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The acute toxicity of household detergent (Ariel) on blood parameters and histology of Oreochromis niloti-
cus was investigated using static bioassay for 96 h. Linear alkylbenzene sulfonate (LAS) is an anionic
surfactant widely used in detergents and cleaners, both in industrial and household applications.
LAS contaminating aquatic ecosystems as a potential toxic pollutant, was investigated in the present
study for acute toxicity. The fish samples were divided into six groups, including 20 fish in each
group. Normal feed was given to control group without detergents treatment. Hematological parame-
ters (RBC count, Hb, Ht and platelets) were significantly declined, while WBC count showed a highly
significant increase. Compared with the control group, significant elevation of serum alanine amino-
transferase (ALT) and aspartate aminotransferase (AST) was recorded in fish treated with different
concentrations of detergent. Catalase (CAT), Superoxide dismutase (SOD) activities and Reduced
Glutathione (GSH) concentration showed a highly significant reduction. Total proteins showed significant
decrease, while total lipids, cholesterol and triglycerides significantly increased. The mean lethal concen-
tration (LC50) for 96 h of Ariel was at concentration 10 mg/L. Relative percentage of detergent residues in
fish muscles was increased with higher detergent concentrations. In conclusion, exposure to detergents
resulted in great alterations in the histological structure of liver and gills.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Detergents are derivatives of organic chemicals which persist in
the environment, but their utilization is inevitable due to their par-
ticipation in both cleaning agents and pesticides formalization as
well as oil spills dispersal in seas (Isyaku and Solomon, 2016).
The anionic surfactant linear alkylbenzene sulphonate (LAS) has
high cleansing capacity because it decreases the surface tension
of water, so it is the perfect ingredient in domestic and industrial
detergents. The world annual usage of LAS exceeded other surfac-
tants which attained 18.2 million ton. Unfortunately, 5 % of its pro-
duction reaches aquatic bodies and it is non-degradable in
increased concentrations. Also, its toxicity occurs at a concentra-
tion ranging from 0.0025 ± 300 to 0.3 ± 200 mg/l (IHS 2015).

The Nile tilapia, Oreochromis niloticus, is a freshwater species
which has a great importance in commercial aquaculture in Egypt.
It has a rapid growth rate, high nutritional value, and good resis-
tance to diseases and toxic compounds, so it is commonly used
in the ecotoxicology field (Abd El-Gawad et al., 2016). Blood
parameters are early alarms for pathophysiological alterations of
the whole body due to toxicants exposure which exhibit patholog-
ical changes before the appearance of any external symptom of
toxicity. Therefore, they are an efficient tool in monitoring health
status of fish. Blood cell responses are important indicators of
changes in the internal and external environment of the fish. Thus,
the changes in the hematological parameters are good indicators of
changes in the water quality (Liebel et al., 2013).

Modifications in the activities of alanine aminotransferase (ALT)
and aspartate aminotransferase (AST) lead to biochemical changes.
It is an attempt by the fish to maintain its balance during exposure
to toxic substances that impair biochemical and physiological per-
formance (Abbas and El-Badawi, 2014). Once LAS absorbed
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through fish gills, it finds its way to the liver where metabolization
and biotransformation processes occur, then conversion of LAS to
hydrophilic compounds facilitates its excretion. Oxidative stress
reactions induce the formation of reactive oxygen species (ROS),
also known as oxidases, which binds with biomolecules causing
their oxidative damage (Wibbertmann et al. 2011). Many surfac-
tants produce oxidative stress which has negative impacts on the
structural composition of tissue, permeability of the membrane
and damage of biomolecules in organisms. Cellular metabolism
and its regulation are disrupted when the ability of antioxidant
defense mechanisms of organisms to neutralize these ROS is imbal-
anced which is achieved by specific enzymes such as Catalase
(CAT), Superoxide dismutase (SOD), and Glutathione reductase
(GSH) (Shukla and Trivedi, 2018). Biochemical biomarkers such
as total proteins, total lipids, cholesterol, are powerful biomarkers
which are usually utilized under stress conditions in assessing the
general health status of fish. Due to the closed relation between the
circulatory system of fish and the external environment, fish phys-
iology including biochemical parameters and metabolic enzymes
are favorable tools in monitoring water quality in aquatic environ-
ments (He et al., 2015).

