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Abstract: Ghrelin and obestatin are two “sibling proteins” encoded by the same preproghrelin gene
but possess an array of diverse and complex functions. While there are ample literature documenting
ghrelin’s functions, the roles of obestatin are less clear and controversial. Ghrelin and obestatin have
been perceived to be antagonistic initially; however, recent studies challenge this dogma. While
they have opposing effects in some systems, they function synergistically in other systems, with
many functions remaining debatable. In this review, we discuss their functional relationship under
three “C” categories, namely complex, complementary, and contradictory. Their functions in food
intake, weight regulation, hydration, gastrointestinal motility, inflammation, and insulin secretion
are complex. Their functions in pancreatic beta cells, cardiovascular, muscle, neuroprotection, cancer,
and digestive system are complementary. Their functions in white adipose tissue, thermogenesis,
and sleep regulation are contradictory. Overall, this review accumulates the multifaceted functions
of ghrelin and obestatin under both physiological and pathological conditions, with the intent of
contributing to a better understanding of these two important gut hormones.

Keywords: ghrelin; obestatin; GHS-R; GPR39; gastric peptides

1. Introduction

The process of deriving multiple protein isoforms from a single gene is referred to as
alternative splicing. Alternative splicing is a major mechanism contributing to the protein
variants of post-transcriptional and post-translational modification [1]. Many protein
isoforms are encoded by the same genes but exhibit distinctive properties. For example,
the BCL2L1 gene encodes two isoforms: the long isoform inhibits apoptosis, while the
short isoform promotes it. Genome sequencing has revealed that the number of protein-
coding genes does not match the complexity of an organism [2]. Isoforms derived from the
same gene are known to interact with different signaling pathways, leading to distinctive
functions. The extent to which these “sibling proteins” are present in organisms may serve
as an explanation for the inherent complexity between mammals and simple organisms.

Gastrointestinal peptides ghrelin and obestatin are encoded by the same gene, ghrelin.
Ghrelin regulates a wide range of biological functions, such as appetite control, energy
expenditure, gastrointestinal (GI) motility, gastric acid secretion, insulin secretion, etc. [3–7].
The circulating levels of ghrelin and obestatin exhibit a differential profile during fasting;
ghrelin levels increase while obestatin levels decrease [8]. Obestatin affects the gastroin-
testinal system, pancreas, adipose tissues, and cardiovascular system [9]. The key functions
of ghrelin and obestatin are known to be antagonistic: ghrelin enhances appetite and
increases food intake; in contrast, obestatin suppresses appetite and reduces food intake.
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However, while this contradictory nature was once regarded as a common phenomenon,
recent evidence reveals that the functions of ghrelin and obestatin are much more complex.
This review recapitulates the gene structure, expression, and functional diversity of these
two “sibling proteins” under both physiological and pathological conditions.

2. Gene Structure, Post Translational Processing, Expression, and Putative Receptors

Ghrelin and obestatin are derived from the same ghrelin gene following post-translational
cleavage of the 117 amino acid pre-proghrelin peptide [10]. Mature pre-proghrelin is then
post-translationally modified by signal peptidase, prohormone convertase 1/3 (PC 1/3) and
carboxypeptidase-B like enzyme into 28 amino acid unacyl ghrelin (UAG) and 23 amino
acid obestatin; the unacyl ghrelin peptide is further post-translationally modified into acyl
ghrelin, also known as ghrelin (Figure 1). Acylation of ghrelin is potentiated by ghrelin
O-acyltransferase (GOAT) [11]. Growth Hormone Secretagogue receptor (GHS-R), a G-protein
coupled receptor (GPCR), is the biologically relevant receptor for ghrelin [12–14]. The acy-
lation of ghrelin is essential for its binding to GHS-R [15]. Traditionally, acyl ghrelin has
been considered the biologically active isoform, whereas UAG has been considered the bi-
ologically “inactive” isoform [16]. Subsequent studies have revealed that UAG also has
biological functions, although the receptor of UAG is still unknown [17]. Obestatin is pro-
duced by the post-translational modification of the same pre-proghrelin peptide following
post-translational amination of the C-terminal [3], which is essential for the stable conforma-
tion of obestatin [9,18]. Currently, the receptors of obestatin and the enzymes involved in
obestatin processing are still unclear.

Figure 1. Post-translational processing of preproghrelin to unacyl ghrelin, ghrelin, and obestatin. The
figure was modified from Delporte [10].

Ghrelin is predominantly secreted by the GI system (e.g., stomach, duodenum, and
intestine), and lower levels of ghrelin are detected in many other tissues, such as the brain,
pituitary, pancreatic islets, kidney, lung, heart, and ovaries [19,20]. Similarly, obestatin is
also widely expressed in a variety of tissues, such as the gastrointestinal tract, skeletal
muscle, adipose tissue, lung, liver, pancreatic islets, mammary glands, and testis [19–24].
Both ghrelin and obestatin exist in plasma, saliva, breast milk, and semen [25]. In contrast
to ghrelin, the expression of the ghrelin receptor GHS-R is much more restricted. High
levels of GHS-R expression can be detected primarily in the pituitary and brain but to a
much lesser extent in peripheral tissues [15,26]. Interestingly, GHS-R expression in some
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tissues appears to be age-dependent. We have reported that GHS-R expression is very low
in the brown adipose tissue (BAT) and white adipose tissue (WAT) of young mice, but it is
increased in these tissues of older mice [8,14,26].

Although GHS-R is the recognized receptor for ghrelin, the receptor for obestatin
has been an ongoing debate. G-protein coupled receptor 39 (GPR39), glucagon-like
peptide-1 receptor (GLP-1R), and GHS-R have been proposed to function as receptors
for obestatin [3,27,28]. However, the in vivo functional relevance of these putative recep-
tors has not been determined. Zhang et al. reported that obestatin is the cognate ligand for
GPR39, based on the observation that obestatin induces c-fos expression in wild-type mice
but not in GPR39-null mice [3]. Other reports show that obestatin inhibits lipogenesis in
adipocytes [29] and influences HL-1 cardiomyocyte functions via GPR39 [30]. However,
some studies dispute that obestatin is the endogenous ligand for GPR39, due to a lack
of confirmed signal transduction and specific binding on GPR39-expressing cells [27,31].
Interestingly, Zn2+ has been shown to activate GPR39 in various tissues, including pancreas,
bones, neurons, salivary glands, colon, skin, heart, and prostate cancer cells [32–38]. A
recent review described the multiple roles of GPR39 in brain homeostasis, for example,
maintaining excitatory/inhibitory tone of neural circuit and vascular tone of microcircula-
tion, regulating inflammatory tone, and functioning as a positive allosteric agonist [39]. In
intestinal L- and K-cells, oral administration of Zn2+ induces activation of GPR39, which
stimulates GIP secretion and leads to increased insulin secretion and glucose tolerance [40].
Even at a physiological concentration, Zn2+ released from injury sites or vesicles is suffi-
cient to activate GPR39 [41,42]. Some recent studies have further suggested that Zn2+ at
physiological conditions acts as a modulator of GPR39 [39]. There is evidence that Zn2+

binding to GPR39 results in receptor activation, subsequently, stimulating downstream
signaling mediators, such as Gαq, Gαs, Gα11/12, and β-arrestin [38]. All the studies above
are in support of Zn2+ as the endogenous ligand of GPR39.

