within

each quadrant which was then used to calculate the average movement velocity within each

quadrant during the session.

• Variability in Velocity: The variability in the velocity across tracking samples can be charac-

terized by the Standard Deviation of the average movement velocity within each quadrant

during the session.

• Number of transitions between quadrants: EthoVision quantified the number of transitions

between adjacent quadrants (top right to bottom right & top left to bottom left as well as top

right to top left & bottom right to bottom left). Similarly, EthoVision quantified the number

of transitions between vertical zones (left, center, & right).

• Cross tank transitions: EthoVision quantified the number of transitions from the right side

of the arena to the left side of the arena.

Using IBM SPSS (v.26), factorial data were analyzed using a Linear Mixed Model (LMM)

with Type III Sums of Squares at α = .05. As heterogeneity of variance is common with these

types of data [56], the model was set with a diagonal covariance structure and degrees of free-

dom for the denominator were adjusted using the Maximum Likelihood estimator for the

LMM. Significant main effects and interactions were explored using unplanned comparisons

with Bonferroni correction for family-wise error.

In order to characterize behavioral diversity across all zones in the observational arena, a

single variable index based upon Shannon entropy [60] was calculated using the following for-

mula:

Hn ¼ �
X

pilog10ðpiÞ ð1Þ

Where Hn is the index of behavioral diversity, pi is the proportion of cumulative session time

spent in zone i, and n is the total number of zones characterized with the index. The value of

Hn can range from 0 (only systematic variability) to 1.0 (completely random variability); higher

values of Hn indicate lower systematic variability in zone selection. This index has been used to

characterize the movement of Humboldt penguins (Spheniscus humboldti) in a naturalistic zoo

enclosure divided into zones of unequal sizes in order to examine the effects of live feeding

events on the behavioral diversity of subjects across the enclosure [61]. Other studies have

used this index to characterize the response of California blackworm (Lumbriculus variegatus
to copper sulfate exposure [62] as well as the response of zebrafish and checker barbs (Puntius
oligolepis) to different levels of structural complexity in artificial aquatic environments [63].

Therefore, Hn is useful as a measure of characterizing systematic and random variability across

a number of measures (e.g. duration in each zone) with a single index (for a review of behav-

ioral diversity indices, see [64]). If the proportion of session time a subject in the current study

spent in any particular zone is 1.0, then Hn = 0.0. If a subject’s proportionate time in all zones

is equal across the zones, then Hn = 1.0. Indices of Hn between 0.0 and 1.0 indicate the extent

to which a subject is systematically preferring any zone over the other zones.

Results

Incomplete tracking data were obtained from two female subjects, and their respective data

were excluded from analyses involving zone parameters. Tracking data from the remaining 80

subjects (45 males and 35 females) were included for analyses involving zone parameters.
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Duration within quadrants

Overall, subjects spent more time in lower zones adjacent to test shoals than in upper zones.

Qualitatively, this difference in zone preference is demonstrated by location heat maps gener-

ated with Ethovision (see Fig 2). However, cumulative heat maps are limited in providing

detail on the magnitude of these differences, which is better characterized using quantitative

analyses. When analyzing the percent cumulative duration within quadrants, there was a sig-

nificant main effect of Quadrant, F (3,128.093) = 55.336, p� .001; however, there was no sig-

nificant main effect of Sex, F (1,230.397) = 0.562, p = .454, nor was there a significant

interaction of Sex by Quadrant, F (3,128.093) = 2.081, p = .106 (Fig 3).

Across both sexes, subjects spent the most time in the lower quadrant closer to the estab-

lished shoal (M = 44.57, SEM = 2.618), followed by the lower quadrant closer to the novel

shoal (M = 31.80, SEM = 2.524). Subjects spent less time in the upper quadrant closer to the

established shoal (M = 15.69, SEM = 1.272) and the least amount of time in the upper quadrant

closer to the novel shoal (M = 11.36, SEM = 1.216) (Fig 3). The only pairwise comparison that

is not significant is the difference between the time in the upper quadrant closer to the novel

shoal and the upper quadrant closer to the established shoal (all other p’s� .003).

Time in motion

When analyzing the subjects’ percent of session time in motion within quadrants, there was a

significant main effect of Quadrant, F (3,128.093) = 27.000, p� .001; however, there was no

significant main effect of Sex, F (1,283.203) = 0.382, p = .537, nor was there a significant inter-

action of Sex by Quadrant, F (3,141.081) = 0.797, p = .498 (Fig 4A).