The histopathological biomarkers are perfectly utilized as indi-
cators for assessing both short- and long-term toxic impacts of
water pollutants which causing tissues damage and histopatholog-
ical degradations in fish (Liebel et al., 2013). The liver is the main
organ of metabolism and detoxification of toxic compounds; how-
ever, when their concentrations are exceeded its detoxification
ability is disturbed resulted in histological damage. So, liver
histopathology in fish is an excellent monitoring tool (Gaber
et al., 2014). Fish gills are a sensitive organ that is responsible for
respiration, optimization of osmotic pressure, and excretion of
unnecessary and harmful metabolic products. The large contact
between the gills with the external environment increases their
sensitivity to simple chemical or physical changes in the surround-
ing environment. Also, direct contact with toxic chemicals makes
organs a target for many waterborne pollutants. This will lead to
changes in their shape, impairing their performance and threaten-
ing the life of the fish, so assessment of gill morphology is key to
monitoring the level of aquatic pollutants (Strzyzewska et al.,
2016).

This study is the first investigation in Egypt which showed the
impact of detergents residues on Nile Tilapia, and was conducted
to determine the mean lethal concentration (LC50) of household
detergent, Ariel (Linear Alkylbenzene Sulfonate), and assess its
exposure effects on hematological parameters, biochemical, oxida-
tive stress biomarkers, and histopathological histology of Ore-
ochromis niloticus.
2. Materials and methods

Linear Alkylbenzene Sulfonate (LAS) Standard1000 ppm 120 ml
Amber Glass was used in the present study (RICCA Chemical Com-
pany, Texas), with standard solution (by mass) 3.4%, 8.8%, 7.3%, and
5.1% for the homologues C10, C11, C12, and C13, respectively. The
concentration of LAS in fish tissues is the sum of homologues C10,
C11, C12, and C13. The resulting treatments were characterized by
the following nominal initial concentrations of LAS (mg L-1): 0, 10,
40, 60, 80,100, respectively. A total of 120 healthy Nile tilapia, Ore-
ochromis niloticus, with an average weight of 6.6–7.8 g and an aver-
age length of 7.2–8.3 cm was held in static dechlorinated water (50
L) that was continuously aerated for 7 days to acclimatization.
Their water was changed every two days to remove fecal and
non-consumable feed. Fish were fed ad libitum daily with com-
mercial feed which was discontinued 24 h before the start of the
experiment with immediately removing of dead fish. After 7 days,
1007
the fish were divided into five test groups and a control group;
each group consists of 20 Nile Tilapia fish was transferred sepa-
rately to aquaria of 50-liter volume and exposed to various concen-
trations of household detergents (Ariel; 10 mg/L, 40 mg/L, 60 mg/L,
80 mg/L, 100 mg/L) as well as the control without any treatment.
Three replicates were made for each concentration.

Fish were caught gently from each groups randomly. With 3 ml
sterile plastic syringes, a blood sample was withdrawn from the
caudal vein located ventrally of the vertebral column then divided
into two parts: The first portion was transferred to an EDTA antico-
agulant tube to measure the complete blood count (CBC). The sec-
ond portion of the blood sample was transferred to tubes without
an anticoagulant (Eppendorf tube), then centrifuged at 3000 rpm
for 10 min. Finally, the serum was isolated in another tube for fur-
ther biochemical analyzes. Blood picture (red blood cell count
(RBCs), white blood cell count (WBCs), hemoglobin (Hb), hemat-
ocrit (Ht), and platelets count) for each sample was determined
using a hematological Analyzer (Sysmex Kx, Japan; Dacie and
Lewis, 1984).

Alanine aminotransferase (ALT) and aspartate aminotransferase
(AST) were estimated by colorimetric method using RAM diagnos-
tic kit according to Reitman and Frankel (1957) at 530–550 nm.
Catalase (CAT) activity in serum was determined by the colorimet-
ric method of Aebi (1984). Superoxide dismutase (SOD) activity in
serum was evaluated by the procedure of Nishikimi et al. (1972) at
560 nm. Reduced glutathione (GSH) concentration was estimated
in serum by the colorimetric method of Beutler et al. (1963) at
405 nm. Level of serum total proteins, total lipids, total cholesterol
(TC), and triglyceride (TG) were estimated according to Gornall
et al. (1949), Zollner and Kirsch (1962), Richmond (1973), and
Fossati and Prencipe (1982), respectively.