Others postulate that obestatin’s satiety and anorectic properties are potentiated via
binding with incretin receptors, such as the glucagon-like peptide-1 receptor (GLP-1R). Sim-
ilar to obestatin, incretins reduce GI motility, promote satiety, and reduce food intake [43,44].
GLP-1R has been reported to bind to obestatin in human beta cells to promote islet sur-
vival [27]. Obestatin upregulates GLP-1R expression and increases beta-cell survival, and
the effect of obestatin on islet survival can be blocked by GLP-1R antagonists. However,
studies utilizing INS-1 pancreatic beta cells and HEK293 kidney cells overexpressing GLP-
1R failed to detect obestatin interaction [45], which questions whether GLP-1R is indeed the
biologically relevant receptor for obestatin. We have reported that obestatin can function via
GHS-R in pancreatic beta cells during hyperglycemic conditions because we observed that
GHS-R ablation abolishes obestatin-induced insulin secretion [28]. Our finding suggests
that obestatin’s stimulatory effect on insulin secretion is mediated by GHS-R; however,
obestatin may not necessarily directly bind to GHS-R. It is possible that obestatin affects
the downstream signaling of GHS-R or interacts with a heterodimer of GHS-R. Overall, to
date there is still no consensus on the obestatin receptor.

3. Obestatin and Ghrelin: Complex, Contradictory, and Complementary

It has been generally accepted that the functions of obestatin and ghrelin are antago-
nistic. This theory was propagated following the discovery that obestatin opposes ghrelin’s
effects on food intake [3]. While many studies support the opposing roles in some sys-
tems, other studies have revealed synergistic and complementary roles in other systems.
This review discusses the functional complexity of ghrelin and obestatin by exploring the
3 “C”—the complex, complementary, and contradictory functions—and aims to enhance
our understanding of the biology and applications of these important gut hormones.
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3.1. Complex Functions
3.1.1. Food Intake, Weight Regulation, GI Motility, and Hydration

The emergence of obestatin as the antagonistic ‘sibling’ of the ghrelin gene has inspired
researchers to postulate its potential therapeutic uses in combating obesity-related diseases.
The decision to name the peptide ‘obestatin’ was based on the proposed function of
‘obesity suppression’. However, further research on the antagonistic functions revealed a
more complex picture. Obestatin was initially studied in relation to ghrelin’s well-known
functions in food intake, weight regulation, and gastrointestinal motility [3]. While ghrelin
is primarily known for its stimulatory effect on food intake, weight gain, and gastric
emptying [12,46,47]; obestatin has been reported to inhibit food intake, reduce bodyweight,
and suppress jejunal motility [3]. The suppressive effects on food intake and the reduction
in weight gain were observed under both acute and chronic exposures to obestatin. Thus,
while the antagonistic relationship is supported in some studies [48–52], other studies do
not substantiate this conclusion [31,45,53–58].

A recent report showed that chronic administration of obestatin to high-fat diet-
fed rats was able to prevent/protect the occurrence of non-alcoholic fatty liver disease
(NAFLD) [59]. They observed improvements in hepatic insulin signaling, reduced hepatic
lipid accumulation, increased circulating adiponectin, inhibited ghrelin acylation, and
reduced food intake/body weight. It has also been reported that a combination of obestatin
and CCK8, a satiety signal produced in response to dietary fat, elicits significant body
weight reduction by 29%, while obestatin alone only reduces bodyweight by 13% [60]. A
report demonstrated that the truncated version of obestatin is more effective in inhibiting
food/water intake [61], which may explain the discrepancies in some studies. These
confounding results may be due to several factors, such as the use of human or rat/mouse
obestatin, preparation of peptide, site of administration (central/peripheral), the strain of
species, time of day of administration, nutrition status (fed/fast), etc.

Interestingly, it has been suggested that any appetite-suppressing effect of obestatin is
secondary to its ability to inhibit water intake due to the suppression of vasopressin [62,63].
It was initially reported that obestatin cannot cross the blood–brain barrier, and it is quickly
degraded in circulation [64,65]. Obestatin administered via intracerebroventricular (ICV)
delivery was found to influence the subfornical organ, a group of neurons responsible for
fluid regulation. This suggests that brain-derived obestatin [66], not peripheral obestatin,
plays a dominant role in the regulation of hydration in mice [63]. There are conflicting
results on whether ghrelin influences water intake. The administration of ghrelin has been
shown to inhibit water intake following an acute stimulus of peripheral hypertonic saline
and central angiotensin II (AngII), but the effect disappears following a 24 h dehydration
period [67]. In summary, the inability to consistently replicate the antagonistic functions of
obestatin challenges the conclusion that obestatin exclusively functions as an antagonistic
rival of ghrelin.