Across both sexes, subjects spent the greatest percentage of time moving in the lower quad-

rant closer to the established shoal (M = 9.91, SEM = 0.562), followed by the lower quadrant

closer to the novel shoal (M = 8.00, SEM = 0.397). Subjects spent less time moving in the upper

quadrant closer to the established shoal (M = 5.19, SEM = 0.397) and the least amount of time

moving in the upper quadrant closer to the novel shoal (M = 4.24, SEM = .417). The only

Fig 2. Heatmaps collapsed across trials with the same configuration of stimuli. Warm colors indicate highest

intensities of localization while cooler colors indicate lowest intensities of localization.

https://doi.org/10.1371/journal.pone.0265703.g002

PLOS ONE Female zebrafish demonstrate stronger preference for established shoals over newly-formed shoals

PLOS ONE | https://doi.org/10.1371/journal.pone.0265703 September 21, 2022 8 / 19

https://doi.org/10.1371/journal.pone.0265703.g002
https://doi.org/10.1371/journal.pone.0265703


pairwise comparisons that were not significant were the difference between the time in the

upper quadrant closer to the novel shoal and the upper quadrant closer to the established shoal

and the difference between the percent time moving in the lower quadrant closer to the novel

shoal and the lower quadrant closer to the established shoal (all other p’s� .001).

Time motionless

When analyzing the percent of session time motionless within quadrants, there was a signifi-

cant main effect of Quadrant, F (3,124.260) = 58.281, p� .001; however, there was no signifi-

cant main effect of Sex, F (1,215.332) = 1.26, p = .264, nor was there a significant interaction of

Sex by Quadrant, F (3,124.260) = 2.625, p = .053; (Fig 4B).

Across both sexes, subjects spent the most time motionless in the lower quadrant closer to

the established shoal (M = 34.66, SEM = 2.192), followed by the lower quadrant closer to the

Fig 3. Percent cumulative duration in each quadrant zone across both sexes. Quadrants are labeled as upper/lower

sections of the tank and novel/established stimulus shoal proximity. Error bars are +/- SEM. While exact p-values are

reported for post-hoc comparisons, p-values smaller than 0.001 are indicated as p< 0.001.

https://doi.org/10.1371/journal.pone.0265703.g003

Fig 4. Percent duration in motion (A) and motionless (B) by zone across both sexes. Quadrants of the subject tank

were labeled by upper/lower sections of the tank and novel/established stimulus shoal proximity. Error bars are +/-

SEM. While exact p-values are reported for post-hoc comparisons, p-values smaller than 0.001 are indicated as

p< 0.001.

https://doi.org/10.1371/journal.pone.0265703.g004
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novel shoal (M = 23.79, SEM = 2.524). Subjects spent less time in the upper quadrant closer to

the established shoal (M = 10.50, SEM = 0.943) and the least amount of time in the upper quad-

rant closer to the novel shoal (M = 7.12, SEM = 0.865). The only pairwise comparison that is

not significant is the difference between the time in the upper quadrant closer to the novel

shoal and the upper quadrant closer to the established shoal (all other p’s� .002).

Average velocity

When analyzing the subjects’ average velocity within quadrants, there were significant main

effects of Quadrant, F (3,180.743) = 22.925, p� .001, and Sex, F (1,282.043) = 6.398, p = .012

(Fig 5A); however, there was no significant interaction of Sex by Quadrant, F (3,180.743) =

0.582, p = .628; Females (M = 60.26 mm/s, SEM = 2.503) had a faster average velocity than

males (M = 51.84 mm/s, SEM = 2.195).

Across both sexes, subjects moved at the slowest velocity in the lower quadrant closer to the

established shoal (M = 40.34 mm/s, SEM = 2.342), followed by the lower quadrant closer to the

novel shoal (M = 50.52, SEM = 4.028). Subjects swam faster in the upper quadrant closer to the

established shoal (M = 61.20 mm/s, SEM = 3.413) and swam the fastest in the upper quadrant

closer to the novel shoal (M = 72.15 mm/s, SEM = 3.313). The only pairwise comparisons that

were not significant were the difference between the average velocity in the upper quadrant

closer to the novel shoal and the upper quadrant closer to the established shoal and the differ-

ence between the average velocity in the upper quadrant closer to the established shoal and the

lower quadrant closer to the novel shoal (all other p’s� .001).