Survival observations of fish samples in each group were
reported after 24, 48, 72, and 96 h. Then, LC50 value (The concen-
trations of the chemical that kills 50% of the test animals) was cal-
culated graphically. After the fish were dissected, a weight of
100 mg of fish muscle from each set was extracted according to
Knepper et al. (1999) within 30 ml methanol for 16 h in extraction
vessels which evaporated to dryness then the dry residues were
dissolved in 100 ml of warm deionized water in a water bath.
The dissolved solutions were used to determine levels of surfac-
tants by the procedure described by APHA (1995) and
Zaporozhets et al. (1998). The liver and gills of Nile tilapia were
fixed in neutralized formalin, dehydrated, embedded in paraffin
wax, and sectioned at 5 lm then stained with Hematoxylin and
Eosin, according to Carleton et al. (1967).
3. Results

3.1. Hematological parameters

The blood hemoglobin content (Hb) showed a significant
decrease (p � 0.05) with increased concentrations of detergent,
reaching its minimum value of 7.75 ± 0.23 g/dl in fish exposed to
100 mg/L of detergent (Ariel) compared to control (12.43 ± 0.02 g
/dl). Also, RBC count exhibited a significant decrease (p � 0.05)
with concentration gradient; the lowest value 1.19 ± 0.06 cell/
mm3 was recorded at 100 mg/L of detergent (Ariel) compared to
control 2.59 ± 0.04 cell/mm3. Furthermore, Ht % showed a signifi-
cant decrease (p � 0.05) by increasing detergent concentrations.
The minimum value of Ht being at 100 mg/L of detergent (Ariel)
and the mean value being 20.67 ± 0.53 %, while Ht in control fishes
was 41.5 ± 2.63 %. WBC count indicated a significant increase
(p � 0.05) with increased concentrations of detergent. The highest
value of WBC count was 220.04 ± 15.61 � 103cell/mm in fish
exposed to 100 mg/L of detergent (Ariel) while the lowest value
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was 92.29 ± 6.05 � 103cell/mm in control fish. Blood platelets
count exhibited significant decrease (p � 0.05) with concentration
gradient, reaching a minimum value of 10.95 ± 0.31cell/mm3 in
fish at 100 mg/L of detergent (Ariel) compared to control with
mean value 29.17 ± 0.40 cell/mm3 (Table 1).

3.2. Liver enzymes

Serum ALT showed a tendency to increase by increasing deter-
gent concentrations. Fish exposed to 100 mg/L concentration of
(Ariel) had significantly (p � 0.05) increased serum ALT (199.20 ±
5.45 U/L) compared to control (22.15 ± 1.61 U/L). Also, serum
AST showed a significant increase (p � 0.05) in fish exposed to
100 mg/L concentration of detergent (Ariel) with a mean value of
460.48 ± 7.76 U/L compared to control with a mean value of
40.1 ± 1.67 U/L (Table 1).

3.3. Oxidative stress biomarkers

Activity of superoxide dismutase (SOD) exhibited a significant
reduction (p � 0.05) by increasing the concentration of the deter-
gent. The lowest value (161.91 ± 8.63 U/L) was recorded in fish
exposed to a concentration of 100 mg/L of detergent (Ariel), while
the highest value (357.39 ± 2.74 U/L) was in control fish. Also, a sig-
nificant decline (p � 0.05) in catalase (CAT) activity was shown
with the concentration gradient. The minimum value was
93.48 ± 7.84 U/L at 100 mg/L of detergent (Ariel) compared to con-
trol with a mean value of 223.12 ± 3.05U/L. Furthermore, reduced
glutathione (GSH) concentration exhibited a significant decrease
(p � 0.05) with elevated detergent concentrations. The minimum
value (12.00 ± 1.75 mg/dl) was recorded at 100 mg/L compared
to control with a mean value of 42.97 ± 0.21 mg/dl (Table 1).

3.4. Biochemical biomarkers

Serum total proteins content showed a significant decline
(p � 0.05) in fish treated with 100 mg/L of detergent (Ariel) with
a mean value of 2.61 ± 0.27 g/dl in comparison with that of control
fish with a mean value of 4.90 ± 0.02 g/dl. Total lipids level showed
a significant increase (p � 0.05) in detergent-treated fish, the high-
est reading 1174.17 ± 9.05 mg/dl was registered at 100 mg/L of
detergent (Ariel) while the control reading represented the lowest
value 196.96 ± 3.21 mg/dl. Cholesterol concentration exhibited a
significant increase (p � 0.05) in the blood of detergent-treated
fish. The maximum value (479.28 ± 2.97 mg/dl) revealed at
100 mg/L of detergent (Ariel) while the minimum value (79.37 ±
1.72 mg/dl) was obtained in control fish. Triglyceride concentra-
Table 1
Effect of LAS Concentrations on Hematological Parameters, Serum Alanine Aminotransfe
(SOD), Reduced glutathione (GSH), Total proteins (TP), Total lipids (TL), Total Cholesterol

Parameters LAS Concentration (mg/L)