3.1.2. Diverse Expression Profiles under Fed and Fasted Conditions

Another area of contention is the role of obestatin in the fed and fasted states. Obestatin’s
role has been investigated to a lesser degree than that of ghrelin, as its primary functions
under fed/fasted conditions remain controversial. Zhang et al. reported that, in response
to a 48 h fast and refeeding in rats, obestatin concentrations stayed constant in both fasted
and fed states [3]. Another study showed that ghrelin and obestatin are elevated in rats
after 48 h of fasting, and are decreased by feeding [68]. Further, it was demonstrated that
plasma obestatin in mice is significantly decreased, whereas plasma acyl ghrelin is increased
following a 24 h fast [69]. We found that overnight fasting increases acyl ghrelin but not
unacyl ghrelin in young and middle-aged mice, but not in old mice, while overnight fasting
decreases obestatin in all ages [8]. Still, others have reported that a 24 h fast in mice results
in a similar elevation of both ghrelin/obestatin, showing an inverse relationship with in-
sulin/leptin [70]. These differences may depend on the species used, the duration of the
fast, and the metabolic states of the animals tested.
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Ghrelin signaling has been well studied in severe undernutrition and weight loss
conditions, such as anorexia nervosa (AN) [71]. In humans, ghrelin levels were significantly
elevated in AN patients [72–75]. In a study comparing AN patients with BMI-matched
healthy subjects, it was shown that AN patients have doubleted fasting plasma ghrelin
levels, suggesting that ghrelin might be important in the pathogenesis and development of
AN [76]. A similar observation was also made in animal models of anorexia nervosa [77,78].
Further, in AN patients that regained weight, there was a 25% reduction in fasting plasma
ghrelin [72], normalized ghrelin [79], or ghrelin levels even below control subjects [80].
Similar to ghrelin, obestatin concentrations are diminished following a glucose bolus in
non-anorexic women but remain elevated in anorexic women [81,82] and in AN patients
with restrictive food behavior (AN-R), while they decrease in AN patients who develop
episodes of bulimia (AN-BP) [83]. All ghrelin-related peptides (acyl/unacyl ghrelin and
obestatin) and glucose levels are elevated in anorexic individuals, while plasma insulin lev-
els remain low [84]. Other studies have reported similar elevations of obestatin in response
to anorexia [85]. Interestingly, in subjects with higher body mass indexes (BMIs), both pep-
tides are significantly reduced under fasting conditions, suggesting their involvement in the
regulation of energy balance [84]. A high-carbohydrate breakfast also induces a decrease in
plasma ghrelin and obestatin in AN patients. Ghrelin/obestatin ration is also lower in AN
patients compared to controls in the postprandial period [82]. However, Behçet’s disease
patients exhibit high levels of circulating obestatin during fasting and reduced prevalence
of obesity, suggesting a crucial role of obestatin in energy regulation [86]. Additionally,
obestatin expression in human gastric mucosa is significantly diminished in abdominal
obesity with distended waists and normal BMI, correlating with increased insulin resistance
and elevated cholesterol and triglycerides [87]. This phenomenon is reflected in obese
children, where circulating obestatin is lower compared to controls, and is associated with
increased fasting insulin, LDL and leptin [88]. The levels of ghrelin and obestatin in a
mixed group of obese males and females suggest that while both peptides are reduced in
circulation, the ratio of ghrelin/obestatin is increased [89,90]. However, other studies have
found that in obese women, obestatin levels are elevated, ghrelin levels are reduced, and
the ghrelin/obestatin ratio is decreased [90]. This observed reduction in ghrelin/obestatin
ratio with the obese cohorts was further substantiated by a meta-analysis study, which
illustrated the relationship between the ghrelin-related peptides in normal weight and
obese subjects following an overnight fast [91]. Nine studies with over 500 participants
found that obestatin in normal subjects was, on average, 64.19 pg/mL higher than obese
subjects. Twenty-one studies with over 1000 participants found that the total ghrelin of
normal weight subjects was, on average, 145.53 pg/mL higher than obese subjects. Fur-
thermore, in 5 studies including over 200 participants, the ratio of ghrelin/obestatin is
2.49 pg/mL higher than in normal-weight subjects. These results show that the obestatin,
acyl-ghrelin, and total ghrelin levels are significantly higher in normal-weight subjects than
obese subjects, suggesting an important role for ghrelin-related peptides in maintaining
a healthy bodyweight. In the current literature, there is no consensus regarding the rela-
tionship of ghrelin/obestatin under either fed or fasted states, but there is agreement on
the reduction of the ghrelin/obestatin ratio during obesity and elevation of obestatin in
anorexic individuals.

3.1.3. Blood Pressure, Cardiovascular Disease, and Inflammation

The literature surrounding obestatin’s role in cardiovascular health and inflammation
is currently in its nascent stages. Fasting plasma obestatin levels are negatively correlated
with systolic blood pressure in humans [92], but obestatin levels are increased in hyperten-
sive rats [93]. However, hypertensive rats exposed to a range of obestatin concentrations
experienced no difference in mean arterial pressure, heart period, or baroreflex sensitiv-
ity [94]. Moreover, obestatin is thought to regulate blood pressure, as its concentration
is positively correlated with systemic blood pressure in women with normal pregnancy
and pregnancy-induced hypertension [95]. Both ghrelin and ghrelin/obestatin ratios are
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significantly lower in patients with mild-to-moderate untreated hypertension compared
to normal controls [96]. As mentioned earlier, obestatin inhibits dehydration-induced
vasopressin secretion, consequently influencing electrolyte homeostasis and blood vol-
ume [62,63]. The administration of exogenous obestatin to obese and lean subjects has
been shown to result in improved forearm blood flow in both groups. This vasodilatory
effect is interpreted as being due to obestatin’s ability to enhance nitric oxide activity [97].
Ghrelin’s levels in circulation have been shown to be inversely corelated to blood pres-
sure [98], and exogenous administration of ghrelin reduces blood pressure in normotensive
animals [99], healthy people [100], animals and people experiencing heart failure [101,102],
and animals with hypertension [103]. Additionally, acyl-ghrelin administration in healthy
males is found to improve heart rate, blood pressure, body surface temperature, and res-
piratory rate via stimulation of parasympathetic tone. In summation, while ghrelin is
known to be inversely related to blood pressure, the physiological relevance of obestatin to
blood pressure regulation is complicated by differences in species, health status and sex
difference [98]. While ghrelin lowers blood pressure in animals [103] and humans [104],
exogenous obestatin improves vasodilation in lean and obese human subjects [97] but has
no effect on hypertensive rats [94]. Thus, while there are promising revelations concerning
obestatin’s effect on blood pressure, the literature on that has yet to reach a consensus.

The role of obestatin in cardiovascular disease (CVD) and inflammation is another
area that deserves further investigation, as it may serve as an important biomarker for the
severity and progression of chronic inflammatory diseases. Obestatin has been reported to
elicit cardioprotective properties, and speculation has arisen over possible clinical use of the
peptide as a biomarker for cardiac-related morbidities [30,63,105–107]. Indeed, obestatin
levels correlate to the onset of diabetic nephropathy (hyperglycemia-induced damage of
the kidneys) [108]. A sign of emerging nephropathy is the inability of the kidneys to prop-
erly filter the blood, which is reflected by the increased appearance of microalbuminuria
(albumin in the urine) or proteinuria (protein in the urine). Microalbuminuria is a strong
independent indicator of cardiovascular risk in those with or without T2D [109]. In T2D
patients with microalbuminuria, there are significantly higher concentrations of serum
obestatin than in T2D patients without microalbuminuria. This suggests that increased
levels of obestatin in T2D may be tied to the progression of diabetic nephropathy, as well
as cardiovascular risk. However, other studies have reported low obestatin associated
with obesity, insulin resistance, and visceral adiposity [87,88,91]. An explanation for this
phenomenon could be that, as T2D becomes more severe, obestatin levels increase as a
compensatory mechanism for beta-cell preservation [27,110,111]. Beta-cell compensation
has been reported in cases of pancreatitis [112]. Thus, rising obestatin levels may serve as
an important biomarker for the emergence of diabetic nephropathy and a risk indicator for
adverse cardiovascular events.