Variability in velocity

One measure of variability in velocity is the standard deviation of each subject’s movement

velocity within each quadrant. When analyzing the subjects’ standard deviation of velocity

within quadrants, there was a significant main effect of Quadrant, F (3,160.255) = 25.926, p�
.001; however, there was no significant main effect of Sex, F (1,296.650) = 0.38, p = .847, nor

was there a significant interaction of Sex by Quadrant, F (3,160.255) = 1.291, p = .279 (Fig 5B).

Across both sexes, subjects had the lowest variability in velocity while swimming in the

lower quadrant closer to the established shoal (M = 64.70 mm/s, SEM = 1.213), followed by the

lower quadrant closer to the novel shoal (M = 68.57 mm/s, SEM = 1.581). Subjects had greater

variability in their movement velocities in the upper quadrant closer to the established shoal

(M = 73.99 mm/s, SEM = 1.325) and the highest variability in the upper quadrant closer to the

novel shoal (M = 78.71 mm/s, SEM = 1.140). The only pairwise comparisons that were not

Fig 5. Average velocity (A) and velocity SD (B) during movement. Quadrants of the subject tank were labeled by

upper/lower sections of the tank and novel/established stimulus shoal proximity. Error bars are +/- SEM. While exact

p-values are reported for post-hoc comparisons, p-values smaller than 0.001 are indicated as p< 0.001.

https://doi.org/10.1371/journal.pone.0265703.g005
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significant were the differences between variability in movement velocities in upper quadrant

closer to the established shoal and the lower quadrant closer to the novel shoal and the

difference between the average variability of subjects’ movement velocities in the lower quad-

rant closer to the established shoal and the lower quadrant closer to the novel shoal (all other

p’s� .046).

Zone and cross-tank transitions

Inter-quadrant transitions were analyzed by a 4 (Quadrant of Origin) by 2 (Sex) LMM. There

was a significant main effect for Sex, F (1, 312.96) = 4.63, p = 0.032. There was neither a signifi-

cant main effect for Quadrant of Origin, F (1, 152.04) = 0.996, p = 0.397, nor a significant inter-

action of Quadrant of Origin by Sex, F (1, 152.04) = 0.236, p = 0.871 (Fig 6). Across all

Quadrants of Origin, females (M = 15.55, SEM = 1.064) had significantly more quadrant-to-

quadrant transitions than males (M = 12.51, SEM = 0.933). To assess cross-tank transitions,

data were collapsed across upper and lower quadrants, and an independent-samples t-test was

performed between males and females on cross-tank transitions. Males (M = 14.33,

SEM = 1.253) had significantly more cross-tank transitions than females (M = 7.73,

SEM = 1.053), t (80) = 3.930, p� .001.

Behavioral diversity index

Sufficient data were obtained from the two excluded females to be included in the behavioral

diversity index measures, providing a total sample size of 82 subjects (34 males and 37

females). For the current data, two indices of Hn were calculated for each subject. One index,

H4, considered the four quadrants (upper right, upper left, lower right, lower left) of the obser-

vation arena while the other index, H3, considered the left, middle, and right vertical thirds of

the observation arena. H4 thus provides an index which characterizes diversity in zone selec-

tion both vertically and horizontally within the observation arena, while H3 provides an index

Fig 6. Sex differences in inter-quadrant and cross-tank transitions. Quadrants of the subject tank were labeled by

upper/lower sections of the tank and novel/established stimulus shoal proximity. Error bars are +/- SEM. While exact

p-values are reported for post-hoc comparisons, p-values smaller than 0.001 are indicated as p< 0.001.

https://doi.org/10.1371/journal.pone.0265703.g006
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which characterizes diversity in zone selection horizontally across the observation arena.

Higher values of either H4 or H3 indicate more random variability in a subject’s proportions in

zone utilizations. Whenever a case for a subject had a proportion for any zone equal to zero,

resulting in an undefined computation for the log of that value, the undefined result was set to

zero and the summation for Hn continued across the other non-zero proportions.