0 10 40

Hb(g/dl) 12.43 ± 0.02 12.27 ± 0.09 10.49 ±
RBCs(cell/mm3) 2.59 ± 0.04 2.34 ± 0.11 2.26 ± 0
Ht (%) 41.5 ± 2.63 38.35 ± 1.65 32.58 ±
WBCs(�103cell/mm) 92.29 ± 6.05 112.98 ± 9.41 143.91
Platelet(cell/mm3) 29.17 ± 0.40 28.27 ± 1.09 26.20 ±
ALT(U/L) 22.15 ± 1.61 29.23 ± 0.78 157.28
AST(U/L) 40.1 ± 1.67 61.88 ± 0.88 336.89
SOD(U/L) 357.39 ± 2.74 334.52 ± 15.77 281.42
CAT(U/L) 223.12 ± 3.05 206.98 ± 6.90 166.71
GSH (mg/dl) 42.97 ± 0.21 37.59 ± 3.04 33.79 ±
TP(g/dl) 4.90 ± 0.02 4.61 ± 0.24 4.09 ± 0
TL (mg/dl) 196.96 ± 3.21 207.09 ± 1.45 616.35
TC (mg/dl) 79.37 ± 1.72 87.72 ± 2.94 100.42
TG (mg/dl) 82.21 ± 6.45 97.49 ± 3.14 153.42
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tion showed significant elevation (p � 0.05) in serum of
detergent exposed fish. The highest value 199.97 ± 6.80 mg/dl
was at 100 mg/L of detergent (Ariel) whilst the lowest value
82.21 ± 6.45 mg/dl was registered in control fish (Table 1).

3.5. LC50 (Concentration of 50 % Mortality) Value:

The 96 h LC50 value of LAS concentration is 10 mg/L (Table 2 and
Fig. 1). It was also noticed changes in behavioral responses of Nile
Tilapia such as opercular movement of fish exposed to the deter-
gent was faster than controlled, frequent surfacing, loss of nervous
control, try to jump out of media in detergent treated fish. In dead
fishes, opercular region became blackish, there was hemorrhage at
lower lip, along mid ventral line behind the mouth and between
pectoral fin and at the base of anal and pelvic fins).

3.6. LAS concentrations in fish muscles

In the present study, LAS concentration in fish muscles showed
high significant increase (p � 0.05) in fish treated with 100 mg/L of
detergent (Ariel) with mean value 22.41 ± 0.40 compared to mus-
cles in fish of control group with mean value 0.36 ± 0.03. The con-
centrations of LAS and relative percentage of the different
homologues (C10, C11, C12 and C13) in muscles was linearly
increased with higher treated detergent concentrations (Table 3
and Figs. 2 and 3).

(A) is representing the liver of control group showing normal
hepatic and hepatopancreatic tissues (arrow and arrowhead
respectively). (B) is representing the liver of fish treated with
10 mg/L detergent showing moderate degree of hepatic vacuolar
changes (arrow). (C) is representing the liver of fish treated with
40 mg/L detergent showing degenerative changes of hepatic tis-
sues associated with marked fatty degeneration and degeneration
(arrow), necrosis and atrophy of pancreatic cells (arrowhead). (D)
is representing the liver of fish treated with 60 mg/L detergent
showing increase the fatty degenerative changes of hepatocytes
(arrow) and necrosis and atrophy of the pancreatic cells (arrow-
head). (E) is representing the liver of fish treated with 80 mg/L
detergent showing marked increase the degenerative fatty changes
in diffuse manner (arrow) and severe degenerative changes within
hepatopancreas (arrowhead). (F) is representing the liver of fish
treated with 100 mg/L detergent showing large necrotic foci within
the hepatic tissue associated with complete necrosis of the hep-
atopancreas (arrow). H&E stain, bar = 50 mm (Fig. 4).

(A) is representing the gill of control group showing normal pri-
mary and secondary gill lamellae (arrow). (B) is representing the
gill of fish treated with 10 mg/L detergent showing mild
rase (ALT), Aspartate Aminotransferase (AST), Catalase (CAT), Superoxide dismutase
(TC) and Triglycerides (TG) of Nile tilapia, Oreochromis niloticus.