Interestingly, obestatin also plays a significant role in the later stages of chronic kidney
disease. It is noteworthy that diabetic nephropathy precedes chronic kidney disease, which
is associated with a decreased glomerular filtration rate. For each ng/mL increase in serum
obestatin, there is an associated decrease in mortality among maintained hemodialysis
patients (MHD) [106]. Incidence of death from cardiovascular issues is correlated with
increased levels of obestatin, and this association is even more pronounced in patients
>71 years old. The interaction between low obestatin and high IL-6 is associated with an
increased risk of mortality causes (synergy index [SI] = 5.14), as well as cardiovascular-
related deaths ([SI] = 4.81). The conclusion of this study suggests that obestatin is a
prominent biomarker for predicting the survivability of MHD patients. The correlation of
simultaneous elevation of obestatin and kidney disease progression suggests that obestatin
may have a compensatory role in attenuating the severity of kidney disease.

There are also reports showing that the combination of low obestatin and high TNF-α
significantly increases the mortality of MHD patients [84]. Furthermore, in vitro work
suggests that, in the absence of TNF-α, obestatin may be atherogenic due to its ability to
increase oxidized-LDL uptake in macrophages [113]. This results in foam cell formation,
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which is a hallmark of atherogenesis. Conversely, obestatin suppresses vascular cell ad-
hesion molecule-1 (VCAM-1) expression in the presence of TNF-α, effectively eliciting
an anti-inflammatory effect. This result suggests that obestatin-induced modulation of
atherogenesis is dependent on inflammatory status. This reinforces the notion that obestatin
acts as a compensatory mechanism in response to inflammatory conditions. These stud-
ies describe an interesting phenomenon: high levels of obestatin in T2D may imply the
emergence of diabetic nephropathy [108], as an indicator of increased cardiovascular risk,
while high levels of obestatin in patients undergoing chronic hemodialysis may reflect
enhanced survivability and CVD-related mortality [106]. Intriguingly, it has been observed
that obestatin increases the accumulation of pro-inflammatory macrophages under normal
conditions [113] but delays the onset of atherogenesis under elevated TNF-α condition and
reduces the mortality risk of hemodialysis patients [106,107]. These contextual functions
are extremely complex, warranting further investigation to determine whether obestatin
can be used as a biomarker to assess the progression of cardio-renal disease.

In comparison, ghrelin’s role in CVD and related morbidities is better documented.
The beneficial effects of ghrelin regarding the cardiovascular system include enhancing
myocardial contractility, reducing mean arterial pressure/vasodilatation, attenuating heart
failure, improving ventricular remodeling, and protecting myocardium from ischemia
and reperfusion injury [114–116]. Increased angiogenesis following ghrelin administra-
tion in rodent models via activation of the pro-survival Akt—vascular endothelial growth
factor—Bcl-2 signaling cascade has also been reported [117]. Ghrelin treatment reduces
inflammatory responses, apoptosis, and oxidative stress induced by cardiopulmonary
bypass (CPB) and preserves the cardiac pumping function via GHS-R–Akt signaling [118].
Ghrelin treatment in a rat model of myocardial infarction (MI) results in increased vascular
endothelial growth factor (VEGF) expression and enhanced angiogenesis [119]. Addition-
ally, systemic ghrelin administration increases VEGF expression but decreases nitric oxide
(NO) in diet-induced obese mice [120]. The literature surrounding ghrelin’s role in CVD is
predominantly in support of the attenuation of symptoms and damage, while obestatin’s
role is still largely not well defined.

3.1.4. Insulin Secretion

The roles of ghrelin and obestatin in energy homeostasis are well established and
recognized as orexigenic or anorexic peptides, respectively; studies of these two peptides
on insulin secretion are less established. Obestatin has been shown to modulate glucose-
stimulated insulin secretion [27,28,121,122]. We have shown that obestatin increases insulin
secretion using in vitro, ex vivo, and in vivo models and revealed that obestatin’s stimula-
tory effect on insulin secretion is GHS-R dependent [28]. Others reported that obestatin
promotes insulin release from islets with low or no glucose [27]. Interestingly, Egido et al.
reported that obestatin potentiates a dual effect on insulin secretion [121]. They reported
that insulin is stimulated under low glucose concentrations, while it is inhibited under high
glucose. Ample evidence shows that ghrelin inhibits insulin secretion in animals [123–125],
and the blockade of ghrelin enhances insulin secretion and ameliorates the development
of diet-induced glucose intolerance [126]. We reported that ghrelin deletion increases
glucose-induced insulin secretion and improves glycemic control in leptin-deficient ob/ob
mice by reducing uncoupling protein 2 (UCP2) in pancreatic islets [127]. In summation,
the role of obestatin in glucose-stimulated insulin secretion is still contested and requires
further investigation, while ghrelin’s insulinostatic properties are better established.

3.2. Complementary Functions
3.2.1. Pancreatic Beta Cell Protection

The convergence of the synergistic effects of ghrelin and obestatin is best exemplified
by their complementary roles in preserving the function of pancreatic beta cells. Both ghre-
lin and obestatin are expressed in the fetal and adult endocrine pancreas, suggesting that
they may regulate the development and function of pancreatic islets [128]. Granata et al.
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reported that treatment with obestatin enhanced the expression of genes associated with
insulin biosynthesis, beta cell survival/differentiation, and upregulation of GLP-1R [27].
Obestatin has been shown to improve beta cell function and survival via activation of the
cAMP response element binding (CREB) protein and increased expression of pancreatic and
duodenal homeobox 1 (Pdx1), which is important in glucose sensing, β-cell differentiation,
and insulin production. Obestatin also increases the expression of glucokinase and insulin
receptor substrate-2 (IRS-2), which has been implicated in compensatory beta-cell hyper-
plasia in response to high-fat diet-induced insulin resistance [27,129,130]. This highlights
the potential autocrine/paracrine role of obestatin. Furthermore, obestatin treatment in
the culture of human islets has led to activation of CREB, a primary regulator of β-cell
survival and glucose homeostasis, as well as enhanced expression and phosphorylation
of IRS-2 mRNA [131]. Obestatin is also implicated in driving pancreatic development
and regeneration, suggested by the activation of fibroblast growth factor receptors, notch
receptors, and neurogenin-3, resulting in increased insulin gene expression and the forma-
tion of pancreatic islet-like clusters [110]. Obestatin is reported to be secreted by human
pancreatic islets and pancreatic beta cell lines, which provide protective effects from star-
vation, inflammatory insult, and apoptosis [27,111]. Furthermore, it is suggested that the
anti-apoptotic property of obestatin is due to increased islet vascularization [111]. In rats
in response to acute pancreatitis, obestatin increases the blood supply to the pancreas,
reduces inflammation, decreases digestive enzyme activity, and improves pancreatic regen-
eration [132,133]. Increased circulating obestatin is observed in patients experiencing acute
pancreatitis, suggesting a compensatory mechanism [112].