As expected, males had significantly higher behavioral entropy index scores than females

for H3 analyzed across three zones (males M= 0.360, SEM = 0.016; females M= 0.243, SEM =
0.022; t (80) = 4.365, p� .001, one-tailed). Males also had significantly higher behavioral

entropy index scores than females for H4 analyzed across four zones, (males M= 0.465, SEM =
0.016; females M= 0.383, SEM = 0.021; t (80) = 3.12, p = 0.033, one-tailed) (Fig 7). Taken

together, these results indicate that male subjects show less systematic variability in their utili-

zation of zones in the observation arena than female subjects, revealing sex differences in over-

all responding not revealed by main effects or interactions in the Sex X Zone factorial analyses

of the specific dependent measures (except for the main effect of Sex on swim velocity).

Discussion

The results presented here indicate that solitary zebrafish can differentiate between established

and novel shoals based solely on visual cues and choose to spend more time near an established

shoal. Movement measures indicate that both sexes spent more time motionless when in the

lower quadrant nearest the established shoal. Velocity measures show that both sexes exhibited

less variability in velocity when in the upper quadrant near the established shoal compared to

the upper quadrant near the novel shoal, potentially indicative of less darting behavior. While

both male and female zebrafish spent more time in the lower quadrant near the established

shoal, there were significant differences in the manner by which males and females moved

around the field; females appeared to investigate more locally while males investigated more

across the two shoals. Use of the Shannon entropy measure further confirmed the increased

behavioral entropy for males and provides a useful measure for future comparison across

Fig 7. Sex differences in behavioral entropy. H3 measures entropy across three vertical zones while H4 measures

entropy across four quadrants. Error bars are +/- SEM. While exact p-values are reported for post-hoc comparisons, p-
values smaller than 0.001 are indicated as p< 0.001.

https://doi.org/10.1371/journal.pone.0265703.g007
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studies that use different methods and arenas. The addition of shoal stimuli of varying famil-

iarity to the three-tank open-swim preference test provides an attractive and easy-to-use sys-

tem for studies investigating zebrafish models of disorders that affect social behavior and

recognition of social cues.

The present analyses include a novel application of Shannon entropy to characterize the

diversity in zone preference in the three-tank open-swim preference test. The three-tank

open-swim preference test has been used successfully in a number of previous studies, and it is

becoming increasingly popular for the investigation of social preference in both normal popu-

lations (e.g. EKK or AB wild type) [26, 56, 65] and in clinical models [11, 61]. Previous studies

established the efficacy of the technique and demonstrated experimental effects through the

analysis of unitary measures such as duration in zone, swimming velocity, etc. The present

study establishes the utility of a unitless behavioral diversity index to characterize the extent to

which subjects demonstrate a systematic preference among the observational zones of interest

in the three-tank open-swim preference task and allows for comparison of the diversity index

across different zone characterizations (e.g. quadrants versus vertical thirds) and between sub-

ject groupings (e.g. sex). As the nature of the three-tank open-swim preference test is to deter-

mine the extent to which test subjects demonstrate a preference and/or avoidance of zones in

proximity with test stimuli, the application of an index of behavioral diversity such as Shannon

entropy can be useful for future studies of social preference in tasks involving movement in

open arenas.

Previous studies have demonstrated sex differences in zebrafish preference based on num-

ber of individuals in a shoal [66] and pigment patterns [67]. Our results suggest sex-specific

differences in zebrafish preference when given a choice between a newly-formed shoal and an

established shoal, with females exhibiting less entropy, a greater preference for the established

shoal and increased average swimming speed. Swimming speed and vertical tank location dur-

ing exposure to novel environments and other common stressors has been linked to anxiety

levels in zebrafish [68, 69]. Increased swimming speeds could indicate darting patterns that

result from an expression of fear [70], while more time spent in the lower half of a novel tank

is indicative of an anxious state which can be reversed with exposure to anxiolytic drugs [71].

Both male and female zebrafish exhibit differences in anxiety-like responses with females

spending more time in the bottom half of the tank during a novel tank task and more time in

the dark zone during a light-dark task [72]. Further, experiments on wild-caught zebrafish

show that males are bolder during feeding than females [73]. Our results show a greater per-

centage of time spent in the lower quadrants for both sexes, indicating an anxious state for

both male and female subjects. However, the faster average swimming speeds of female sub-

jects observed in this study could be indicative of a higher level of anxiety compared to male

subjects, suggesting that the social choice paradigm can elicit subtle behavioral anxiety differ-

ences compared to the novel tank task. Further, anxiety level has the potential to induce shoal-

ing behavior, as it is exhibitive of seeking out energy rationing [74]. The subtle behavioral

differences exhibited by females in our study (lower entropy and higher tendency to prefer the

established shoal) is potentially due to higher anxiety levels.