60 80 100

0.16 9.17 ± 0.19 8.08 ± 0.09 7.75 ± 0.23
.05 1.84 ± 0.10 1.58 ± 0.04 1.19 ± 0.06
0.57 27.57 ± 1.43 22.77 ± 1.64 20.67 ± 0.53
± 0.26 168.96 ± 8.19 191.00 ± 4.26 220.04 ± 15.61
0.98 17.45 ± 2.17 14.43 ± 1.31 10.95 ± 0.31
± 3.03 178.54 ± 6.47 187.30 ± 6.93 199.20 ± 5.45
± 3.75 353.01 ± 3.17 449.71 ± 6.43 460.48 ± 7.76
± 3.06 241.13 ± 9.25 219.25 ± 5.93 161.91 ± 8.63
± 1.46 152.13 ± 7.90 126.68 ± 4.59 93.48 ± 7.84
3.64 25.25 ± 1.08 22.01 ± 1.24 12.00 ± 1.75
.09 4.03 ± 0.42 3.57 ± 0.26 2.61 ± 0.27
± 13.79 758.21 ± 6.07 1045.2 ± 29.94 1174.17 ± 9.05
± 3.54 215.03 ± 10.85 443.43 ± 9.22 479.28 ± 2.97
± 6.67 170.41 ± 6.24 198.41 ± 5.75 199.97 ± 6.80



Table 2
Acute Toxicity of Det-Arial on Nile tilapia, Oreochromis niloticus.

No. of Fish Exposed Detergent
Conc. (mg/L)

Mortality of Fishes Noted After Time Intervals of % Mortality Within 96 h

24 h 48 h 72 h 96 h

20 100 6 4 5 5 100 %
20 80 4 5 4 5 90 %
20 60 3 4 5 6 90 %
20 40 3 2 4 5 70 %
20 10 1 1 4 4 50 %
20 Control 0 0 1 2 15 %

Fig. 1. Graphical Presentation of LC50 Value in Nile tilapia, Oreochromis niloticus
with Linear Alkylbenzene Sulfonate (LAS).

Fig.2. Treatment, The different Homologues Concentration (C10, C11, C12 and C13
in mg.kg -1) of LAS Concentration.

Fig.3. Treatment, Relative % of The Different Homologues (C10, C11, C12 and C13 in
mg.kg -1) of LAS Concentration, Histopathological Investigations.
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degenerative changes within the secondary lamellae (arrow). (C) is
representing the gill of fish treated with 40 mg/L detergent show-
ing degenerative and desquamative changes of secondary gill
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lamellae associated with proliferation of chloride cells (arrow).
(D) is representing the gill of fish treated with 60 mg/L detergent
showing marked adhesion of the secondary gill lamellae accompa-
nied with marked leukocytic cells infiltration (arrows). (E) is repre-
senting the gill of fish treated with 80 mg/L detergent showing
severe degree of adhesion of the secondary gill lamellae due
marked leukocytic cells infiltration and associated with marked
desquamative changes (arrows). (F) is representing the gill of fish
treated with 100 mg/L detergent showing severe degree of sec-
ondary gill lamellae adhesion (arrow) accompanied with and
marked telangectasis of the blood capillaries (arrowheads). H&E
stain, bar = 50 mm (Fig. 5).

4. Discussion

Hematological components investigations including hemoglo-
bin content, hematocrit, red blood cells, white blood cells and pla-
telets counts are widely used in ecotoxicology studies because they
reflect the physiological alterations and health status of fish that
reflect the quality of inhabitant water (Zaghloul et al. 2007).

The noticed decline in Hb, RBCs and Ht values in the current
investigation may be attributed to the exposure of fish to pollu-
tants that cause either inhibition of erythrocyte production or
damage and bleeding in the gills. Destruction of mature RBCs
may also occur due to hypoxic condition which resulted from
declined Hb content in the cellular medium due to the cytotoxic
effects of pollutants on the hematopoietic tissue that induce the
production of reactive oxygen species (ROS). ROS destroy the cell
membrane of the erythrocyte and inhibit its functions making fish
suffering from anemia (Srivastava and Reddy, 2020).

The declined RBCs count, Hb content and Ht in the present
study are in agreement with earlier investigations proceeded on
Oreochromis niloticus (Baki et al., 2015) exposed to Perfluorooctane
sulfonate (PFOS), a persistent organic pollutant, Cichlasoma dimerus
(Vázquez and Lo Nostro, 2014) treated with Sublethal Concentra-
tions of 4-tert-Octylphenol, Oreochromis niloticus (Ada et al.,
2012) exposed to paraquat, Clarias albopunctatus Fingerlings
(Oluah et al., 2018) and Labeo rohita (Alaguprathana and
Poonkothai, 2021) exposed to methyl orange dye solution. Further,
Osman et al. (2018) showed a great reduction in Hb, RBCs and Ht of
fish after exposure to different pollutants under both field and lab
conditions.