Additionally, both ghrelin and obestatin have been shown to protect rats from strepto-
zotocin (STZ)-induced beta cell death, evident of increased islet area, islet number, beta-cell
mass, upregulated insulin and PDX1 mRNA, and improved glucose metabolism [134].
Moreover, ghrelin is reported to potentiate a trophic effect, protecting β-cells from dam-
age in an experimental model of T1DM [7,135]. T1DM rats treated with ghrelin have
higher survival rates (68% compared to 11%) and exhibit improved glucose tolerance and
insulin secretion [136]. It is suggested that the effect is due to reduced lymphocyte infiltra-
tion, enhanced beta cell proliferation, and increased neogenesis-driven Pdx1 expression.
This evidence suggests that ghrelin may have therapeutic potential for type 1 diabetes.
Obese and diabetic mice administered exogenous ghrelin before meals have been shown
to significantly increase GLP-1, which leads to improved glucose tolerance and insulin
secretion [137]. In summary, ghrelin and obestatin potentiate similar protective effects
on islet function through their own respective pathways; further investigation of their
roles in the endocrine pancreas is warranted as ghrelin and obestatin may provide novel
therapeutic options for diabetes.

3.2.2. Muscle Function

Muscle function and protection are impacted by both ghrelin and obestatin. In re-
sponse to muscle injury, the ghrelin gene is upregulated, suggesting that both obestatin and
ghrelin are integral to muscle maintenance and repair [23,138]. Obestatin directly stimulates
muscle regeneration via the increased activity of satellite cells in several models of muscle
injury [139,140]. Obestatin exerts a significant effect on muscle regeneration via an au-
tocrine mechanism to control the GPR39-mediated myogenic differentiation program [23].
The expression of myogenic genes in rats is upregulated following obestatin infusion,
supporting the role of obestatin in muscle regeneration. Overexpression of both obestatin
and GPR39 in skeletal muscle improves regeneration after acute muscle injury, exhibit-
ing upregulation of myogenic factors (Pax7, myogenin, MyoD) and increasing myofiber
size [139]. Additional findings further revealed that intramuscular injections of obestatin
improve muscle regeneration via upregulation of VEGF/VEGFR2, microvascularization,
and inhibition of myostatin [139]. In skeletal muscle, obestatin not only promotes regen-
eration but also plays a role in fiber type determination; obestatin-treated muscle shows
upregulation of Mef2 [141]. Obestatin promotes the activity of protein kinase D (PKD) and
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Ca2+/calmodulin-dependent protein kinase (CAMK) to promote the phosphorylation of
class II HDACs. This signaling activation results in the translocation of class II HDAC
from the nucleus to cytosol, subsequently activating Mef2 and Mef2-dependent genes, as
well as transcriptional factors regulating type 1 slow-twitch fibers. Furthermore, obestatin
enhances the expression of PGC1-α, a master regulator of mitochondrial biogenesis and
oxidative metabolism, which is reflected by the increase in Cytochrome C, uncoupling
protein 3 (UCP3), and Carnitine palmitoyltransferase 1 (CPT1) [141]. Interestingly, while
AMPK regulates mitochondrial biogenesis and fiber type determination, the administration
of obestatin does not affect AMPK; instead, it potentiates the Akt/mTOR signaling pathway
to promote myotube growth [141]. Obestatin attenuates muscle injury via regeneration of
the satellite cell pool [140], enhances the expression of myogenic genes [139,142], increases
micro-vascularization (via upregulation of VEGF/VEGFR), enlarges myofiber size [139],
and affects fiber type determination [141]. These findings collectively suggest that obestatin
plays an important role in muscle mass maintenance and fiber type determination, which
may be a promising therapeutic strategy for muscle wasting diseases.

Similarly, ghrelin possesses its own muscular-protective effects via different pathways.
The role of ghrelin in regulating muscle function is based on its prevention of atrophy
and its anti-inflammatory effects. Ghrelin indirectly increases muscle mass by stimulating
GH/Insulin-like growth factor-1 axis, enhancing food intake, and promoting positive en-
ergy balance in cachexic mice [143]. Ghrelin attenuates cachexia in multiple pathological
conditions, such as heart failure, chronic obstructive pulmonary disease, Huntington’s
disease, and thermal injury [102,143–147]. In C2C12 myoblasts, ghrelin administration
promotes the differentiation and fusion of myocytes [148]. Remarkably, the muscle wasting
condition of fasting- and denervation-induced muscle atrophy is prevented by ghrelin treat-
ment via activation of Akt/mTOR signaling [149]. We showed that ghrelin protects against
fasting-induced muscle atrophy in aging mice [150]. Others reported that muscle injury
in ghrelin−/− mice exhibits significantly impaired muscle regeneration due to diminished
satellite cell pool and self-renewal [151]. Additionally, attenuated muscle regeneration was
postulated due to a lack of anti-inflammatory properties potentiated by ghrelin-related pep-
tides via GHSR-independent mechanisms [151]. The regenerative properties of ghrelin are
also observed in models of Huntington’s disease (HD). Daily injection of ghrelin preserves
weight, reverses the expression of catabolic genes, improves skeletal morphology, and
mitigates behavior deficits associated with HD pathogenesis in R2/6 mice [147]. In the case
of muscle function, ghrelin attenuates HD-induced skeletal muscle loss, maintains muscle
mass during fasting via Akt/mTOR signaling [149], and promotes muscle regeneration
through its anti-inflammatory properties [151]. In summary, both ghrelin and obestatin are
essential in the protection, regeneration, and maintenance of skeletal muscle mass, and the
effects are mediated via both common and distinctive signaling pathways.

3.2.3. Neuronal Function/Injury and Parkinson’s Disease

As previously discussed, both peptides elicit similar beneficial effects in certain tissues
but do so via different mechanisms; this is evident in the regulation of neuronal function,
as well as their response to injury. For example, centrally administered obestatin is re-
ported to improve memory retention in rats via interaction with the hippocampus and
amygdala [51]. Ghrelin treatment improves memory retention, synaptic plasticity [152],
memory task performance, and long-term potentiation, as well as increases dendritic spine
density in the hippocampus and hypothalamus [153]. It has been suggested that obestatin
improves cerebral circulation via enhanced nitric oxide synthase expression in microvascu-
lar endothelial cells [154], which subsequently leads to improved vasodilation of central
arteries [155]. This vasodilatory function of obestatin also exists in the systemic circulation
system [156]. Interestingly, while ghrelin improves endothelial cell nitric oxide production
in systemic arteries, it does not function in the same way in the endothelial cells of central
arteries [155]. In addition, obestatin has been proposed as an anti-seizure therapy, as it
was found to improve the neuronal survival and memory function of normal and epileptic



Biomolecules 2022, 12, 517 10 of 26

mice via attenuation of lipid peroxidation and oxygen radicals [157]. Similarly, ghrelin is
implicated in the attenuation of epileptic seizures by interacting with neuropeptide Y (NPY)
or GABA neurons [158].