Zebrafish place preference can be influenced by chemical [70, 75] or live stimuli [56, 76],

and a three-chamber apparatus is commonly utilized to quantify preference depending on sub-

ject swimming patterns [11, 56]. As an example of place bias indicating social choice, Social

Preference Index has been utilized in several studies concerning social preference in zebrafish,

equating proximity with preference for interaction [77–79]. Swimming patterns localized near

one stimulus over another could indicate preference, but other driving forces of social behav-

ior, such as investigative or aggressive interactions, should not be discounted. The present

study solely investigated social interaction based on visual information and did not delineate
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between aggression versus investigation. However, aggressive interaction or investigation

would also indicate a change in social interaction that occurs due to the observed differences

in stimuli shoal cohesion, suggesting that the subject fish were still able to differentiate between

shoal types.

A salient component of Fetal Alcohol Spectrum Disorders (FASD), Autism Spectrum Dis-

orders (ASD), and several other neurodevelopmental disorders’ symptomatology is the display

of atypical social behavior. Since the zebrafish model exists at the intersection of behavioral

complexity and biological simplicity, use of the zebrafish to study neurodevelopmental disor-

ders has recently gained popularity. Shoaling tendencies are first distinguishably exhibited by

young zebrafish approximately two weeks post-hatch, and shoaling as a species-specific behav-

ior is critically influenced by early life experience [58]. Zebrafish exposed to alcohol at the

embryonic stage have been shown to display impaired shoaling behavior development [80]. In

humans, FASD is a life-long disorder, and social impairments including social withdrawal and

depression persist for the duration of a patient’s life. Similarly, embryonic zebrafish exposed to

ethanol exhibit severely reduced shoaling responses that continue two years following initial

exposure and derive from central nervous system changes rather than motor or visual dysfunc-

tion [80, 81]. The established versus new shoaling model outlined here contributes to under-

standing social behavior in typically-developing zebrafish, though the model may be useful to

better classify social impairment in neurodevelopmental disorders such as FASD or ASD.

Social interaction difficulties in FASD and ASD may be evident through a failure to recognize

differences in established versus new shoals. Such behavior would be supported by a lack of

preference for either shoal, shown by a subject spending equal amounts of time in close prox-

imity to either stimuli.

The DYRK1A gene, located in the “Down Syndrome Critical Region DSCR” has been iden-

tified as a significant element in the pathogenesis of ASD in humans [82]. DYRK1A mutation

in humans is connected to intellectual impediments, microcephaly, and ASD. When DYRK1A

is knocked-out in zebrafish (DYRK1A KO), affected subjects exhibit social abnormalities par-

allel to those displayed by human ASD patients. Specifically, DYRK1A KO resulted in

decreased expression of c-fos, a proto-oncogene important for cellular proliferation and differ-

entiation [82, 83]. When presented with a three-member social stimuli shoal, DYRK1A KO

zebrafish spent significantly less time in the zone of closest proximity to the shoal compared to

wildtype (WT) zebrafish [82]. Using the DYRK1A KO in our three-chamber social choice

model with established versus newly-formed shoals as flanking stimuli would determine if

DYRK1A expression is necessary for identifying intragroup familiarity between shoals.

Our findings and conclusions present implications for both basic research on the mecha-

nisms of social preference in animals as well as the aforementioned zebrafish models of human

disease and behavioral dysfunction. Future research on social preference using the three-tank

open-swim preference test could explore the various characteristics of intra-shoal activity that

indicate social novelty within a newly-established shoal which are subsequently detected by the

observing subject. In addition, future research could also explore whether other factors such as

age, size, or health status affect preference for an established shoal, and whether other features

of test shoals and/or individual subjects can override the preference for established shoals. In

order to extend and further explore various aspects of subjects’ movement, future researchers

could use a more-sophisticated dual-camera setup that allows for analysis of three-dimensional

movement data [84, 85] which may subsequently reveal other, perhaps more subtle, differences

in shoal preference. Finally, the demonstrated value of Shannon entropy in the current study

introduces new possibilities for the comparison of arena-based movement of subjects under a

variety of conditions across studies.
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