White blood cells have an important role in the fish defense sys-
tem. Under stress conditions or exposure to toxicants, changes in
the number of white blood cells are considered natural responses
(Narra et al., 2017). In the current study, the significant elevation
in WBC count which linearly increased with detergent concentra-
tions gradient clarified that the presence of the detergent induces
the defense mechanism of the fish to counteract the stress of tox-
icant. The elevated WBCs in the current study agrees with studies
performed on Cichlasoma dimerus (Vázquez and Lo Nostro, 2014)
exposed to sublethal concentrations of 4-tert-Octylphenol, Clarias
albopunctatus Fingerlings (Oluah et al., 2018) treated with
sublethal concentrations of Ronstar and Labeo rohita



Fig. 4. Photomicrograph of Liver Sections Stained with Hematoxylin and Eosin in Fish of Different Groups.

Table 3
The Different Homologues (C10, C11, C12 and C13 in mgL-1) of the LAS Concentration in Muscles of Nile tilapia, Oreochromis niloticus.

Conc. mgkg�1 (W/Wt.) Total Conc.
(mg.kg�1)

Relative percentage %

Conc. mgL-1 C10 C11 C12 C13 C10 C11 C12 C13

0 0.06
±0.01

0.14
± 0.03

0.14
± 0.01

0.15
± 0.01

0.36
±0.03

17.18
± 4.03

39.03
± 5.70

39.43
± 0.04

4.35
± 1.72

10 0.27
±0.05

1.39
±0.16

1.81
± 0.04

0.22
± 0.04

3.68
± 0.03

7.23
± 1.55

37.66
± 3.96

49.26
± 1.42

5.86
± 0.99

40 1.28
± 0.17

4.09
± 0.44

3.76
± 0.51

0.35
± 0.04

9.47
± 0.81

13.77
± 2.97

43.06
± 0.91

39.54
± 2.01

3.64
± 0.06

60 2.56
± 0.33

4.95
±0.17

3.63
± 0.04

0.77
± 0.03

11.90
± 0.49

21.40
± 1.94

41.63
± 0.27

30.54
± 1.62

6.44
± 0.06

80 3.14
± 0.05

6.75
± 0.09

7.13
± 0.12

1.10
± 0.01

18.11
± 0.18

17.32
± 0.42

37.25
± 0.15

39.37
± 0.27

6.08
± 0.00

100 4.18
± 0.11

7.62
± 0.44

8.48
± 0.00

2.15
± 0.06

22.41
± 0.40

18.65
± 0.81

33.96
± 1.34

37.83
± 0.65

9.57
± 0.12

Fig. 5. Photomicrograph of Gills Sections Stained with Hematoxylin and Eosin in
Fish of Different Groups.
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(Alaguprathana and Poonkothai, 2021) methyl orange dye solution
treated.

Blood platelets participate in blood clotting and general defense
mechanisms. Exposure of fish to different water pollutants usually
inhibits the production of thrombocytes (Kayode and
Shamusideen, 2010). The current findings are harmonized with
that of investigations conducted on Oreochromis niloticus (Osman
et al., 2018) which recorded a remarkable reduction in thrombo-
cytes of fish exposed to pollutants and Cichlasoma dimerus
(Vázquez and Lo Nostro, 2014) which recorded a decline in blood
platelets count exposed to sublethal concentrations of 4-tert-
Octylphenol.

Alanine transaminase (ALT) and aspartate transaminase (AST)
are very useful biomarkers in toxicological studies which are natu-
rally located in the liver and other organs. They are enzymes that
play a significant role in proteins and amino acid metabolism in
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different body organs; they belong to the serum non-functional or
tissue-specific enzymes. Therefore, their increased presence in the
serum of fish may give information and evidence for injury of the
tissue or organ dysfunction (Osman et al., 2018). The recorded high
levels of serum ALT and AST after exposure to different concentra-
tions of detergents can be explained as the enzymes leaked into the
extracellular fluid due to cell damage which increase the perme-
ability of membranes and/or the increased synthesis of these
enzymes by the liver following the hepatic cell damage
(Fagbuaro et al., 2016). The increase in levels of ALT and AST in
the present study agrees with the studies performed on juvenile
Clarias gariepinus (Nkpondion et al., 2016) exposed to commercial
detergent (Ariel), Oreochromis niloticus exposed to pollutants
(Helal et al., 2018), pesticides (Adedeji et al., 2009), heavy metals
(Mekkawy et al., 2010), nonylphenols (Mekkawy et al., 2011) and
Labeo rohita (Alaguprathana and Poonkothai, 2021) treated with
methyl orange dye solution.