Interestingly, both peptides have been reported to ameliorate the progression and
symptoms of Parkinson’s disease (PD) via improvements in dopamine neurons. PD patho-
genesis relies on the degeneration of dopamine neurons located primarily within the
substantia nigra [159]. Both peptides seem to produce similar neuroprotective effects
in dopaminergic cell lines. Obestatin treatment exhibits neuroprotective properties in
dopaminergic MES23.5 cells and in neurotoxin-induced injury [15]. The protective effects
of obestatin are not due to the inhibition of apoptosis but due to an enhancement of prolif-
eration, which differs from the reported anti-apoptotic properties of ghrelin in MPP-treated
MES23.5 cells [160]. The PD pathology of the degeneration of dopamine neurons within
retinal cells results in impaired vision. Obestatin treatment induced anti-apoptotic effect
in the retinal ganglion cell line (RGC-5) exposed to H2O2 oxidative stress, resulting in
increased expression of Bcl-2 [161]. Obestatin potentiates the protective effect via the acti-
vation of TrkB-Akt/ERK1/2 signaling; the administration of exendin (GLP-1R antagonist)
partially inhibits this protective effect. These results suggest that obestatin has therapeutic
potential for PD. Similarly, ghrelin treatment also elicits a protective effect in RGC-5 cells
exposed to rotenone [162]. Ghrelin treatment resulted in the increased expression of Bcl-2,
attenuation of apoptosis, and improvement of mitochondrial function by modulating GHS-
R/Akt/mTOR signaling. Collectively, these findings suggest that both peptides influence
memory retention, vasodilation, and neuronal survival in several models of injury. These
reports substantiate the notion that obestatin and ghrelin act complementarily to potentiate
similar benefits via diverse mechanisms.

3.2.4. Cancer

Currently, the understanding of obestatin in cancer is limited. Most of the research
has focused on the impact of obestatin on gastric cancers. Administration of obestatin to
human gastric cancer KATO-III cells results in enhanced cell proliferation via activation of
ERK1/2 signaling pathway [163]. The unidentified obestatin receptor is thought to interact
with PI3K, then PI3K signaling subsequently activates a novel PKCε, responsible for MAPK
activation. Álvarez et al. reported that obestatin-induced proliferation in KATO-III and
gastric adenocarcinoma cells (AGS) is medicated by the activation of GPR39-facilitated
recruitment and activation of Src [164]. Src promotes the activation of metalloproteinases
(MMPs) to stimulate EGFR, which subsequently activates PI3K. The activation of PI3K
turns on Akt, which inhibits mTORC1, followed by downstream activation of p70S6K1
and promotion of cell proliferation. More recently, the obestatin/GPR39 system has been
implicated in the pathogenesis of gastric adenocarcinomas, suggesting that obestatin
regulates human gastric adenocarcinoma cells via GPR39 [165]. The immunostaining
of Ki-67, a marker of cellular proliferation, suggests that obestatin may interact with
GPR39 to increase AGS proliferation, exhibiting a protective effect. GPR39 activation of
the β-arrestin/MMP/EGFR/Akt/mTOR pathway may be partially responsible for the
morphological and functional changes seen in AGS cells [165]. Taken together, these studies
provide critical insight into obestatin in gastric cancers, and further investigation of the
obestatin/GPR39 system in cancer is warranted.

Multiple cancer studies suggest a role for ghrelin and GHS-R in various tumors, mod-
ulating proliferation, apoptosis, and metastasis [166–169]. In pituitary tumors, ghrelin
mRNA is expressed in gonadotropin and GH-producing adenomas, non-functional ade-
nomas, and prolactinomas. GHS-R expression is significantly elevated in GH-producing
adenomas [170]. In patients with advanced pancreatic cancer, aging and anorexia are
associated with reduced circulating active ghrelin [171]. Ghrelin and GHS-R are also rele-
vant in the context of prostate cancer pathology. Human prostate carcinomas and benign
neoplasms express the mRNA of ghrelin and GHS-R [172]. However, in normal prostatic
tissue, the expression of ghrelin mRNA is undetectable, suggesting that ghrelin is involved
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in the pathogenesis of prostate cancer. Ghrelin and its synthetic mimetics modulate the
proliferation of various prostatic cancer cell lines. That has been controversial, as some
studies suggest a proliferative effect on cancer cell growth [173,174], while others observe
stimulatory property at physiological dose and inhibitory property at pharmacological
doses [172]. It is interesting to note that the expression of GOAT, the enzyme responsible
for ghrelin acetylation, is significantly upregulated in human prostate cancer cells [175].

Zhu et al. reported that, in human non-small cell lung cancer A549 cells, ghrelin
administration stimulates proliferation [176]. This effect is accompanied by the activation
of GHS-R and its associated signaling of PI3K/Akt/mTOR/P70S6K and ERK. Ghrelin’s
proliferative property is attenuated in the presence of PI3K, mTOR, and ERK inhibitors,
while GHSR siRNA attenuates the phosphorylation of PI3K, Akt, ERK, mTOR, and P70S6K.
Similarly, GHS-R antagonists attenuate ghrelin-induced human colon cancer cell prolifera-
tion via inhibition of the Ras/PI3K/Akt/mTOR pathway [177]. Other studies suggest that
ghrelin’s proliferative property is not exclusively dependent on GHS-R activation [178–180].
In both human intestinal cells and colon cancer cell lines (Caco-2), the administration of
acyl and unacyl ghrelin stimulates proliferation [181]. Furthermore, this effect is attenuated
by a non-selective GHS-R antagonist but not GHS-R siRNA, suggesting that it is a GHS-R
independent mechanism.

3.2.5. Digestive System

Ghrelin and obestatin have been shown to have protective effects on various organs of
the digestive system. In the oral cavity, ghrelin is secreted by the parotid and submandibular
salivary glands [182], taste buds of the tongue, and gingival epithelium [183,184]. Ghrelin
inhibits the production and release of proinflammatory IL-8 in epithelial cells [184]. Simul-
taneously, proinflammatory IL-1β can increase the expression of Ghsr mRNA in periodontal
cells [185]. These findings suggest that ghrelin is protective against inflammation. Oral
mucositis severely affects quality of life and is associated with severe oral pain, dysphagia,
odynophagia, and dehydration [186]. It has been shown that administration of ghrelin
helps in the healing of oral ulcers, and this healing effect is associated with reduced mucosal
IL-1β and improved mucosal blood flow and cell vitality [187]. In the esophagus, Thomas
et al. reported that a higher concentration of ghrelin was associated with an increased risk
of Barrett’s esophagus compared to control subjects [188]. Continuous infusion of ghrelin
after esophagectomy reduces the duration of systemic inflammatory response syndrome
(SIRS) by lowering C-reactive protein and IL-6 [189]. Further, a reduced level of plasma
ghrelin could indicate longer SIRS duration after esophagectomy [190].