SOD, CAT and GSH are sensitive oxidative stress biomarkers that
are parts of antioxidant defense. They represent the major weap-
ons of the antioxidant system due to their inhibitory effects on
the formation of oxyradicals, so they detoxify and scavenge the
ROS and protect cells from damage by free radicals. They are acti-
vated under mild adverse stress and declined under more intense
stress (Abd El-Gawad et al., 2016). The reduced SOD and CAT in
the present study might be attributed to exposure of fish to high
concentrations of the detergent for 96 h that cause oxidative stress
leading to tight junction disruption followed by cytotoxicity which
increases the production of ROS which exploited SOD, CAT and GSH
in the detoxification processes (Kumar et al., 2016).

Glutathione is the major non-protein thiol of cells with low
molecular mass, so it is easily oxidized to rescue cells from free
radicals and other reactive species and protectthem them from
oxyradicals toxicity. Thus, cellular glutathione content in fish var-
ies with the concentration and period of exposure to oxidant pol-
lutants. Reduction in GSH concentration in this study might be
explained by the increased concentrations of detergents that
induce severe oxidative stress may be either due to suppression
of GSH levels in response to xenobiotics due to loss of adaptive
mechanisms or oxidation of GSH to GSSG to eliminate the pro-
duced ROS (Bradai et al., 2014). Decrease in the activity of CAT
and SOD and concentration of GSH in the present study was
harmonized with the investigations proceeded on Ruditapes phillip-
inarum treated with non-ionic surfactant NPEO (Alvarez-Munoz
et al., 2006), Solea senegalensis (Alvarez-Munoz et al., 2007), Anabas
testudineus (Nair et al., 2017), Danio rerio (Sobrino-Figueroa, 2013)
exposed to commercial detergents and LAS, Prochilodus lineatus
(Modesto and Martinez, 2010) exposed to Roundup Transorb
(RDT) which is a glyphosate-based herbicide containing a mixture
of surfactants, Oreochromis niloticus (Atli and Canli, 2010) exposed
to sublethal concentrations of metals and Melanotaenia fluviatilis
(Miranda et al., 2020) subjected to perfluorooctane sulfonate
(PFOS) and perfluorooctanoic acid (PFOA), which are a group of
persistent anthropogenic organic surfactants. However, the pre-
sent investigation conflicted with the findings of Shukla and
Trivedi (2018) which showed elevation in both SOD and CAT activ-
ities in Channa punctatus and the stimulating effect of LAS whether
was alone or additively with detergents on oxidative stress.

Protein plays a vital role in several biological functions and
serves as building blocks for cells . Decreased protein content
might be attributed to protein loss by either excessive proteolysis
or degradation or reduced protein synthesis during stress condi-
tions. Proteins are also used in the tricarboxylic acid (TCA) cycle
for energy production in stress conditions. Changes in the plasma
protein concentrations may be a result of increased production of
metallothionein which is a sequestering agent. Due to less amount
of carbohydrates in fish, it resorts to the utilization of protein as an
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alternative source of energy to fulfill its increased needs of energy
during stress (Prakash and Verma, 2019).

The reduction in protein content in the current study coincided
with results of Prakash and Verma (2018) who showed depletion in
protein levels in fish exposed to detergents and with studies car-
ried out on Labeo rohita subjected to detergent industry effluent
(John et al., 2019) and methyl orange dye solution
(Alaguprathana and Poonkothai, 2021), Oreochromis niloticus
exposed to copper sulfate (Mutlu et al., 2015), Clarias gariepinus
and Oreochromis niloticus exposed to textile dye industry wastew-
ater (Agbon et al., 2014), Cyprinus carpio with textile industrial
effluent (Dhanalakshmi et al., 2018) and in arsenic exposed fish
(Prakash and Verma, 2020) respectively.

The levels of total lipids, triglycerides and total cholesterol in
fish plasma are considered moderate sensitive biomarkers to water
pollution. The degree of sensitivity relies on types and levels of
contaminant, its mode of action and period of exposure (Sabae
and Mohamed, 2015). Cholesterol is the most remarkable compo-
nent of the body, considering an important constituent of cell
membranes. It also participates in the synthesis of both bile acids
and steroid hormones. Alterations in levels of cholesterol and
triglyceride in the blood indicate malfunction of the liver as the
main role of the liver is lipids homeostasis (Sayed et al., 2011).