In the stomach, ghrelin has been reported to have protective effects in various models
of gastric ulcers. Exogenous administration of ghrelin inhibits ethanol-induced gastric
ulcers potentially by lowering the development of gastric lesions, increasing blood flow,
and reducing TNF-β expression [191,192]. Pretreatment with ghrelin also protects against
gastric ulcers induced by water immersion, restrain stress, concentrated hydrochloric
acid, and alendronate [193]. Additionally, ghrelin stimulates the healing of gastric ulcers
induced by various agents [194,195]. In the small intestine, ghrelin protects against damage
induced by ischemia/reperfusion probably by reducing the proinflammatory cytokines
and neutrophil infiltration, as well increased intestinal blood flow [196,197]. It has also
been shown that ghrelin protects the small intestine after whole-body irradiation [198]
and improves intestinal barrier functions after cerebral hemorrhage [199]. Besides having
protective effects, ghrelin also aids in the healing of duodenal ulcers [195,200] and enhances
intestinal adaptation after resection surgery [201].

The protective effect of ghrelin has also been observed in the liver; it has been demon-
strated in various animal models of liver injury, including acetaminophen, bile duct ligation,
and liver injury-induced ischemia/reperfusion [193]. Low ghrelin is associated with an
increased risk of gallstone disease [202], but high ghrelin appears to reduce the risk of
nonalcoholic fatty liver disease (NAFLD) [203–205]. Further, administration of ghrelin has
been shown to be preventative and therapeutic for NAFLD [206]. In the pancreas, pre-
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treatment with ghrelin prevents the development of acute pancreatitis induced by cerulein
and pancreatic ischemia [207–209]. Furthermore, treatment with ghrelin after the onset
of acute pancreatitis accelerates the recovery process [210,211]. Clinical reports show that
in patients with pancreatitis, the level of ghrelin increases gradually and is the highest
at discharge, suggesting that endogenous ghrelin plays a role in the recovery process
of pancreatitis [186].

In the large intestine, ghrelin and Ghsr mRNA are higher in patients with inflammatory
bowel disease (IBD) than in healthy controls [212,213]. Treatment with ghrelin significantly
reduces the effects of colitis and accelerates healing in various experimental models of
colitis [213–216]. In a clinical study, patients with ulcerative colitis exhibited upregulation
of ghrelin and TNF-α mRNA compared to healthy subjects [213]. Also, we have recently
shown that global deletion of GHS-R in mouse model exacerbates dextran sulfate sodium
(DSS)- induced experimental colitis [217]. The protective effect of ghrelin on colitis could be
due to reduced activation of nuclear factor kappa B (NFkB) which prevents breakdown of
intestinal barrier function and inhibition of cell apoptosis [218,219]. However, some studies
in ghrelin−/− mice, Ghsr−/− mice and mice with knockdown of ghrelin-O-acyltransferase
(GOAT) have suggested that ghrelin enhances colitis by promoting release of proinflamma-
tory cytokines [220–222].

Various studies have demonstrated that exogenous ghrelin inhibits the expression and
release of proinflammatory cytokines, including IL-1β, IL-6, IL-8, and TNF-α, in the oral
cavity, esophagus, stomach, liver, pancreas, and colon [193]. Ghrelin can inhibit the translo-
cation of NFkB into the nucleus and reduce MAPK signaling, lowering the production of
proinflammatory cytokines [209,219,223–225]. Besides reducing the inflammatory response,
the healing effects of ghrelin in ulcers have been attributed to increased mucosal blood
flow, improved cell vitality and proliferation, and reduced oxidative stress in mucosa [186].

Similar to the protective and healing effects of ghrelin on the digestive system,
obestatin has also been associated with protection and healing of gastric ulcers induced
by acetic acid [226–228], and protection against trinitrobenzene sulfonic acid-induced col-
itis [229]. Additionally, administration of obestatin reduces the lesions of colon mucosa
in acetic acid-induced acute colitis [227]. It has been reported that in peptic ulcer disease,
the concentration of obestatin changes with the progression of infection [230]. A higher
concentration of obestatin is associated with the severity of pancreatitis in humans [112].
Obestatin protects against acute pancreatitis induced by cerulein [133] and pancreatic is-
chemia after reperfusion [231], exhibiting a healing effect [232,233]. In the liver, obestatin
protects against ischemia-induced hepatic injury and NAFLD [59,234]. Khaleel et al. re-
ported that administration of obestatin protects against NAFLD, reduces accumulation of
lipids in the liver, and develops hepatomegaly, hyperlipidemia, and insulin resistance [59].
Various studies have suggested that the protective and healing effects of obestatin are
caused by the improvement of blood flow, improved cell vitality and proliferation, and
reduced expression of IL-1β and TNF-α [226,229].

3.3. Contradictory Functions

Up to this point, most functions ascribed to ghrelin and obestatin are either comple-
mentary or synergistic; the following section covers the generally established contradic-
tory functions.

3.3.1. Lipid Metabolism

Obestatin regulates glucose metabolism in adipose tissue. It has been reported that
obestatin translocates GLUT4 to the plasma membrane via the activation of sirtuin1 and
Akt [235]. In adipocytes, obestatin activates key insulin signaling regulators of Akt, glu-
cometabolic regulators of glycogen synthase kinase-3β (GSK3β), and master metabolic
regulators of mechanistic targets of rapamycin (mTOR) [23]. Obestatin inhibits basal-
and insulin-stimulated lipogenesis in adipocytes via GPR39–1a [29]. Furthermore, re-
duced glycerol release was observed in GPR39-deficient adipocytes cultured with obestatin,
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suggesting that the lipolytic effect of obestatin may be GPR39-dependent. Conversely,
continuous ghrelin administration is known to promote adiposity by increasing food intake
and decreasing fat utilization [236]. Ghrelin administration leads to increased adiposity
accompanied by the stimulation of lipid storage enzymes, while simultaneously inhibiting
the rate-limiting step of fatty acid oxidation [237]. Ghrelin has been shown to increase
adipogenesis, stimulate pre-adipocyte differentiation, and antagonize lipolysis [238]. Gen-
erally, ghrelin promotes fat deposition and suppresses lipolysis, while obestatin inhibits
lipogenesis and promotes lipolysis.

3.3.2. Thermogenesis

The thermogenic activity of brown adipose tissue (BAT) is positively correlated with
energy expenditure, and dysregulation of thermogenesis in BAT is linked to obesity in
humans [239]. BAT, a key organ of non-shivering thermogenesis, plays an important role in
energy expenditure. BAT contains large amounts of mitochondria, where lipids are used to
generate heat [240,241]. Evidence suggests that non-shivering thermogenesis plays a crucial
role in boosting energy expenditure in rodents and human neonates [239,240,242,243].
Enhanced thermogenesis also improves glucose homeostasis and insulin sensitivity in
mice [244] and humans [245]. Upon cold-stimulus, the sympathetic nervous system (SNS)
is stimulated, which releases norepinephrine (NE) into BAT to activate the β3-adrenergic
receptor (β3-AR). Subsequently, thermogenic regulator uncoupling protein 1 (UCP1) is
recruited into mitochondria, which promotes lipolysis and heat production [240,241].

Ghrelin has been reported to suppress NE release in BAT [246,247], and ghrelin sup-
presses brown fat thermogenesis via regulation of UCP1 [246–250]. In humans, the in-
hibitory thermogenic effect of ghrelin was observed in a study of men undergoing non-
shivering cold exposure [245]. In response to cold exposure, activation of BAT thermogene-
sis results in a significant decrease in leptin, gastric inhibitory peptide (GIP), glucagon, and
ghrelin. We reported that ghrelin and obestatin have opposite effects on UCP1 expression
in brown adipocytes in a dose-dependent manner [8]. The results suggest that ghrelin
and obestatin may have opposite effects on thermogenesis, leading to opposing outcomes
for energy expenditure. Intriguingly, we found that Ghsr-null and ghrelin-null mice have
a deferential thermogenesis phenotype: while Ghsr-null mice have elevated brown fat
thermogenesis, thermogenesis in ghrelin-null mice is not altered [251]. Both ghrelin and
obestatin are absent in ghrelin-null mice, and the opposing thermogenic effects of ghrelin
and obestatin likely neutralize each other. Indeed, we found that deletion of the Ghsr gene
results in increased thermogenesis, leading to a lean and insulin-sensitive phenotype in
aging [248]. In Ghsr-null mice, only ghrelin signaling is blocked, while obestatin is intact.
We believe this explains why only Ghsr-null mice, not ghrelin-null mice, exhibit an enhanced
thermogenic phenotype. However, little data are currently available regarding the direct
effect of obestatin on thermogenesis, and much more research needs to be done.

3.3.3. Sleep

Obestatin and ghrelin also have differential effects on sleep. An interest in the rela-
tionship between the onset of sleep and feeding-related hormones has developed due to
the revelation that metabolic syndrome is associated with sleep disorders [252]. Ghrelin
and obestatin are two such hormones that have opposing effects on sleep. It has been
revealed that ghrelin and other appetite-stimulating peptides induce wakefulness, while
obestatin and other satiety peptides have a sleep-promoting effect after central but not
systemic administration [252–255]. The use of ghrelin gene knockout mice bolstered the
role of ghrelin-related peptides’ importance in sleep [254]. While mice are fasted and
exposed to sub-thermoneutral conditions, they experience hypothermic bouts associated
with a reduction in sleep; however, when treated with obestatin, it delays the onset of
hypothermia and improved sleep [254]. Moreover, central administration of obestatin via
ICV injections promoted the onset of sleep during the dark period; this is reflected by
increased non-rapid eye movement (NREM) sleep [252], which is linked to improvement
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of hippocampal-memory consolidation [255]. In summary, ghrelin promotes lipogene-
sis, inhibits thermogenesis, and induces wakefulness, while obestatin promotes lipolysis,
increases thermogenesis, and promotes sleep.

4. Conclusions

The “sibling proteins” ghrelin and obestatin, encoded by the same ghrelin gene, have
distinctive biological functions. The functional properties of these 2 peptides are very
complex and can be either opposite, similar, or complementary depending on the tissue
types and physiological/pathological states. Ghrelin and obestatin are involved in a wide
range of physiological functions and become dysregulated under pathological conditions.
In Figure 2, we summarize the functions of ghrelin and obestatin in various tissues under
different physiological/pathological conditions. The commonly noted antagonistic func-
tions are primarily evident in their effects on food intake and sleep: ghrelin increases food
intake, while obestatin decreases food intake; ghrelin induces wakefulness, while obestatin
promotes sleep. In this review, we have also discussed their regulation of thermogene-
sis and fat metabolism: ghrelin suppresses thermogenesis and promotes fat deposition,
while obestatin increases thermogenesis and promotes lipolysis. We also discussed other
differential functions: ghrelin potentiates anti-inflammatory effects and protects against
inflammation, while obestatin’s effect on inflammation depends on the pathological states;
ghrelin’s insulinostatic property of suppressing insulin secretion is well established, while
obestatin’s effect on insulin is controversial. In addition, we also noted that they both
display protective effects on pancreatic beta cells, muscle, neuronal health, and the diges-
tive system, but elicit detrimental effects on the progression and metastasis of cancers.
Thus, as our understanding of ghrelin and obestatin grows, the dogmatic view of ghrelin
and obestatin as rivalry peptides has become less accurate. Their purported opposing
properties are not ubiquitous in all tissues; while they have antagonistic effects in some
tissues, they possess similar/synergistic effects in other tissues, and they activate distinctive
signaling pathways. In Table 1, we summarize the signaling pathways utilized by ghrelin
and obestatin in various tissues.
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Table 1. Summary of signaling pathways of ghrelin and obestatin.

Acylated Ghrelin (AG) Obestatin

(1) Food intake GH release via GHSR activation [12–14] Down-regulation of NPY and NPY-R [37,42]

(2) Insulin signaling AMPK signaling mediated G-protein subunit
activation [101]

Regulation of pScr, Akt, ERK1/2 via GLP-1R
binding [27]

(3) Thermogenesis Suppression of NE release of BAT [170,171] Up-regulation of UCP1 mRNA expression [8]

(4) Neuronal Function Neuronal survival of epileptic mice via
attenuation of lipid peroxidation [134]

Attenuation of epileptic seizure
duration/onset via interaction with

neuropeptide Y (NPY) or GABA neurons [135]

(5) Muscle function Activation of GH/IGF-1 via mTOR/Akt
signaling [120,126]

Regulation of myogenic differentiation through
involvement of GPR39 [23]

(6) Cardiovascular function Cardiac pumping function via GHSR and Akt
signaling [95]

Activation of PI3K, PKCs and ERK1/2
pathway [82]

Taken together, we conclude that the biology of ghrelin and obestatin is complex; despite
deriving from the same gene, they have both diverse and complementary effects, which can be
opposite, similar, or synergistic depending on tissues/conditions. To advance their therapeutic
applications, more in-depth studies are warranted to further define the functional diversity of
these two sibling peptides. Specifically, it would be beneficial to determine the underpinning
mechanisms promoting divergent functions and identify the differential signaling pathways
used by these two proteins, thereby further advancing the understanding of the biological
diversity associated with these two very important hormones.
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