The increased concentrations of total serum lipids, cholesterol
and triglyceride in the present study indicate disturbance of fat
metabolism which may be due to one or more of the following rea-
sons: infiltration of cholesterol and other lipids constituents due to
damage of cell membrane, retarded excretion of cholesterol by the
liver, increased production by the liver and other tissues due to the
effect of the pollutants, and thyroid dysfunction which blocks con-
version of cholesterol to sex steroids as a result of gonad dysfunc-
tion causing the release of cholesterol into the blood. Exposure of
fish to pollutants increases cholesterol and triglyceride concentra-
tions in the blood due to liver damage which inhibits enzymes that
convert cholesterol into bile acid. The rise in plasma triglycerides is
possibly due to the hypoactivity of lipoprotein lipase in blood ves-
sels which breaks up triglycerides (Metwally, 2009). Increased
serum lipid, cholesterol and triglyceride levels in the present study
reconciled with the investigations executed in Tor putitora
(Yousafzai and Shakoori, 2011), Claries gariepinus (Osman, 2012),
Oreochromis niloticus (Osman et al., 2018) caught from polluted
areas, Oreochromis niloticus exposed to copper sulfate (Mutlu
et al., 2015), pesticides and heavy metals (Fırat et al., 2011).

Fish swimming and movement slow down immediately with
the addition of toxicants (Chandanshive and Kamble, 2006). The
96 h LC50 for the Surf, Besto and Key detergents are 12.734,
77.624 and 32.292 ppm respectively to Rasboraelonga
(Palanicham and Murugan, 1991). The LC50 values of Ariel deter-
gent was 35 ppm for 48 h to freshwater teleost Oreochromis
mossambicus (Anilkumar et al., 1994). Mortality rate of fish Tilapia
sp. was 80 % at 50 ppm, while 100 % mortality was in 51 ppm of
detergent water (Prakash, 1996). The LC50 values of LAS for differ-
ent exposure periods (24 h, 48 h, 72 h and 96 h) were 0.48, 0.28,
0.18 and 0.03 ml/l respectively (Kumar et al., 2007). The 96 h
LC50 for two samples detergents were 120 mg /L and 23.5 mg /L
respectively to Det-I and Det-II (Chandanshive, 2013).

Study of liver histology considered the guideline for environ-
mental stress causing histopathological alterations which depend
on nature and concentration of contaminants and duration of
exposure. These alterations are probably due to cell necrosis and
degeneration of structural proteins in the membrane of the hepa-
tocytes resulted from vascular congestion of the blood vessels
and sinusoids that impair blood flow to all tissues. also, ROS which
produced due to exposure to surfactants resulted in hepatotoxicity
and hepatocyte necrosis (Ismail et al., 2017). The results agree with
Priya et al. (2016) who recorded hepatocyte morphological
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changes in fish, Tilapia Mossambica exposed to detergents repre-
sented in nuclei displacement and vacuolization. Also, with
Abbas et al. (2007) reported vascular degeneration with congestion
of main hepatic blood vessels and diffuse vascular degeneration in
Oreochromis niloticus treated with thiobencarb. As well as thinner
vascular walls, congestion and early fibrosis and slight degenera-
tive changes in some of the hepatocytes were noticed in liver of
Oreochromis niloticus exposed to Moringa oleifera seed extract for
96 h (Abbas and El-Badawi, 2014). While Doyins and Kafilat
(2020) recorded no histological alterations in liver histology of
Clarias gariepinus treated with sublethal concentrations of the anio-
nic and nonionic surfactants for 28 days.

Gills are a vital organ that performs important functions which
maintain fish life including ion osmoregulation and gas exchange,
but are usually susceptible to environmental pollutants due to
their direct contact. Therefore, gills are particularly sensitive to
adverse environmental conditions and different pollutants which
damage them (Mohamed et al., 2017). The current results agree
with Doyins and Kafilat, 2020 who observed erosion of the sec-
ondary lamellar in the gills of Clarias gariepinus treated with sub-
lethal concentrations of both AES and LAS for 28 days. And Abbas
et al. (2007) also demonstrated that Oreochromis niloticus treated
with thiobencarb showed clear edema of the lining epithelium in
cells of secondary lamellae and separation of the lining epithelial
cells from their capillary beds. Furthermore, hyperplasia and
lamellar fusion between the secondary lamellae and degeneration
changes and necrosis in the epithelial lining of the secondary
lamellae associated with congestion were noticed in gills of Ore-
ochromis niloticus exposed to Moringa oleifera seed extract for
96 h (Abbas and El-Badawi, 2014).

5. Conclusion

The present study revealed that exposure of Nile Tilapia, Ore-
ochromis niloticus to sub-lethal concentrations of detergent induce
various toxicological effects represented in enzymatic degradation,
biochemical parameters impairments, and histopathological alter-
ations of liver and gills. These findings confirm that the existence of
detergents in aquatic environments has severe impacts on fish
health making it liable to diseases and threaten its life.
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